progresses with transverse momentum distributions• 3d structure = gpds in impact parameter space...

104
Progresses with Transverse Momentum Distributions N. Isgur Fellowship Alessandro Bacchetta

Upload: others

Post on 27-Jul-2020

10 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Progresses with Transverse Momentum Distributions• 3D structure = GPDs in impact parameter space • In general, parton distributions are 6 dimensional (Wigner distributions)•

Progresses with Transverse Momentum Distributions

N. Isgur Fellowship

Alessandro Bacchetta

Page 2: Progresses with Transverse Momentum Distributions• 3D structure = GPDs in impact parameter space • In general, parton distributions are 6 dimensional (Wigner distributions)•

Outline

Page 3: Progresses with Transverse Momentum Distributions• 3D structure = GPDs in impact parameter space • In general, parton distributions are 6 dimensional (Wigner distributions)•

Outline• Some words about the relevance of

TMDs

Page 4: Progresses with Transverse Momentum Distributions• 3D structure = GPDs in impact parameter space • In general, parton distributions are 6 dimensional (Wigner distributions)•

Outline• Some words about the relevance of

TMDs

• Some theory

Page 5: Progresses with Transverse Momentum Distributions• 3D structure = GPDs in impact parameter space • In general, parton distributions are 6 dimensional (Wigner distributions)•

Outline• Some words about the relevance of

TMDs

• Some theory

• Unpolarized TMDs

Page 6: Progresses with Transverse Momentum Distributions• 3D structure = GPDs in impact parameter space • In general, parton distributions are 6 dimensional (Wigner distributions)•

Outline• Some words about the relevance of

TMDs

• Some theory

• Unpolarized TMDs

• Sivers function (as an example of all other TMDs)

Page 7: Progresses with Transverse Momentum Distributions• 3D structure = GPDs in impact parameter space • In general, parton distributions are 6 dimensional (Wigner distributions)•

Outline• Some words about the relevance of

TMDs

• Some theory

• Unpolarized TMDs

• Sivers function (as an example of all other TMDs)

• Other TMDs

Page 8: Progresses with Transverse Momentum Distributions• 3D structure = GPDs in impact parameter space • In general, parton distributions are 6 dimensional (Wigner distributions)•

Some of EIC goals

Page 9: Progresses with Transverse Momentum Distributions• 3D structure = GPDs in impact parameter space • In general, parton distributions are 6 dimensional (Wigner distributions)•

Some of EIC goals

• Understand CONFINEMENT

Page 10: Progresses with Transverse Momentum Distributions• 3D structure = GPDs in impact parameter space • In general, parton distributions are 6 dimensional (Wigner distributions)•

Some of EIC goals

• Understand CONFINEMENT

• Study the structure of the proton (3D STRUCTURE, SPIN, FLAVOR...)

Page 11: Progresses with Transverse Momentum Distributions• 3D structure = GPDs in impact parameter space • In general, parton distributions are 6 dimensional (Wigner distributions)•

Some of EIC goals

• Understand CONFINEMENT

• Study the structure of the proton (3D STRUCTURE, SPIN, FLAVOR...)

• Test QCD in all its aspects (FACTORIZATION, EVOLUTION, LATTICE,...)

Page 12: Progresses with Transverse Momentum Distributions• 3D structure = GPDs in impact parameter space • In general, parton distributions are 6 dimensional (Wigner distributions)•

Some of EIC goals

• Understand CONFINEMENT

• Study the structure of the proton (3D STRUCTURE, SPIN, FLAVOR...)

• Test QCD in all its aspects (FACTORIZATION, EVOLUTION, LATTICE,...)

TMDs physics touches all this points

Page 13: Progresses with Transverse Momentum Distributions• 3D structure = GPDs in impact parameter space • In general, parton distributions are 6 dimensional (Wigner distributions)•

3D structure of the nucleon

Page 14: Progresses with Transverse Momentum Distributions• 3D structure = GPDs in impact parameter space • In general, parton distributions are 6 dimensional (Wigner distributions)•

3D structure of the nucleon• 3D structure = GPDs in impact parameter

space

Page 15: Progresses with Transverse Momentum Distributions• 3D structure = GPDs in impact parameter space • In general, parton distributions are 6 dimensional (Wigner distributions)•

3D structure of the nucleon• 3D structure = GPDs in impact parameter

space

• In general, parton distributions are 6 dimensional (Wigner distributions)

Page 16: Progresses with Transverse Momentum Distributions• 3D structure = GPDs in impact parameter space • In general, parton distributions are 6 dimensional (Wigner distributions)•

3D structure of the nucleon• 3D structure = GPDs in impact parameter

space

• In general, parton distributions are 6 dimensional (Wigner distributions)

• 3 dim. in coordinate space (GPDs)

