prof.tamura july19 apss2010 wind-universitatea tokyo

Upload: pasc-oana-jianina

Post on 04-Jun-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    1/156

    WindWind--induced Response of Buildingsinduced Response of Buildingsand Control Techniquesand Control Techniques

    Yukio TamuraYukio TamuraWind Engineering Research CenterWind Engineering Research Center

    APSSAPSS The University of TokyoThe University of TokyoJuly 19, 2010July 19, 2010

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    2/156

    Strong Wind EventsStrong Wind Events

    MonsoonMonsoon

    ExtratropicalExtratropical CycloneCyclone

    Tropical CycloneTropical Cyclone

    (Typhoon, Hurricane, Cyclone)(Typhoon, Hurricane, Cyclone)

    TornadoTornado

    DownburstDownburst

    Dust DevilDust Devil Gravity Wind (Gravity Wind (KatabaticKatabatic Wind)Wind)

    etc.etc.

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    3/156

    Tropical CyclonesTropical Cyclones(Hurricanes, Typhoons)(Hurricanes, Typhoons)

    Wind ClimatesWind Climates

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    4/156

    www.nemas.net/edu/thunderstorms

    DownburstDownburst

    Wind ClimatesWind Climates

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    5/156

    TornadoTornado

    Wind ClimatesWind Climates

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    6/156

    DownburstDownburst

    Wind ClimatesWind Climates

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    7/156

    Dust DevilDust Devil

    Wind ClimatesWind Climates

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    8/156

    Wind ClimatesWind Climates

    Gravity Wind (Gravity Wind (KatabaticKatabatic Wind)Wind)

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    9/156

    Cape Town, South AfricaCape Town, South Africa (courtesy of A.(courtesy of A. GoligerGoliger))

    Wind ClimatesWind Climates

    Gravity Wind (Gravity Wind (KatabaticKatabatic Wind)Wind)

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    10/156

    Strong Wind EventsStrong Wind Events

    MonsoonMonsoon

    ExtratropicalExtratropical CycloneCyclone

    Tropical Cyclones(Typhoon, Hurricane, Cyclone)

    TornadoTornado DownburstDownburst

    Dust DevilDust Devil Gravity WindsGravity Winds

    etc.etc.

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    11/156

    BackgroundBackground

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    12/156

    WindWind--induced Damage to Tall Buildingsinduced Damage to Tall Buildings

    ShitenShitennojinoji 55--story Pagodastory Pagoda47.8m47.8m--high (Wooden Structure)high (Wooden Structure)

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    13/156

    Central pillarCentral pillar

    ((ShinbashiraShinbashira))

    32.56m

    Central Pillar in the 5Central Pillar in the 5--story Pagodastory Pagoda

    HoryujiHoryuji (The 7th Century) World Oldest Wooden Building(The 7th Century) World Oldest Wooden Building

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    14/156

    Central PillarCentral Pillar

    Repeated contact andRepeated contact andseparation from the towerseparation from the towerstructurestructure

    GateGate--bar Effectbar Effect(Ishida,1996)(Ishida,1996)

    Contribution to the pagodaContribution to the pagodassstabilizationstabilization

    Increase in dampingIncrease in damping

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    15/156

    WindWind--induced Damage to Tall Buildingsinduced Damage to Tall Buildings

    (Osaka, Japan, 1934)(Osaka, Japan, 1934)ASAHI NEWS PAPERASAHI NEWS PAPER

    ShitenShitennojinoji 55--story Pagodastory Pagoda47.8m47.8m--high (Wooden Structure)high (Wooden Structure)

    TyhpoonTyhpoonMurotoMurotoSep. 21, 1934.Sep. 21, 1934.

    Max Peak 60m/sMax Peak 60m/s

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    16/156

    WindWind--induced Damage to Tall Buildingsinduced Damage to Tall Buildings

    MoleMole AntonellianaAntonelliana(Turin, Italy, 1953)(Turin, Italy, 1953)LA DOMENICA DEL CORRIERELA DOMENICA DEL CORRIERE

    The MoleThe MoleAntonellianaAntonellianacollapses. An extraordinarycollapses. An extraordinarywind storm occurred inwind storm occurred inTurin on May 23, 1953,Turin on May 23, 1953,breaking off the spire of thebreaking off the spire of the

    famous monument, andfamous monument, andcausing the collapse of acausing the collapse of a

    4545--meter length. The Molemeter length. The MoleAntonellianaAntonelliana waswasthe tallestthe tallestmasonry building in Europemasonry building in Europe(167.5m)(167.5m)

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    17/156

    Development of Design & ConstructionDevelopment of Design & Construction

    Methods for Tall BuildingsMethods for Tall Buildings A record of fights with strong windsA record of fights with strong winds

    GustaveGustave AlexandreAlexandre Eiffel (1832Eiffel (1832--1923)1923)

    Eiffel TowerEiffel Towerdrawn bydrawn by G.A.EiffelG.A.Eiffel (Davenport, 1975)(Davenport, 1975)

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    18/156

    MagnitudeMagnitude

    Max. Ground AccelerationMax. Ground Acceleration FatalitiesFatalities

    InjuredInjured

    Damaged BuildingsDamaged Buildings(Engineered Buildings10%)(Engineered Buildings10%) Burned Down BuildingsBurned Down Buildings

    Economic LossEconomic Loss

    Kobe Earthquake (Kobe Earthquake (January 17, 1995)January 17, 1995)

    7.27.2

    818 cm/s818 cm/s22

    6,4326,43235,00035,000

    512,800512,800

    7,0007,000

    150 Billion USD150 Billion USD(estimated)(estimated)

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    19/156

    Kobe Earthquake (Kobe Earthquake (January 17, 1995)January 17, 1995)

    ChuetsuChuetsu Earthquake (Earthquake (OctoberOctober 2323,, 20042004))

    MagnitudeMagnitude

    Max. Ground AccelerationMax. Ground Acceleration

    FatalitiesFatalities InjuredInjured

    7.27.2

    818 cm/s818 cm/s22

    6,4326,43235,00035,000

    6.86.8

    1,3081,308 cm/scm/s22

    51514,4964,496

    MagnitudeMagnitude

    Max. Ground AccelerationMax. Ground Acceleration

    FatalitiesFatalities InjuredInjured

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    20/156

    MagnitudeMagnitude

    Max. Ground AccelerationMax. Ground Acceleration

    FatalitiesFatalities InjuredInjured

    Kobe Earthquake (Kobe Earthquake (January 17, 1995)January 17, 1995)