Page 17: Progresses with Transverse Momentum Distributions• 3D structure = GPDs in impact parameter space • In general, parton distributions are 6 dimensional (Wigner distributions)•

3D structure of the nucleon• 3D structure = GPDs in impact parameter

space

• In general, parton distributions are 6 dimensional (Wigner distributions)

• 3 dim. in coordinate space (GPDs)

• 3 dim. in momentum space (TMDs)

X. Ji, PRL 91 (03), see talk by M. Schlegelfor even more dim. (8), see Collins, Rogers, Stasto, PRD77 (08)

Page 18: Progresses with Transverse Momentum Distributions• 3D structure = GPDs in impact parameter space • In general, parton distributions are 6 dimensional (Wigner distributions)•

• 3D structure = GPDs in impact parameter space

• In general, parton distributions are 6 dimensional (Wigner distributions)

• 3 dim. in coordinate space (GPDs)

• 3 dim. in momentum space (TMDs)

X. Ji, PRL 91 (03), see talk by M. Schlegelfor even more dim. (8), see Collins, Rogers, Stasto, PRD77 (08)

6D structure of the nucleon

Page 19: Progresses with Transverse Momentum Distributions• 3D structure = GPDs in impact parameter space • In general, parton distributions are 6 dimensional (Wigner distributions)•

New dimensions

!0.6 !0.4 !0.2 0 0.2 0.4 0.6pX !GeV"c#

!0.6

!0.4

!0.2

0

0.2

0.4

0.6

p Y!GeV

"c#

fu"p" !x#0.1#

3.58

0

QCDSF/UKQCD, PRL 98 (07) A.B., F. Conti, M. Radici, in preparation

Transverse position Transverse momentum

!0.2 !0.1 0 0.1 0.2pX !GeV"c#

!0.2

!0.1

0

0.1

0.2

p Y!GeV

"c#

fd"p" !x#0.1#

11.26

0

Page 20: Progresses with Transverse Momentum Distributions• 3D structure = GPDs in impact parameter space • In general, parton distributions are 6 dimensional (Wigner distributions)•

Momentum distributions

Vos, McCarthy, Am. J. Phys. 65 (97)

Page 21: Progresses with Transverse Momentum Distributions• 3D structure = GPDs in impact parameter space • In general, parton distributions are 6 dimensional (Wigner distributions)•

Momentum distributions

In scattering experiments, measuring momentum distributions is the closest we get to “imaging” a quantum object

Vos, McCarthy, Am. J. Phys. 65 (97)

Page 22: Progresses with Transverse Momentum Distributions• 3D structure = GPDs in impact parameter space • In general, parton distributions are 6 dimensional (Wigner distributions)•

Theory background

Page 23: Progresses with Transverse Momentum Distributions• 3D structure = GPDs in impact parameter space • In general, parton distributions are 6 dimensional (Wigner distributions)•

SIDIS

y

z

x

hadron plane

lepton plane

l!l ST

Ph

Ph"!h

!S

Page 24: Progresses with Transverse Momentum Distributions• 3D structure = GPDs in impact parameter space • In general, parton distributions are 6 dimensional (Wigner distributions)•

SIDIS cross sectiond!

dx dy d"S dz d"h dP 2h!

=#2

x y Q2

y2

2 (1! $)

!FUU,T + $ FUU,L +

"2 $(1 + $) cos "h F cos !h

UU + $ cos(2"h) F cos 2!h

UU

+ %e

"2 $(1! $) sin "h F sin !h

LU + SL

#"

2 $(1 + $) sin "h F sin !h

UL + $ sin(2"h)F sin 2!h

UL

$

+ SL %e

#"

1! $2 FLL +"

2 $(1! $) cos "h F cos !h

LL

$

+ ST

#sin("h ! "S)

%F sin(!h"!S)

UT,T + $ F sin(!h"!S)UT,L

&+ $ sin("h + "S) F sin(!h+!S)

UT

+ $ sin(3"h ! "S) F sin(3!h"!S)UT +

"2 $(1 + $) sin "S F sin !S

UT

+"

2 $(1 + $) sin(2"h ! "S) F sin(2!h"!S)UT

$+ ST %e

#"

1! $2 cos("h ! "S) F cos(!h"!S)LT

+"

2 $(1! $) cos "S F cos !S

LT +"

2 $(1! $) cos(2"h ! "S) F cos(2!h"!S)LT

$'

Page 25: Progresses with Transverse Momentum Distributions• 3D structure = GPDs in impact parameter space • In general, parton distributions are 6 dimensional (Wigner distributions)•

SIDIS cross sectiond!

dx dy d"S dz d"h dP 2h!