    7.27.2

    818 cm/s818 cm/s22

    6,4326,43235,00035,000

    MagnitudeMagnitude

    Max. Ground AccelerationMax. Ground Acceleration FatalitiesFatalities

    InjuredInjured

    ChuetsuChuetsu Earthquake (Earthquake (OctoberOctober 2323,, 20042004))6.86.8

    1,3081,308 cm/scm/s22

    51514,4964,496

    ExtremeEarth

    quakes

    ExtremeEart

    hquakes

    AccAccGroundGrou

    nd 1G1G

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    21/156

    Damage due to Typhoon WindsDamage due to Typhoon Winds

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    22/156

    Damage to a roof of a gymnasiumDamage to a roof of a gymnasium

    Damages in Miyakojima due to TyphoonDamages in Miyakojima due to Typhoon

    MaemiMaemi, Sept. 11, 2003, Sept. 11, 2003

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    23/156

    Damages in Miyakojima due to TyphoonDamages in Miyakojima due to Typhoon

    MaemiMaemi, Sept. 11, 2003, Sept. 11, 2003

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    24/156

    Damage due to wind borne debrisDamage due to wind borne debris

    Damages in Miyakojima due to TyphoonDamages in Miyakojima due to Typhoon

    MaemiMaemi, Sept. 11, 2003, Sept. 11, 2003

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    25/156

    TyphoonTyphoon MaemiMaemi, Sept. 11, 2003, Sept. 11, 2003

    Miyakojima Island Meteorological StationMiyakojima Island Meteorological Station

    (Okinawa Pref., Japan)(Okinawa Pref., Japan)

    Maximum Mean Wind SpeedMaximum Mean Wind Speed

    Maximum Peak GustMaximum Peak Gust(10(10thth highest in Japan)highest in Japan)

    Lowest PressureLowest Pressure( 8( 8thth lowest in Japan)lowest in Japan)

    Miyakojima SelfMiyakojima Self--Defense ForceDefense ForceMaximum Peak GustMaximum Peak Gust

    Furukawa Electric Co. LtdFurukawa Electric Co. LtdMaximum Peak GustMaximum Peak Gust

    : 34.8: 34.8 m/sm/s

    :: 74.174.1 m/sm/s

    : 912: 912 hPahPa

    :: 87.087.0 m/sm/s

    :: > 90> 90 m/sm/s

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    26/156

    TyphoonTyphoon MaemiMaemi, Sept. 11, 2003, Sept. 11, 2003

    Miyakojima Island Meteorological StationMiyakojima Island Meteorological Station

    (Okinawa Pref., Japan)(Okinawa Pref., Japan)

    Maximum Mean Wind SpeedMaximum Mean Wind Speed

    Maximum Peak GustMaximum Peak Gust(10(10thth highest in Japan)highest in Japan)

    Lowest PressureLowest Pressure( 8( 8thth lowest in Japan)lowest in Japan)

    Miyakojima SelfMiyakojima Self--Defense ForceDefense ForceMaximum Peak GustMaximum Peak Gust

    Furukawa Electric Co. LtdFurukawa Electric Co. LtdMaximum Peak GustMaximum Peak Gust

    : 34.8: 34.8 m/sm/s

    :: 74.174.1 m/sm/s

    : 912: 912 hPahPa

    : 87.0: 87.0 m/sm/s

    : > 90: > 90 m/sm/s

    ExtremeTropica

    lCyclones

    ExtremeTropic

    alCyclones

    VV3speak

    3speak

    80m/s80m/s90m/s90m

    /s

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    27/156

    Seismic Force & Wind ForceSeismic Force & Wind Force

    Bas

    eShear

    Bas

    eShear

    Building HeightBuilding Height

    200200 300 m300 m

    Seismic ForceSeismic Force

    Wind ForceWind Force

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    28/156

    Seismic Force & Wind ForceSeismic Force & Wind Force

    Tall BuildingsTall Buildings-- Seismic ForceSeismic ForceInertial ForceInertial Force Light Weight & FlexibleLight Weight & Flexible-- Wind ForceWind ForceSurface PressureSurface Pressure Massive & StiffMassive & Stiff

    Seismic ForceSeismic ForceWind Force (Wind Force (HH< 200m)< 200m) Buildings in Japan are basicallyBuildings in Japan are basically

    designeddesigned against seismic force.against seismic force. Vulnerable to Daily WindVulnerable to Daily Wind

    Auxiliary Damping DevicesAuxiliary Damping Devices Ex. in Japan

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    29/156

    Pedestrian Level WindsPedestrian Level Winds

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    30/156

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    31/156

    Courtesy of AdamCourtesy of Adam GoligerGoliger

    .and we can ignore wind effects..and we can ignore wind effects.

    Nobody will ever notice them.Nobody will ever notice them.

    Can we save 100, 000USD by notCan we save 100, 000USD by not

    conducting wind tunnel tests ?conducting wind tunnel tests ?

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    32/156

    Wind Environment for Pedestrians andWind Environment for Pedestrians and

    Surrounding BuildingsSurrounding Buildings

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    33/156

    Courtesy of AdamCourtesy of Adam GoligerGoliger

    Then, we can enjoy strong winds aroundThen, we can enjoy strong winds around

    the tall building !the tall building !

    Monroe Effect

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    34/156

    .. but I said.. but I said I donI dont wish to pay mucht wish to pay much

    more in the future.more in the future.

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    35/156

    e.g. The Metropolis of Tokyoe.g. The Metropolis of Tokyo

    For buildings higherFor buildings higher than 100m and with a totalfloor area larger than 10floor area larger than 1055 mm22

    -- Wind tunnel tests or CFD prWind tunnel tests or CFD predictedictions

    -- Evaluation by given assessmEvaluation by given assessment methods

    -- Field measurements before and afterField measurements before and afterconstruction (at least 1 year each)construction (at least 1 year each)

    Municipal Bylaws on EnvironmentalMunicipal Bylaws on Environmental

    AssessmentAssessment

    A E l f St f P d t i dA E l f St f P d t i d

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    36/156

    An Example of Steps for Pedestrians andAn Example of Steps for Pedestrians and

    Surrounding BuildingsSurrounding Buildings NEC HQ OfficeNEC HQ Office

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    37/156

    Habitability to Building VibrationsHabitability to Building Vibrations

    Probabilistic Human Perception

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    38/156

    Probabilistic Human PerceptionThreshold

    Tamura (1998)Tamura (1998)

    5050

    1010

    55

    22

    11

    2020

    0.50.5

    0.20.2

    0.10.1

    AccelerationAmplitude(cm

    /s

    Ac

    celerationAmplitude(cm

    /s22))

    2%2%

    10%10%

    90%90%

    DenoonDenoon, 2000,, 2000,Average valueAverage value

    (Full(Full--scale)scale)

    0.10.1 0.2 0.50.2 0.5 11 22 5 105 10

    Frequency (Hz)Frequency (Hz)

    90%90%

    99%99%

    50%50%

    10%10%2%2%1%1%

    Jeary et al., 1988 (FullJeary et al., 1988 (Full--scale)scale)

    AIJ G id li 2004AIJ G id li 2004

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    39/156

    AIJ Guidelines 2004AIJ Guidelines 2004

    Guidelines for the Evaluation of Habitability to Building VibratGuidelines for the Evaluation of Habitability to Building Vibrationion

    HH--1010

    HH--3030HH--5050HH--7070HH--9090

    0.10.1 0.2 0.5 1 20.2 0.5 1 2 55Frequency (Hz)Frequency (Hz)

    2020

    55

    22

    11

    0.50.5

    1010

    Annu

    alPeakA

    ccelerat

    ion

    Annu

    alPeakAcceleration

    (cm/s(cm/s22))

    Deterministic Evaluation MethodDeterministic Evaluation Method

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    40/156

    0.1

    1

    10

    100

    0.1 1 10(Hz)

    (cm/s2)

    H1

    H3

    High-rise ResidencesOfficesHotels Detached Houses

    0.1 0.2 0.5 1 2 5 10Frequency (Hz)

    Annual

    Maximum

    Acceleration(cm/s

    Annual

    Maximum

    Accelerati

    on(cm/s22))100

    10

    1

    0.1

    HH--9090

    HH--1010

    HH--5050

    AIJ Guidelines 2004AIJ Guidelines 2004Deterministic Evaluation MethodDeterministic Evaluation Method

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    41/156

    ISO10137 (2007)ISO10137 (2007)

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    42/156

    ISO10137 (2007)ISO10137 (2007)Bases for design of structuresBases for design of structures Serviceability of buildings andServiceability of buildings and

    walkways against vibrationwalkways against vibration

    0.06 0.1 0.2 0.5 1 20.06 0.1 0.2 0.5 1 2 55HzHz

    1st Natural Frequency1st Natural Frequency ff00

    5050

    2020

    1010

    55

    22

    AnnualPeak

    Acceleration

    An

    nualPeak

    Acceleration

    OfficesOffices

    ResidencesResidences

    (cm/s(cm/s22))

    HH--9090HH--7070HH--5050HH--3030HH--1010

    DampingDevices

    DampingDevices

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    43/156

    Various Types of WindVarious Types of Wind--induced Vibrationsinduced Vibrations

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    44/156

    VortexVortex ResonanceResonance

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    45/156

    VortexVortex--ResonanceResonance

    Circular ChimneyCircular Chimney

    HighHigh speed Vortexspeed Vortex ResonanceResonance

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    46/156

    HighHigh--speed Vortexspeed Vortex--ResonanceResonance

    Circular Observatory TowerCircular Observatory Towerdue to vortices shed from the top enddue to vortices shed from the top end

    OvallingOvalling

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    47/156

    OvallingOvalling

    Circular ChimneyCircular Chimney

    VortexVortex ResonanceResonance

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    48/156

    VortexVortex--ResonanceResonance

    Circular Pipe BeamsCircular Pipe Beams Karman VortexKarman Vortex

    P i di Sh ddi f K V tiP i di Sh ddi f K V ti

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    49/156

    Periodic Shedding of Karman VorticesPeriodic Shedding of Karman Vortices

    VortexVortex--ResonanceResonance

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    50/156

    VortexVortex--ResonanceResonance

    Rectangular PrismRectangular Prism Karman VortexKarman Vortex

    GallopingGalloping

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    51/156

    GallopingGalloping

    Transmission LinesTransmission Lines

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    52/156

    SnowSnow--stuck to Electric Wire due to Windstuck to Electric Wire due to Windsnowsnow

    snowsnow

    windwind

    windwind

    Galloping and Torsional FlutterGalloping and Torsional Flutter

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    53/156

    Galloping and Torsional FlutterGalloping and Torsional Flutter

    Tacoma Narrows BridgeTacoma Narrows Bridge

    Mechanism of Torsional FlutterMechanism of Torsional Flutter

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    54/156

    VortexVortex

    VortexVortex

    Mechanism of Torsional FlutterMechanism of Torsional Flutter

    Pressure distribution enhances the motion !Pressure distribution enhances the motion !

    RainRain--WindWind--induced Vibrationinduced Vibration

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    55/156

    RainRain WindWind induced Vibrationinduced Vibration

    Suspension Bridge CablesSuspension Bridge Cables

    RainRain--WindWind--induced Vibrationinduced Vibration

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    56/156

    rivuletrivulet

    with rainwith rain

    Raina WindW d induced Vibrationduced V b at o

    Suspension Bridge CablesSuspension Bridge Cables

    without rainwithout rain

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    57/156

    Characteristics of WindCharacteristics of Wind--induced Responseinduced Response

    WindWind--induced Responses of Tallinduced Responses of TallB ildiB ildi

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    58/156

    BuildingsBuildings

    AlongAlong--wind Displacementwind Displacement

    Crosswind DisplacementCrosswind Displacement

    Torsional DisplacementTorsional Displacement(at the corner)(at the corner)

    Power spectra of wind forces acting on a highPower spectra of wind forces acting on a high--riserisebuilding modelbuilding model

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    59/156

    (2(2HH/3, Wind tunnel, Kikuchi & Hibi 1995)/3, Wind tunnel, Kikuchi & Hibi 1995)

    CCDD

    Force balanceForce balancePressurePressure

    AlongAlong--windwind CrosswindCrosswind

    SS

    ffvvBBS =S =UU

    Strouhal NumberStrouhal Number

    ffB /B /UUffB /B /UU

    ffSS((ff))//((qqHH

    BHBH))22

    ffSS((ff))

    //((qqHH

    BHBH))22

    building modelbuilding model

    NakanoNakano DendenDenden BuildingBuilding

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    60/156

    FullFull--scalescaleFullFull--scalescale

    WindWindTunnelTunnel

    WindWindTunnelTunnel

    NakanoNakano DendenDenden BuildingBuilding

    Fujimoto et al., 1980Fujimoto et al., 1980

    NagasakiNagasaki HuisHuis Ten BoschTen Bosch DomtorenDomtoren

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    61/156

    Typhoon 9121

    rmsrms

    maxmax Win

    dtu

    nnel

    Wind

    tunnel

    Along-wind Crosswind

    NagasakiNagasaki HuisHuis Ten BoschTen Bosch DomtorenDomtoren

    H= 99.4m

    Variation of Responses withVariation of Responses with

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    62/156

    Acceleration ResponsesAcceleration Responses

    AlongAlong--windwind :: XXMAXMAX UU2.52.5CrosswindCrosswind :: YYMAXMAX UU3.73.7

    Displacement ResponsesDisplacement Responses

    AlongAlong--windwind :: XXMAXMAX UU2.12.1(Mean component(Mean component UU22))CrosswindCrosswind :: YY