=#2

x y Q2

y2

2 (1! $)

!FUU,T + $ FUU,L +

"2 $(1 + $) cos "h F cos !h

UU + $ cos(2"h) F cos 2!h

UU

+ %e

"2 $(1! $) sin "h F sin !h

LU + SL

#"

2 $(1 + $) sin "h F sin !h

UL + $ sin(2"h)F sin 2!h

UL

$

+ SL %e

#"

1! $2 FLL +"

2 $(1! $) cos "h F cos !h

LL

$

+ ST

#sin("h ! "S)

%F sin(!h"!S)

UT,T + $ F sin(!h"!S)UT,L

&+ $ sin("h + "S) F sin(!h+!S)

UT

+ $ sin(3"h ! "S) F sin(3!h"!S)UT +

"2 $(1 + $) sin "S F sin !S

UT

+"

2 $(1 + $) sin(2"h ! "S) F sin(2!h"!S)UT

$+ ST %e

#"

1! $2 cos("h ! "S) F cos(!h"!S)LT

+"

2 $(1! $) cos "S F cos !S

LT +"

2 $(1! $) cos(2"h ! "S) F cos(2!h"!S)LT

$'

FUU,T (x, z, P 2h!, Q2)

Page 26: Progresses with Transverse Momentum Distributions• 3D structure = GPDs in impact parameter space • In general, parton distributions are 6 dimensional (Wigner distributions)•

High and low transverse momentum

M2 Q2

Q = photon virtualityM = hadron mass

Ph! = hadron transverse momentum q2T ! P 2

h!/z

q2T

Page 27: Progresses with Transverse Momentum Distributions• 3D structure = GPDs in impact parameter space • In general, parton distributions are 6 dimensional (Wigner distributions)•

Low

High and low transverse momentum

q2T ! Q2

M2 Q2

Q = photon virtualityM = hadron mass

Ph! = hadron transverse momentum q2T ! P 2

h!/z

q2T

Page 28: Progresses with Transverse Momentum Distributions• 3D structure = GPDs in impact parameter space • In general, parton distributions are 6 dimensional (Wigner distributions)•

Low

High and low transverse momentum

q2T ! Q2

M2 Q2

Q = photon virtualityM = hadron mass

Ph! = hadron transverse momentum q2T ! P 2

h!/z

q2T

Page 29: Progresses with Transverse Momentum Distributions• 3D structure = GPDs in impact parameter space • In general, parton distributions are 6 dimensional (Wigner distributions)•

Low

High and low transverse momentum

q2T ! Q2

M2 Q2

Q = photon virtualityM = hadron mass

Ph! = hadron transverse momentum q2T ! P 2

h!/z

TMDs and FFs

kT factorizationq2T

Page 30: Progresses with Transverse Momentum Distributions• 3D structure = GPDs in impact parameter space • In general, parton distributions are 6 dimensional (Wigner distributions)•

High

High and low transverse momentum

M2 ! q2T

M2 Q2

Q = photon virtualityM = hadron mass

Ph! = hadron transverse momentum q2T ! P 2

h!/z

Page 31: Progresses with Transverse Momentum Distributions• 3D structure = GPDs in impact parameter space • In general, parton distributions are 6 dimensional (Wigner distributions)•

High

High and low transverse momentum

M2 ! q2T

M2 Q2

Q = photon virtualityM = hadron mass

Ph! = hadron transverse momentum q2T ! P 2

h!/z

Collinear PDFs and FFs

collinear factorization

Page 32: Progresses with Transverse Momentum Distributions• 3D structure = GPDs in impact parameter space • In general, parton distributions are 6 dimensional (Wigner distributions)•

Low High

High and low transverse momentum

q2T ! Q2 M2 ! q2

T

M2 Q2

Q = photon virtualityM = hadron mass

Ph! = hadron transverse momentum q2T ! P 2

h!/z

Intermediate

M2 ! q2T ! Q2

Page 33: Progresses with Transverse Momentum Distributions• 3D structure = GPDs in impact parameter space • In general, parton distributions are 6 dimensional (Wigner distributions)•

Low High

High and low transverse momentum

q2T ! Q2 M2 ! q2

T

M2 Q2

Q = photon virtualityM = hadron mass

Ph! = hadron transverse momentum q2T ! P 2

h!/z

Intermediate

M2 ! q2T ! Q2

Need a machine with Q2 >> M2

Page 34: Progresses with Transverse Momentum Distributions• 3D structure = GPDs in impact parameter space • In general, parton distributions are 6 dimensional (Wigner distributions)•

Predictions in intermediate region

?

?

??

???