    MAXMAX UU3.13.1

    pp

    Mean Wind SpeedMean Wind Speed

    Example !!

    ctract

    raCrosswind ForceCrosswind Force

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    63/156

    1

    0 f0BU

    |H(i f)|2 Generalize

    dForceSpec

    Generalize

    dForceSpec

    increase ofincrease of

    wind speedwind speed

    SSFF ((ff00))

    Mechanical

    Mechanical

    Admittance

    Admittance

    ffBBUU

    Resonant ComponentResonant Component

    FF22 ff00 SSFF ((ff00))AARR == 44KK22 FF 22AlongAlong--wind Forcewind Force

    Torsional MomentTorsional Moment

    AlongAlong--wind Response & Crosswind Responsewind Response & Crosswind Response

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    64/156

    AlongAlong--windwind ::

    XX

    ((tt

    ) =) =

    XX

    mm ++

    xx

    ((tt

    ))

    Crosswind :Crosswind : zero meanzero mean YY((tt) =) =yy((tt))

    AlongAlong--windwind

    CrosswindCrosswind AlongAlong--windwind

    CrosswindCrosswind

    AlongAlong--wind Response & Crosswind Responsewind Response & Crosswind Response

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    65/156

    AlongAlong--windwindYY CrosswindCrosswind

    XXAlongAlong--windwind

    XX

    CrosswindCrosswindYY

    XX--dirdir..AlongAlong--windwind CrosswindCrosswind HH > 85m85m YY--dirdir..AlongAlong--windwind CrosswindCrosswind HH < 150m< 150m CrosswindCrosswind >> AlongAlong--windwind H >H > 150m150m

    20m20m40m40mCategory IICategory IIUU00=35m/s=35m/s 100y100y--recurrencerecurrenceWindWind

    WindWind

    AlongAlong--wind Response & Crosswind Responsewind Response & Crosswind Response

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    66/156

    AlongAlong--windwindCrosswindCrosswind AlongAlong--windwind

    CrosswindCrosswind

    0

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    67/156

    00

    22

    44

    66

    00 55 1010 1515 2020 2525 3030

    Displacement

    Displacement

    cmcm

    TimeTime

    RTKRTKGPSGPS

    AccelerometerAccelerometer

    --2020

    --1010

    001010

    2020

    Accelerati

    on

    Acceleration

    cm/scm/s 22

    QuasiQuasi--static componentstatic component

    Resonant componentResonant component

    Static componentStatic component

    ss

    Accelerometer and GPSAccelerometer and GPS

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    68/156

    Dynamic Characteristics of BuildingsDynamic Characteristics of Buildings

    Japanese Damping DatabaseJapanese Damping Database

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    69/156

    Japanese Damping DatabaseJ p p g

    Number of Buildings and Structures285

    SteelBuildings

    (Steel)

    SteelEncased

    ReinforcedConcreteBuildings

    (SRC)

    ReinforcedConcreteBuildings

    (RC)

    Tower-LikeNon-Building

    Structures

    137 43 25 80HAve.= 101m HAve.= 60m HAve.= 124m

    15.5m 282.3m 11.6m167.4m 10.8m129.8m 9.1m226.0m

    Office :Hotel :

    Others :

    992513

    Apartment :Office :School :Others :

    352049

    Chimney :Lattice :Tower :Others :

    2624236

    (S)(S) (SRC)(SRC) (RC)(RC)

    Fundamental Natural PeriodFundamental Natural Period(Steel Buildings)(Steel Buildings)

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    70/156

    Building Height (m)

    0

    1

    2

    3

    4

    5

    6

    7

    0 50 100 150 200 250 300

    H

    N

    aturalPeriod

    (s)

    T1 H, r0.020 0.94

    T1

    f1 = 50/H

    (Steel Buildings)(Steel Buildings)

    Fundamental Natural PeriodFundamental Natural Period(RC/SRC Buildings)(RC/SRC Buildings)

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    71/156

    0

    1

    2

    3

    0 50 100 150 200

    RC

    SRC

    Building Height (m)H

    NaturalPeri

    od

    (s)

    T1 H, r0.015 0.94

    T1

    (RC/SRC Buildings)(RC/SRC Buildings)

    f1 = 67/H

    Higher Translational ModeHigher Translational ModeNatural PeriodsNatural Periods (Steel Buildings)(Steel Buildings)

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    72/156

    Natural PeriodsNatural Periods (Steel Buildings)(Steel Buildings)

    Fundamental Natural Period (s)

    0

    1

    2

    3

    0 1 2 3 4 5 6 7

    T1

    Natu

    ralPeriod

    (s)

    T2,T3,T4 2nd Mode

    T2 T

    1, r

    T3 T

    1, r

    T4 T

    1, r

    0.33 0.99

    0.18 0.95

    0.13 0.91

    3rd Mode

    4th Mode

    f3 = 280/H

    f2 = 150/H

    f4 = 380/H

    Torsional Mode Natural PeriodsTorsional Mode Natural Periods

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    73/156

    Fundamental Natural Period (s)

    0

    1

    2

    3

    4

    5

    0 1 2 3 4 5 6 7T

    1

    TorsionalNatura

    lPeriod

    (s)

    TT

    T1

    , r0.75 0.94

    TT

    (Steel Buildings)(Steel Buildings)

    fT

    = 67/H

    Damped Free Oscillation (FullDamped Free Oscillation (Full--scale)scale)

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    74/156

    p (p ( ))

    --0.080.08

    00

    0.080.08

    00 55 1010 1515 2020 2525 3030 3535 4040

    Amplitu

    de(cm)

    Amplitu

    de(cm)

    Time (s)Time (s)

    0.040.04

    --0.040.04

    Damping Ratio = 0.93%Damping Ratio = 0.93%

    Damping Ratios & Natural PeriodsDamping Ratios & Natural Periods

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    75/156

    (Steel Buildings)(Steel Buildings)

    (JDD)(JDD)

    Damping Ratios & Natural PeriodsDamping Ratios & Natural Periods

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    76/156

    (RC/SRC Buildings)(RC/SRC Buildings)

    0.1 1

    1st Mode

    2nd Mode3rd Mode

    320.50.20.05

    Natural Period (s)T

    Damping

    Ratio

    0.1

    0.01

    0.001

    (JDD)(JDD)

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    77/156

    Damping in BuildingsDamping in Buildings

    Estimation of dampingEstimation of damping-- no theoretical methodno theoretical method

    -- based on fullbased on full--scale datascale data

    significant scattersignificant scatter

    Dispersion of Damping DataDispersion of Damping Data

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    78/156

    Structural MaterialsStructural Materials

    Soil & FoundationsSoil & Foundations

    Architectural FinishingArchitectural Finishing

    JointsJoints

    NonNon--structural Membersstructural Members

    Vibration AmplitudeVibration Amplitude

    NonNon--stationarity of Excitationsstationarity of Excitations

    Vibration Measuring MethodsVibration Measuring MethodsDamping Evaluation TechniquesDamping Evaluation Techniques

    etc.etc.

    Causes of Damping in BuildingsCauses of Damping in Buildings

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    79/156

    (Structural Frames) INTERNAL FRICTION DAMPING(Structural Frames) INTERNAL FRICTION DAMPING

    (Wind Forces)(Wind Forces)

    AERODYNAMIC DAMPINGAERODYNAMIC DAMPINGVibrationVibration

    (Damping Devices)(Damping Devices)

    TMD, HMD, TLD, AMDTMD, HMD, TLD, AMD

    (Non(Non--elastic Behavior) HYSTERETIC DAMPINGelastic Behavior) HYSTERETIC DAMPING

    (Secondary Structural Members,(Secondary Structural Members,NonNon--loadload--bearing Walls, Cladding)bearing Walls, Cladding)FRICTION DAMPINGFRICTION DAMPING

    (Damping Devices)(Damping Devices)

    HYSTERETIC, VISCOUS,HYSTERETIC, VISCOUS,VISCOVISCO--ELASTIC, FRICTION,ELASTIC, FRICTION,AVS etc.AVS etc.

    (Foundation)(Foundation)(Ground)(Ground)

    INTERNAL FRICTION DAMPINGINTERNAL FRICTION DAMPING(Ground)(Ground)

    RADIATION DAMPINGRADIATION DAMPING

    Stick-SlipBehavior of

    Contact Surfaces

    Soil-StructureInteraction

    Amplitude DependencyAmplitude Dependency

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    80/156

    0.01

    0.02

    0.03

    0 1 2 3 4 5 6 7

    Acceleration Amplitude (10-2

    m/sec2)

    Dampin

    gRatio

    1

    0.64

    0.645

    0.65

    0.655

    0.66

    0.665

    NaturalFre

    quency

    f1(Hz)

    Damping RatioDamping Ratio 11

    NaturalNatural

    FrequencyFrequencyff11

    An Observatory Building (An Observatory Building (HH=99m)=99m)

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    81/156

    StickStick--slip Modelslip Model

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    82/156

    Increase of amplitudeIncrease of amplitude

    Increase of number of slipping jointsIncrease of number of slipping joints Increase of friction dampingIncrease of friction damping& Decrease of stiffness& Decrease of stiffnessSum of a lot of frictional damping effectsSum of a lot of frictional damping effects Viscous dampingViscous damping

    ++ ++ ++ ==

    for Damping in Buildingsfor Damping in Buildings

    FullFull--scale Fundamental Naturalscale Fundamental NaturalPeriods & Their Design ValuesPeriods & Their Design Values

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    83/156

    Design Natural Period (s)

    0

    1

    2

    34

    5

    6

    7

    0 1 2 3 4 5 6 7

    Td

    MeasuredNatural

    Period

    (s)

    Tm Td, r0.80 0.94Tm

    (Steel Buildings)(Steel Buildings)

    20%20%

    Proposed Damping PredictorProposed Damping Predictorin AIJ 2000in AIJ 2000

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    84/156

    RCRC buildings :buildings :

    11 = 0.0143= 0.0143ff11 + 470+ 470((xxHH//HH)) 0.00180.0018xxHH//H

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    85/156

    RCRC buildings :buildings :

    11 = 0.93/= 0.93/HH + 470+ 470((xxHH//HH)) 0.00180.0018xxHH//H

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    86/156

    (Tamura et al., 2000)(Tamura et al., 2000)

    0

    0.02

    0.04

    0.06

    0.08

    0.1

    0 0.02 0.04 0.06 0.08 0.1F

    ull-ScaleD

    ampingRatio

    1

    0.88r

    Predicted Damping Ratio by Eq.(8)Proposed Predictor

    (Tamura 2000)

    RC BuildingsRC Buildings

    Design Damping Ratios (Steel)(Tamura et al., 2000)(Tamura et al., 2000)

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    87/156

    Habitabilit Safet

    Damping Ratio

    1 (%)

    Damping Ratio

    1 (%)

    HeightH (m)

    Natural

    Frequencyf1(Hz)

    Rec. Standard

    Natural

    Frequencyf1(Hz)

    Rec. Standard30 1.7 1.8 2.5 1.4 2 340 1.3 1.5 2 1.0 1.8 2.550 1.0 1 1.5 0.83 1.5 2

    60 0.83 1 1.5 0.69 1.5 270 0.71 0.7 1 0.60 1.5 280 0.63 0.7 1 0.52 1 1.590 0.56 0.7 1 0.46 1 1.5100 0.50 0.7 1 0.42 1 1.5

    150 0.33 0.7 1 0.28 1 1.5200 0.25 0.7 1 0.21 1 1.5

    "Rec." : "Recommended" values.

    f1= 10.020H(Habitability), f1= 10.024H(Safety)

    Safety : Elastic Range

    Design Damping Ratios (RC)(Tamura et al., 2000)(Tamura et al., 2000)

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    88/156

    Habitabilit Safet

    Damping Ratio

    1 (%)

    Damping Ratio

    1 (%)

    Height

    H (m)

    Natural

    Frequency

    f1(Hz) Rec. Standard

    Natural

    Frequency

    f1 (Hz) Rec. Standard

    30 2.2 2.5 3 1.9 3 3.540 1.7 1.5 2 1.4 2 2.5

    50 1.3 1.2 1.5 1.1 2 2.5

    60 1.1 1.2 1.5 0.93 1.5 2

    70 0.95 0.8 1 0.79 1.5 2

    80 0.83 0.8 1 0.69 1.2 1.5

    90 0.74 0.8 1 0.62 1.2 1.5

    100 0.67 0.8 1 0.56 1.2 1.5

    "Rec." : "Recommended" values.

    f1= 10.015H(Habitability), f1= 10.018H(Safety)

    Safety : Elastic Range

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    89/156

    Suppression of WindSuppression of Wind--InducedInduced

    R (B ff ti )R (B ff ti )

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    90/156

    Response (Buffeting)Response (Buffeting) MMSS++ CCSSYY++KKSSYY

    = (1/2)= (1/2)UU22

    BB22

    CCWW(t)(t) ++FFCC (t)(t)MMSS : Mass,: Mass, CCSS : Damping Factor,: Damping Factor,KKSS : Stiffness,: Stiffness,YY : Displacement,: Displacement, UU : Mean Wind Speed,: Mean Wind Speed, : Air: Air--density,density,CCWW((tt) : Aerodynamic Coefficient,) : Aerodynamic Coefficient, FFCC((tt) : Control Force) : Control Force