A.B., Boer, Diehl, Mulders, 0803.0227

Page 35: Progresses with Transverse Momentum Distributions• 3D structure = GPDs in impact parameter space • In general, parton distributions are 6 dimensional (Wigner distributions)•

kT factorization

Collins, Soper, NPB 193 (81)Ji, Ma, Yuan, PRD 71 (05)

FUU,T (x, z, P 2h!, Q2) = C

!f1D1

"

=#

d2pT d2kT d2lT !(2)$pT ! kT + lT ! P h!/z

%

x&

a

e2a fa

1 (x, p2T , µ2)Da

1(z, k2T , µ2) U(l2T , µ2)H(Q2, µ2)

Page 36: Progresses with Transverse Momentum Distributions• 3D structure = GPDs in impact parameter space • In general, parton distributions are 6 dimensional (Wigner distributions)•

kT factorization

Collins, Soper, NPB 193 (81)Ji, Ma, Yuan, PRD 71 (05)

FUU,T (x, z, P 2h!, Q2) = C

!f1D1

"

=#

d2pT d2kT d2lT !(2)$pT ! kT + lT ! P h!/z

%

x&

a

e2a fa

1 (x, p2T , µ2)Da

1(z, k2T , µ2) U(l2T , µ2)H(Q2, µ2)

TMD PDF TMD FF Soft factor Hard part

Page 37: Progresses with Transverse Momentum Distributions• 3D structure = GPDs in impact parameter space • In general, parton distributions are 6 dimensional (Wigner distributions)•

Collins--Soper evolution equations

Collins, Soper, Sterman, talk at Fermilab Workshop on Drell-Yan Process, Batavia, Ill., Oct 7-8, 1982

Collins, Soper, NPB 193 (81)Ji, Ma, Yuan, PRD 70 (04)

kT space

b space

Page 38: Progresses with Transverse Momentum Distributions• 3D structure = GPDs in impact parameter space • In general, parton distributions are 6 dimensional (Wigner distributions)•

Collins--Soper evolution equations

Collins, Soper, Sterman, talk at Fermilab Workshop on Drell-Yan Process, Batavia, Ill., Oct 7-8, 1982

Collins, Soper, NPB 193 (81)Ji, Ma, Yuan, PRD 70 (04)

Evolution equations for TMDs are

NOT standard DGLAP

kT space

b space

Page 39: Progresses with Transverse Momentum Distributions• 3D structure = GPDs in impact parameter space • In general, parton distributions are 6 dimensional (Wigner distributions)•

Resummation

Here we test pQCDHere we measure

hadronic properties

The calculation automatically fulfills Collins-Soper evolution and requires: •collinear PDFs •calculable pQCD contributions •nonperturbative part of TMDs

FUU,T (x, z, b, Q2) = x!

a

e2a (f i

1 ! Cia) (Caj !Dj1) e!Snonpert.e!Spert.

Page 40: Progresses with Transverse Momentum Distributions• 3D structure = GPDs in impact parameter space • In general, parton distributions are 6 dimensional (Wigner distributions)•

Resummation results

http://hep.pa.msu.edu/resum/index.html

Page 41: Progresses with Transverse Momentum Distributions• 3D structure = GPDs in impact parameter space • In general, parton distributions are 6 dimensional (Wigner distributions)•

Resummation results

http://hep.pa.msu.edu/resum/index.html

Page 42: Progresses with Transverse Momentum Distributions• 3D structure = GPDs in impact parameter space • In general, parton distributions are 6 dimensional (Wigner distributions)•

Resummation results

http://hep.pa.msu.edu/resum/index.html

Page 43: Progresses with Transverse Momentum Distributions• 3D structure = GPDs in impact parameter space • In general, parton distributions are 6 dimensional (Wigner distributions)•

Resummation results

http://hep.pa.msu.edu/resum/index.html

Page 44: Progresses with Transverse Momentum Distributions• 3D structure = GPDs in impact parameter space • In general, parton distributions are 6 dimensional (Wigner distributions)•

Resummation results

http://hep.pa.msu.edu/resum/index.html

Page 45: Progresses with Transverse Momentum Distributions• 3D structure = GPDs in impact parameter space • In general, parton distributions are 6 dimensional (Wigner distributions)•

Resummation results

http://hep.pa.msu.edu/resum/index.html

Most studies done for Drell--Yan

Page 46: Progresses with Transverse Momentum Distributions• 3D structure = GPDs in impact parameter space • In general, parton distributions are 6 dimensional (Wigner distributions)•

Theoretical activity

Page 47: Progresses with Transverse Momentum Distributions• 3D structure = GPDs in impact parameter space • In general, parton distributions are 6 dimensional (Wigner distributions)•

Theoretical activity• Issues related to kT-factorization in pp

collisionsCollins, Qiu, PRD75 (07)Qiu,Vogelsang, Yuan, PRD76 (07)Bomhof, Mulders, Pijlman, A.B., PRD72 (05)

Page 48: Progresses with Transverse Momentum Distributions• 3D structure = GPDs in impact parameter space • In general, parton distributions are 6 dimensional (Wigner distributions)•