    **+2+2SS YY** ++ YY**==nn**UU**22 CCWW(t(t

    **)) ++FFCC**(t(t**))

    SS : Damping Ratio,: Damping Ratio, YY** = Y= Y/B/B : Reduced Displacement,: Reduced Displacement,UU** == U/U/SSBB : Reduced Velocity,: Reduced Velocity, nn** == BB 33//22MMSS : Mass Ratio,: Mass Ratio,SS = 2= 2ffSS : Building: Buildings Natural Circular Frequency,s Natural Circular Frequency,FFCC*

    *((tt*

    *) : Non) : Non--dimensional Control Force for Unit Massdimensional Control Force for Unit Mass

    Suppression ofWind-Induced Responses

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    91/156

    Aerodynamic MeansAerodynamic Means-- change in sectional shapechange in sectional shape-- shear layer controlshear layer control

    Structural DesignStructural Design

    -- increase in massincrease in mass-- increase in stiffnessincrease in stiffness

    Auxiliary Damping DevicesAuxiliary Damping Devices

    -- increase in dampingincrease in damping-- vibration controlvibration control

    Aerodynamic DesignAerodynamic Design

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    92/156

    Wind RosesWind Roses

    Sapporo TokyoSapporo Tokyo

    Aerodynamic DesignAerodynamic Design

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    93/156

    Wind Direction (Building Orientation)Wind Direction (Building Orientation)

    BB = 20m,= 20m, DD = 40m,= 40m, HH = 40m= 40m

    Max. AccelerationMax. Acceleration

    Max. DisplacementMax. Displacement

    63%63% 100%100%

    50%50% 100%100%

    Periodic vortices shed from a squarePeriodic vortices shed from a square

    prismprism (Streak Lines CFD)(Streak Lines CFD)

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    94/156

    prismprism (Streak Lines, CFD)(Streak Lines, CFD)

    K. Shimada

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    95/156

    From Compulsory to Free StyleFrom Compulsory to Free Style

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    96/156

    From Compulsory to Free StyleFrom Compulsory to Free StyleCorner cutChamfered

    Ellipse

    1:2CircleRectangle

    1:2Square Corner cutChamfered

    Ellipse

    1:2CircleRectangle

    1:2Square

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    97/156

    DrumInverse

    4-Tapered

    HelicalCircle +

    Ellipse 180o

    Setback

    HelicalEllipse180o

    4-Tapered

    Corner

    HelicalRectangle

    180o

    2-Tapered

    HelicalSquare 360o

    Tapered

    HelicalSquare 270o

    HelicalSquare 180o

    HelicalSquare 90o

    Helical

    Tilted

    SnakingTilted

    Base

    DrumInverse

    4-Tapered

    HelicalCircle +

    Ellipse 180o

    Setback

    HelicalEllipse180o

    4-Tapered

    Corner

    HelicalRectangle

    180o

    2-Tapered

    HelicalSquare 360o

    Tapered

    HelicalSquare 270o

    HelicalSquare 180o

    HelicalSquare 90o

    Helical

    Tilted

    SnakingTilted

    Base

    Void

    Void

    Void

    Void

    Void

    Void

    Void

    3-CircleOblique

    Void

    Oblique

    Void

    Setback

    Helical

    Oblique

    Void

    Setback

    Corner cut

    Cross Void

    Corner cut Helical Tapered

    Corner cut

    Helical

    Composite

    Void

    Cross VoidCross Void 3-CircleOblique

    Void

    Oblique

    Void

    Setback

    Helical

    Oblique

    Void

    Setback

    Corner cut

    Cross Void

    Corner cut Helical Tapered

    Corner cut

    Helical

    Composite

    Void

    Cross VoidCross Void

    HFFB ModelHFFB Model

    SMPMS Pressure Model

    Power Spectrum ofPower Spectrum of

    Crosswind Base MomentCrosswind Base Moment

    VV VV

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    98/156

    Crosswind Base MomentVV500y500yVV1y1y

    fB/UH

    0.0001

    0.001

    0.01

    0.1

    0.001 0.01 0.1 1

    Square

    Corner cutTaperedSetback

    90oHelical

    180oHelical

    fSML

    /(qHB

    H2)2

    4-Tapered

    fSML

    (f)/

    (qH

    BH2)2

    Corner CutCorner Cut

    SquareSquare

    4 Tapered4 Tapered

    SetbackSetback

    180180HelicalHelical

    9090HelicalHelical

    700 500500--yearyear--rec. for Structural Safetyrec. for Structural Safety

    )

    WindWind--induced Responsesinduced Responses

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    99/156

    0

    100200

    300

    400

    500

    600

    (cm/s

    2)

    500500 yearyear rec. for Structural Safetyrec. for Structural Safety

    PeakAcc.

    (cm/s2)

    0

    4

    8

    12

    16

    20

    1 2 3 4 5 6 7 8 9 10

    (cm/s

    2)

    PeakAcc.(c

    m/s2) 11--yearyear--rec. for Habitabilityrec. for Habitability

    Sq

    uare

    Chamfered

    Corne

    rcut

    T

    ilted

    four-Tap

    ered

    Set

    back

    two-Tap

    ered

    Helical

    Void

    InversefourTap

    ered

    H

    elical

    H

    elical

    Corner

    Cut

    Corner

    Cut

    Strouhal Peaks ofStrouhal Peaks ofLocal Crosswind ForcesLocal Crosswind Forces

    ee

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    100/156

    180

    180ooHelic

    al

    Helic

    al

    00

    0.10.10.20.2

    0.30.3

    0.40.40.50.5

    0.60.6

    0.70.7

    0.80.8

    0.90.9

    11

    00 0.050.05 0.10.1 0.150.15 0.20.2 0.250.25

    ffpeakpeakB/UB/UHH

    Square

    Square

    S

    etback

    S

    etback

    9090ooHelical

    Helical

    z /Hz /H

    Aerodynamic DesignAerodynamic Design

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    101/156

    Vertical variationVertical variation

    of sectional sha eof sectional sha e

    Aerodynamic DesignAerodynamic Design

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    102/156

    Vertical variationVertical variationof sectional shapeof sectional shape

    Suppression of Wake Buffeting bySuppression of Wake Buffeting byRotorsRotors

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    103/156

    Suppression of Wake Buffeting bySuppression of Wake Buffeting byRotorsRotors

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    104/156

    Rotors are not rotating.Rotors are not rotating.

    Vortex SheddingVortex Shedding

    FrequencyFrequency

    SVSVffvv ==

    DD

    Suppression of Wake Buffeting bySuppression of Wake Buffeting byRotorsRotors

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    105/156

    Rotors are rotating.Rotors are rotating.

    Vortex SheddingVortex SheddingFrequencyFrequency

    SVSVffvv ==

    DD

    StructuralStructural DesignDesign

    Increasing StiffnessIncreasing Stiffness KKSS

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    106/156

    Increasing StiffnessIncreasing StiffnessKKSS-- natural frequencynatural frequencyffSS increasesincreases

    nonnon--dimensional wind speeddimensional wind speed U*U* decreasesdecreases-- member stress reducesmember stress reduces Increasing MassIncreasing MassMMSS-- air/building mass ratioair/building mass ration*n* decreasesdecreases

    -- natural frequencynatural frequencyffSS decreasesdecreases nonnon--dimensional wind speeddimensional wind speed U*U* increasesincreases no change inno change inn*U*n*U*22

    *+2S Y* + Y* =n*U*2 CW(t*) +FC*(t*)

    StructuralStructural DesignDesign

    Increasing StiffnessIncreasing Stiffness KKSS

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    107/156

    Increasing StiffnessIncreasing StiffnessKKSS-- natural frequencynatural frequencyffSS increasesincreases

    nonnon--dimensional wind speeddimensional wind speed U*U* decreasesdecreases-- member stress reducesmember stress reduces Increasing MassIncreasing MassMMSS-- air/building mass ratioair/building mass ration*n* decreasesdecreases

    -- natural frequencynatural frequencyffSS decreasesdecreases nonnon--dimensional wind speeddimensional wind speed U*U* increasesincreases no change inno change inn*U*n*U*22

    *+2S Y* + Y* =n*U*2 CW(t*) +FC*(t*)

    ScrutonScrutonNu

    mberNumberSSCC forfor

    Aerodynam

    ic

    Aerodynam

    icInstibilityInstibility

    SSCCMMSS

    100

    Increase of StiffnessIncrease of StiffnessKKSS

    Increase of Natural Frequency fIncrease of Natural Frequency f

    11

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    108/156

    0.01 0.1 1 (Hz)

    Natural Frequencyf1

    100

    1

    0.1

    Pea

    kAccele

    ration(cm

    /s2)

    Pea

    kDispla

    cement(cm)

    : Damping Ratio: Damping Ratio

    Increase of Natural Frequency f

    ISO10137OfficesResidences

    100

    Increase of StiffnessIncrease of StiffnessKKSS

    Increase of Natural Frequency fIncrease of Natural Frequency f

    11

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    109/156

    0.01 0.1 1 (Hz)

    Natural Frequencyf1

    100

    1

    0.1

    Pea

    kAccele

    ration(cm

    /s2)

    Pea

    kDispla

    cement(cm)

    ISO10137OfficesResidences

    AccelerationAcceleration =1%AccelerationAcceleration =5%

    DisplacementDisplacement =1%

    Building ResponseBuilding Response

    : Damping Ratio: Damping Ratio

    Increase in Damping

    Increase of Natural Frequency f

    Steel Buildings andSteel Buildings andReinforced Concrete BuildingsReinforced Concrete Buildings

    SteelSteel Reinforced ConcreteReinforced Concrete

    f 1 1 2

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    110/156

    ff11 11 :: 1.21.211 1 :1 : 1.31.3SS 11 :: 2.02.0AAMAXMAX,1yr,1yr 11 : 0.36: 0.36XXMAXMAX,100yr,100yr 11 : 0.32: 0.32 ff11 : Natural Frequency (1st mode): Natural Frequency (1st mode)11 : Damping Ratio (1st mode): Damping Ratio (1st mode) SS : Building Mass per Unit Volume: Building Mass per Unit Volume AAMAXMAX,1yr,1yr : Maximum Wind: Maximum Wind--Induced Acceleration (1yr rec.)Induced Acceleration (1yr rec.)

    XXMAXMAX,100yr,100yr : Maximum Wind: Maximum Wind--Induced Displacement (500yr rec.)Induced Displacement (500yr rec.)

    Damping Devices

    Passive Damping SystemsPassive Damping Systems Hysteretic DampersHysteretic Dampers

    S l D L d DSt l D L d D

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    111/156

    Steel Dampers, Lead Dampers,Steel Dampers, Lead Dampers,Friction Dampers,Friction Dampers, ViscoVisco--Elastic DampersElastic Dampers

    Viscous Fluid DampersViscous Fluid DampersViscous Damping Walls, Oil DampersViscous Damping Walls, Oil Dampers

    Mass DampersMass DampersTuned Mass Dampers, Tuned Liquid DampersTuned Mass Dampers, Tuned Liquid Dampers

    Active Control SystemsActive Control Systems Mass DampersMass Dampers

    Active Mass Dampers, Hybrid Mass DampersActive Mass Dampers, Hybrid Mass Dampers Gyro DampersGyro Dampers

    Active Gyro StabilizerActive Gyro Stabilizer

    NonNon--Resonant SystemsResonant SystemsActive Variable StiffnessActive Variable Stiffness OthersOthers

    SemiSemi--active Oil Damper, Activeactive Oil Damper, Active--damping Bridgedamping Bridge

    Uncertainty in Structural DampingUncertainty in Structural Damping

    C O VC O V 70% (H ill d 1974)70% (H ill d 1974)

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    112/156

    C.O.VC.O.V 70% (Havilland, 1974)70% (Havilland, 1974)SS = 2 %= 2 % 0.6% ~ 3.4%0.6% ~ 3.4% (5.7 times difference)(5.7 times difference) 2.4 times2.4 times difference of winddifference of wind--

    induced accelerationinduced acceleration

    If a certain damping (e.g.If a certain damping (e.g. addadd = 4 %)= 4 %) is addedis addedartificially:artificially: == SS ++ addadd 4.6% ~ 7.4%4.6% ~ 7.4% (1.6 times difference)(1.6 times difference) 1.3 times1.3 times difference of winddifference of wind--

    induced accelerationinduced acceleration

    improves structural design reliabilityimproves structural design reliability

    TV Shizuoka Media CityTV Shizuoka Media City

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    113/156

    TMD (Chiba Port Tower, 1986)TMD (Chiba Port Tower, 1986)

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    114/156

    HH= 125m= 125m

    ffx1x1 = 0.44Hz= 0.44Hz

    x1x1 = 0.51%= 0.51%ffy1y1 = 0.43Hz= 0.43Hz

    y1y1 = 0.53%= 0.53%

    TMD (Chiba Port Tower, 1986)TMD (Chiba Port Tower, 1986)

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    115/156

    mmDxDx

    = 10t= 10t

    mmDyDy = 15t= 15t

    DD = 20%= 20%

    TLD Vessels installed in YokohamaTLD Vessels installed in YokohamaMarine Tower (June 1987)Marine Tower (June 1987)

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    116/156

    Crosswind Accelerations of YokohamaCrosswind Accelerations of YokohamaMarine Tower With/WithoutMarine Tower With/Without TLDsTLDs