Theoretical activity• Issues related to kT-factorization in pp

collisionsCollins, Qiu, PRD75 (07)Qiu,Vogelsang, Yuan, PRD76 (07)Bomhof, Mulders, Pijlman, A.B., PRD72 (05)

• Issues related to resummation in other structure functionsBoer, Vogelsang, PRD74 (06)Berger, Qiu, Rodriguez-Pedraza, PRD76 (07)A.B., Boer, Diehl, Mulders, 0803.0227

Page 49: Progresses with Transverse Momentum Distributions• 3D structure = GPDs in impact parameter space • In general, parton distributions are 6 dimensional (Wigner distributions)•

Theoretical activity• Issues related to kT-factorization in pp

collisionsCollins, Qiu, PRD75 (07)Qiu,Vogelsang, Yuan, PRD76 (07)Bomhof, Mulders, Pijlman, A.B., PRD72 (05)

• Issues related to resummation in other structure functionsBoer, Vogelsang, PRD74 (06)Berger, Qiu, Rodriguez-Pedraza, PRD76 (07)A.B., Boer, Diehl, Mulders, 0803.0227

Can have impact on LHC physics

Page 50: Progresses with Transverse Momentum Distributions• 3D structure = GPDs in impact parameter space • In general, parton distributions are 6 dimensional (Wigner distributions)•

Unpolarized TMDs

Page 51: Progresses with Transverse Momentum Distributions• 3D structure = GPDs in impact parameter space • In general, parton distributions are 6 dimensional (Wigner distributions)•

Nonperturbative transverse momentm

The nonperturbative part has to be fitted to dataUsually assumed to be Gaussian

FUU,T (x, z, b, Q2) = x!

a

e2a (f i

1 ! Cia) (Caj !Dj1) e!Snonpert.e!Spert.

Page 52: Progresses with Transverse Momentum Distributions• 3D structure = GPDs in impact parameter space • In general, parton distributions are 6 dimensional (Wigner distributions)•

Available extractions

•In b space

Brock, Landry, Nadolsky, Yuan, PRD67 (03)

111 data points(Drell-Yan)

Page 53: Progresses with Transverse Momentum Distributions• 3D structure = GPDs in impact parameter space • In general, parton distributions are 6 dimensional (Wigner distributions)•

Is it sufficient?

0 0.2 0.4 0.6 0.8pT2 !GeV"c#

0.5

1

1.5

2

2.5

3

3.5

f1u !x, pT2#

x!0.02

x!0.2x!0.5

0 0.2 0.4 0.6 0.8pT2 !GeV"c#

0

2

4

6

8

f1d !x, pT2#

x!0.02

x!0.2x!0.5

Simple model calculation suggests•flavor dependence•deviation from a simple Gaussian (required also by orbital angular momentum)

Page 54: Progresses with Transverse Momentum Distributions• 3D structure = GPDs in impact parameter space • In general, parton distributions are 6 dimensional (Wigner distributions)•

EIC tasks

Page 55: Progresses with Transverse Momentum Distributions• 3D structure = GPDs in impact parameter space • In general, parton distributions are 6 dimensional (Wigner distributions)•

EIC tasks• Gain better knowledge of the

nonperturbative part (also for fragmentation functions)

Page 56: Progresses with Transverse Momentum Distributions• 3D structure = GPDs in impact parameter space • In general, parton distributions are 6 dimensional (Wigner distributions)•

EIC tasks• Gain better knowledge of the

nonperturbative part (also for fragmentation functions)

• Flavor separation (also for fragmentation functions)

Page 57: Progresses with Transverse Momentum Distributions• 3D structure = GPDs in impact parameter space • In general, parton distributions are 6 dimensional (Wigner distributions)•

EIC tasks• Gain better knowledge of the

nonperturbative part (also for fragmentation functions)

• Flavor separation (also for fragmentation functions)

• Unintegrated gluon distribution function

Page 58: Progresses with Transverse Momentum Distributions• 3D structure = GPDs in impact parameter space • In general, parton distributions are 6 dimensional (Wigner distributions)•

EIC tasks• Gain better knowledge of the

nonperturbative part (also for fragmentation functions)

• Flavor separation (also for fragmentation functions)

• Unintegrated gluon distribution function

• Global fits with unintegrated PDFs

Page 59: Progresses with Transverse Momentum Distributions• 3D structure = GPDs in impact parameter space • In general, parton distributions are 6 dimensional (Wigner distributions)•

EIC tasks• Gain better knowledge of the

nonperturbative part (also for fragmentation functions)

• Flavor separation (also for fragmentation functions)

• Unintegrated gluon distribution function

• Global fits with unintegrated PDFs

• Cleaner information from jet-SIDIS?

Page 60: Progresses with Transverse Momentum Distributions• 3D structure = GPDs in impact parameter space • In general, parton distributions are 6 dimensional (Wigner distributions)•

Longitudinal spinEverything can be done also with helicity TMDs

0 0.2 0.4 0.6 0.8pT2 !GeV"c#

0

2

4

6

8

10

down, x!0.02

f1"g1

f1#g1

0 0.2 0.4 0.6 0.8pT2 !GeV"c#

1

2

3

4

up, x!0.02

f1"g1

f1#g1

Page 61: Progresses with Transverse Momentum Distributions• 3D structure = GPDs in impact parameter space • In general, parton distributions are 6 dimensional (Wigner distributions)•

Longitudinal spinEverything can be done also with helicity TMDs

0 0.2 0.4 0.6 0.8pT2 !GeV"c#

0

2

4

6

8

10

down, x!0.02

f1"g1

f1#g1

0 0.2 0.4 0.6 0.8pT2 !GeV"c#

1

2

3

4

up, x!0.02

f1"g1

f1#g1

Signs of orbital ang. mom.

Page 62: Progresses with Transverse Momentum Distributions• 3D structure = GPDs in impact parameter space • In general, parton distributions are 6 dimensional (Wigner distributions)•

Longitudinal spinEverything can be done also with helicity TMDs

0 0.2 0.4 0.6 0.8pT2 !GeV"c#

0

2

4

6

8

10

down, x!0.02

f1"g1

f1#g1

0 0.2 0.4 0.6 0.8pT2 !GeV"c#

1

2

3

4

up, x!0.02

f1"g1

f1#g1

Impossible to reproduce using simple Gaussians

Signs of orbital ang. mom.

Page 63: Progresses with Transverse Momentum Distributions• 3D structure = GPDs in impact parameter space • In general, parton distributions are 6 dimensional (Wigner distributions)•

Sivers function

Page 64: Progresses with Transverse Momentum Distributions• 3D structure = GPDs in impact parameter space • In general, parton distributions are 6 dimensional (Wigner distributions)•

Formalism

F sin(!h!!S)UT,T = C

!!pT · h

Mf"1T (x, p2

T , µ2)D1(z, k2T , µ2)

"

Page 65: Progresses with Transverse Momentum Distributions• 3D structure = GPDs in impact parameter space • In general, parton distributions are 6 dimensional (Wigner distributions)•

Formalism

F sin(!h!!S)UT,T = C

!!pT · h

Mf"1T (x, p2

T , µ2)D1(z, k2T , µ2)

"

• Collins--Soper evolution always required. Not only for the Sivers function, but also for D1

Page 66: Progresses with Transverse Momentum Distributions• 3D structure = GPDs in impact parameter space • In general, parton distributions are 6 dimensional (Wigner distributions)•

Formalism

F sin(!h!!S)UT,T = C

!!pT · h

Mf"1T (x, p2

T , µ2)D1(z, k2T , µ2)

"

• Collins--Soper evolution always required. Not only for the Sivers function, but also for D1

• We are far from the sofistication reached for FUU

Page 67: Progresses with Transverse Momentum Distributions• 3D structure = GPDs in impact parameter space • In general, parton distributions are 6 dimensional (Wigner distributions)•

Weighted asymmetries!

Ph!z

sin(!h ! !S)"

= !x#

a

e2a f!(1)

1T (x, µ2)D1(z, µ2)

Page 68: Progresses with Transverse Momentum Distributions• 3D structure = GPDs in impact parameter space • In general, parton distributions are 6 dimensional (Wigner distributions)•

Weighted asymmetries!

Ph!z

sin(!h ! !S)"

= !x#

a

e2a f!(1)

1T (x, µ2)D1(z, µ2)

• Not clear if it’s possible to recover DGLAP-like evolution equations for Sivers, but certainly for D1

Page 69: Progresses with Transverse Momentum Distributions• 3D structure = GPDs in impact parameter space • In general, parton distributions are 6 dimensional (Wigner distributions)•

Weighted asymmetries!

Ph!z

sin(!h ! !S)"

= !x#

a

e2a f!(1)

1T (x, µ2)D1(z, µ2)

• Not clear if it’s possible to recover DGLAP-like evolution equations for Sivers, but certainly for D1

• It’s important that the structure function falls fast enough with transv. mom.

Page 70: Progresses with Transverse Momentum Distributions• 3D structure = GPDs in impact parameter space • In general, parton distributions are 6 dimensional (Wigner distributions)•

Sivers function - TorinoFree fit“Symmetric sea”

Anselmino et al., 0805.2677

Page 71: Progresses with Transverse Momentum Distributions• 3D structure = GPDs in impact parameter space • In general, parton distributions are 6 dimensional (Wigner distributions)•

Sivers function - Bochum

-0.04

-0.02

0

0.02

0.04

0 0.5

(a)

x

x f1T !(1)a(x)

u-u

-0.04

-0.02

0

0.02

0.04

0 0.5

(b)

x

x f1T !(1)a(x)

d-d

-0.04

-0.02

0

0.02

0.04

0 0.5

(c)

x

x f1T !(1)a(x)

s- s

Arnold et al. , 0805.2137

Page 72: Progresses with Transverse Momentum Distributions• 3D structure = GPDs in impact parameter space • In general, parton distributions are 6 dimensional (Wigner distributions)•

Limits of the analyses

Page 73: Progresses with Transverse Momentum Distributions• 3D structure = GPDs in impact parameter space • In general, parton distributions are 6 dimensional (Wigner distributions)•

Limits of the analyses

• Evolution equations neglected (will be very relevant at EIC)

Page 74: Progresses with Transverse Momentum Distributions• 3D structure = GPDs in impact parameter space • In general, parton distributions are 6 dimensional (Wigner distributions)•

Limits of the analyses

• Evolution equations neglected (will be very relevant at EIC)

• Limited x range (EIC can improve on both sides)

Page 75: Progresses with Transverse Momentum Distributions• 3D structure = GPDs in impact parameter space • In general, parton distributions are 6 dimensional (Wigner distributions)•

Limits of the analyses

• Evolution equations neglected (will be very relevant at EIC)

• Limited x range (EIC can improve on both sides)

• 173 data points (cf. 467 points in Δq fits)

Page 76: Progresses with Transverse Momentum Distributions• 3D structure = GPDs in impact parameter space • In general, parton distributions are 6 dimensional (Wigner distributions)•

Gluon Sivers function

M. Burkardt, PRD69 (04)

Page 77: Progresses with Transverse Momentum Distributions• 3D structure = GPDs in impact parameter space • In general, parton distributions are 6 dimensional (Wigner distributions)•

Gluon Sivers function

• Based on the Burkardt sum rule, the gluon Sivers function is claimed to be small

M. Burkardt, PRD69 (04)

Page 78: Progresses with Transverse Momentum Distributions• 3D structure = GPDs in impact parameter space • In general, parton distributions are 6 dimensional (Wigner distributions)•

Gluon Sivers function

• Based on the Burkardt sum rule, the gluon Sivers function is claimed to be small

• Limited x range

M. Burkardt, PRD69 (04)

Page 79: Progresses with Transverse Momentum Distributions• 3D structure = GPDs in impact parameter space • In general, parton distributions are 6 dimensional (Wigner distributions)•

Gluon Sivers function

• Based on the Burkardt sum rule, the gluon Sivers function is claimed to be small

• Limited x range

• There could be nodes in the function

M. Burkardt, PRD69 (04)

Page 80: Progresses with Transverse Momentum Distributions• 3D structure = GPDs in impact parameter space • In general, parton distributions are 6 dimensional (Wigner distributions)•

Gluon Sivers function

• Based on the Burkardt sum rule, the gluon Sivers function is claimed to be small

• Limited x range

• There could be nodes in the function

• Connection with orbital angular momentum is not straightforward

M. Burkardt, PRD69 (04)

Page 81: Progresses with Transverse Momentum Distributions• 3D structure = GPDs in impact parameter space • In general, parton distributions are 6 dimensional (Wigner distributions)•

EIC tasks

Page 82: Progresses with Transverse Momentum Distributions• 3D structure = GPDs in impact parameter space • In general, parton distributions are 6 dimensional (Wigner distributions)•

EIC tasks

• Provide more data

Page 83: Progresses with Transverse Momentum Distributions• 3D structure = GPDs in impact parameter space • In general, parton distributions are 6 dimensional (Wigner distributions)•

EIC tasks

• Provide more data

• Measure weighted asymmetries

Page 84: Progresses with Transverse Momentum Distributions• 3D structure = GPDs in impact parameter space • In general, parton distributions are 6 dimensional (Wigner distributions)•

EIC tasks

• Provide more data

• Measure weighted asymmetries

• Extend x, Q range

Page 85: Progresses with Transverse Momentum Distributions• 3D structure = GPDs in impact parameter space • In general, parton distributions are 6 dimensional (Wigner distributions)•

EIC tasks

• Provide more data

• Measure weighted asymmetries

• Extend x, Q range

• Demand theory improvements

Page 86: Progresses with Transverse Momentum Distributions• 3D structure = GPDs in impact parameter space • In general, parton distributions are 6 dimensional (Wigner distributions)•

EIC tasks

• Provide more data

• Measure weighted asymmetries

• Extend x, Q range

• Demand theory improvements

• Explore gluon Sivers function

Page 87: Progresses with Transverse Momentum Distributions• 3D structure = GPDs in impact parameter space • In general, parton distributions are 6 dimensional (Wigner distributions)•

Connection with orbital angular momentum

Page 88: Progresses with Transverse Momentum Distributions• 3D structure = GPDs in impact parameter space • In general, parton distributions are 6 dimensional (Wigner distributions)•

Connection with orbital angular momentum

• There is no direct connection between Sivers function and OAM

Page 89: Progresses with Transverse Momentum Distributions• 3D structure = GPDs in impact parameter space • In general, parton distributions are 6 dimensional (Wigner distributions)•

Connection with orbital angular momentum

• There is no direct connection between Sivers function and OAM

• Several TMD observables can help constrain models with OAM see also next talk by H. Avakian

Page 90: Progresses with Transverse Momentum Distributions• 3D structure = GPDs in impact parameter space • In general, parton distributions are 6 dimensional (Wigner distributions)•

Connection with orbital angular momentum

• There is no direct connection between Sivers function and OAM

• Several TMD observables can help constrain models with OAM see also next talk by H. Avakian

• Global effort to put together GPDs and TMDs information is required

Page 91: Progresses with Transverse Momentum Distributions• 3D structure = GPDs in impact parameter space • In general, parton distributions are 6 dimensional (Wigner distributions)•

Other observables

Page 92: Progresses with Transverse Momentum Distributions• 3D structure = GPDs in impact parameter space • In general, parton distributions are 6 dimensional (Wigner distributions)•

Leading-twist functions

Page 93: Progresses with Transverse Momentum Distributions• 3D structure = GPDs in impact parameter space • In general, parton distributions are 6 dimensional (Wigner distributions)•

Leading-twist functions

• There are 8 leading-twist TMDs

Page 94: Progresses with Transverse Momentum Distributions• 3D structure = GPDs in impact parameter space • In general, parton distributions are 6 dimensional (Wigner distributions)•

Leading-twist functions

• There are 8 leading-twist TMDs

• There are 8 leading-twist structure functions where the PDFs are connected with either D1 or Collins function

Page 95: Progresses with Transverse Momentum Distributions• 3D structure = GPDs in impact parameter space • In general, parton distributions are 6 dimensional (Wigner distributions)•

Leading-twist functions

• There are 8 leading-twist TMDs

• There are 8 leading-twist structure functions where the PDFs are connected with either D1 or Collins function

• 4 can be studies also through jet-SIDIS without fragmentation functions

Page 96: Progresses with Transverse Momentum Distributions• 3D structure = GPDs in impact parameter space • In general, parton distributions are 6 dimensional (Wigner distributions)•

EIC tasks

Page 97: Progresses with Transverse Momentum Distributions• 3D structure = GPDs in impact parameter space • In general, parton distributions are 6 dimensional (Wigner distributions)•

EIC tasks

• It’s difficult to choose the most relevant measurements at the moment

Page 98: Progresses with Transverse Momentum Distributions• 3D structure = GPDs in impact parameter space • In general, parton distributions are 6 dimensional (Wigner distributions)•

EIC tasks

• It’s difficult to choose the most relevant measurements at the moment

• Shall EIC measure them all? see COMPASS Coll. 0705.2402 see also next talks

Page 99: Progresses with Transverse Momentum Distributions• 3D structure = GPDs in impact parameter space • In general, parton distributions are 6 dimensional (Wigner distributions)•

Post Scriptum

• I did not mention the issue of AdS/QCD correspondence see work of Brodsky, de Teramond

Page 100: Progresses with Transverse Momentum Distributions• 3D structure = GPDs in impact parameter space • In general, parton distributions are 6 dimensional (Wigner distributions)•
Page 101: Progresses with Transverse Momentum Distributions• 3D structure = GPDs in impact parameter space • In general, parton distributions are 6 dimensional (Wigner distributions)•

• EIC can map a new dimension: the distribution of parton in transverse momentum space

Page 102: Progresses with Transverse Momentum Distributions• 3D structure = GPDs in impact parameter space • In general, parton distributions are 6 dimensional (Wigner distributions)•

• EIC can map a new dimension: the distribution of parton in transverse momentum space

• It’s a new dimension also in terms of theoretical complexity and offers new tests of QCD

Page 103: Progresses with Transverse Momentum Distributions• 3D structure = GPDs in impact parameter space • In general, parton distributions are 6 dimensional (Wigner distributions)•

• EIC can map a new dimension: the distribution of parton in transverse momentum space

• It’s a new dimension also in terms of theoretical complexity and offers new tests of QCD

• With present experiments and phenomenology, we just scratched the surface

Page 104: Progresses with Transverse Momentum Distributions• 3D structure = GPDs in impact parameter space • In general, parton distributions are 6 dimensional (Wigner distributions)•

• EIC can map a new dimension: the distribution of parton in transverse momentum space

• It’s a new dimension also in terms of theoretical complexity and offers new tests of QCD

• With present experiments and phenomenology, we just scratched the surface

• EIC will be a precision machine for TMDs