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    117/156

    Crosswind r.m.s. Accelerations of YokohamaCrosswind r.m.s. Accelerations of YokohamaMarine Tower With/WithoutMarine Tower With/Without TLDsTLDs

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    118/156

    ShinShin--Yokohama Prince HotelYokohama Prince HotelEmployingEmploying TLDsTLDs (March 1992)(March 1992)

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    119/156

    HH = 149m= 149m

    TLD Vessels Installed on Roof ofTLD Vessels Installed on Roof ofShinShin--Yokohama Prince HotelYokohama Prince Hotel

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    120/156

    Tokyo International Airport TowerTokyo International Airport TowerEmployingEmploying TLDsTLDs (1993)(1993)

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    121/156

    HH = 77.6m= 77.6m

    TLD Vessels Installed in TokyoTLD Vessels Installed in TokyoInternational Airport TowerInternational Airport Tower

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    122/156

    KyobashiKyobashi SeiwaSeiwa Building (1989)Building (1989)

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    123/156

    WindWind--induced Responses ofinduced Responses of KyobashiKyobashi SeiwaSeiwaBuilding With/Without AMD OperationBuilding With/Without AMD Operation

    (Sakamoto et al.,1993)(Sakamoto et al.,1993)

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    124/156

    (Sakamoto et al.,1993)(Sakamoto et al.,1993)

    Osaka ORC Symbol Tower Building (Osaka ORC Symbol Tower Building (HH=200m)=200m)Employing HMD and TMD [Employing HMD and TMD [MaebayashiMaebayashi, 1993], 1993]

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    125/156

    WindWind--induced Responses With/Without HMDinduced Responses With/Without HMD

    Operation(Osaka ORC Symbol Tower Building)Operation(Osaka ORC Symbol Tower Building)

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    126/156

    [[MaebayashiMaebayashi, 1993], 1993]

    Active Gyro DamperActive Gyro Damper

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    127/156

    Toshiba Elevator TowerToshiba Elevator Tower

    Active Gyro DamperActive Gyro Damper

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    128/156

    (by courtesy of Taisei Corporation)(by courtesy of Taisei Corporation)

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    129/156

    Frequency AdjustmentFrequency Adjustment

    And Other IdeasAnd Other Ideas

    FullFull--scale Fundamental Naturalscale Fundamental NaturalPeriods & Their Design ValuesPeriods & Their Design Values

    (Steel Buildings)(Steel Buildings)

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    130/156

    Design Natural Period (s)

    0

    1

    2

    3

    4

    5

    6

    7

    0 1 2 3 4 5 6 7T

    d

    MeasuredNatura

    lPeriod

    (s)

    Tm

    Td

    , r0.80 0.94

    Tm

    ( g )g

    20%20%

    Fundamental Natural Frequency ofFundamental Natural Frequency ofSloshing Motion of Water Inside aSloshing Motion of Water Inside a

    Circular Cylindrical VesselCircular Cylindrical Vessel

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    131/156

    TLCD with a Frequency AdjustableTLCD with a Frequency AdjustableSystemSystem

    HotelHotel CosimaCosima

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    132/156

    ((TeramuraTeramura, 1995), 1995)

    TLCD with a Frequency AdjustableTLCD with a Frequency AdjustableSystemSystem

    HotelHotel CosimaCosima

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    133/156

    ((TeramuraTeramura, 1995), 1995)

    Shinjuku Park Tower employing HMDShinjuku Park Tower employing HMD

    HH=226.5m,=226.5m,MMSS=130,000=130,000101033kg (Kajima)kg (Kajima)

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    134/156

    Shinjuku Park Tower employingShinjuku Park Tower employingVV--shaped HMDshaped HMD

    HH=226.5m,=226.5m,MMSS=130,000=130,000101033kg (Kajima)kg (Kajima)

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    135/156

    Tanida et al. (1993)Tanida et al. (1993)

    MultipleMultiple--pendulum HMDpendulum HMDYokohama Landmark TowerYokohama Landmark Tower

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    136/156

    MM

    MM

    LL

    L /L / 33

    Yamazaki et al., 1993Yamazaki et al., 1993

    (170(170101033kg)kg)

    Utilization of Existing MassUtilization of Existing Mass

    Heat Storage TanksHeat Storage TanksL T C Bank of Japan:L T C Bank of Japan: 200200 101033 kgkg AMDAMD

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    137/156

    L.T.C. Bank of Japan:L.T.C. Bank of Japan: 200200 101033 kgkg AMDAMD xx--,,yy--dirsdirs.. Ice Thermal Storage TanksIce Thermal Storage Tanks SendagayaSendagaya INTES:INTES: 3636 101033 kgkg 22 AMDAMD Crystal Tower:Crystal Tower: xx--dir.dir. 9090 101033 kgkg 44 TMDTMD

    yy--dir.dir. 9090 101033 kgkg 22 Water Supply TanksWater Supply Tanks HotelHotel CosimaCosima:: 4949 101033 kgkg TTLLDD

    Heliport DecksHeliport Decks HankyuHankyu ChayamachiChayamachi Building:Building:480480 101033 kgkg AMDAMD

    LTC Bank of Japan employing AMDLTC Bank of Japan employing AMD

    HH = 130m,= 130m,MMSS=39,800=39,800101033kgkg

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    138/156

    Kitamura et al. (1995)Kitamura et al. (1995)

    AMD utilizing 200AMD utilizing 200101033kg (kg (2 dirs.2 dirs.) Heat) HeatStorage TanksStorage Tanks

    HH =130m,=130m,MMSS=39,800=39,800101033kgkg

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    139/156

    Kitamura et al. (1995)Kitamura et al. (1995)

    HankyuHankyu ChayamachiChayamachi BuildingBuildingEmploying AMDEmploying AMD

    HH=160m,=160m,MMSS=14,000=14,000101033kgkg

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    140/156

    HigashinoHigashino et al. (1993)et al. (1993)

    AMD utilizing a Heliport DeckAMD utilizing a Heliport Deck

    480480 101033kgkg

    HankyuHankyu--ChayamachiChayamachi Bldg,Bldg,HH=160m=160m

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    141/156

    48048010103kgkg

    HigashinoHigashino et al. (1993)et al. (1993)

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    142/156

    Recent TrendsRecent Trends

    Combinations of Four Different DevicesCombinations of Four Different Devices

    TMDTMD (2: Habitability to(2: Habitability toWindWind--induced Vibrations)induced Vibrations)

    Nippon TV Office (Nippon TV Office (HH= 192.8m)= 192.8m)

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    143/156

    19

    2.8

    m

    19

    2.8

    m

    UnbondedUnbondedBraceBraceUnbondedUnbonded

    BraceBrace(64: Extreme(64: Extreme

    Earthquakes)Earthquakes)

    Link BeamLink Beam(312: Extreme(312: ExtremeEarthquakes)Earthquakes)

    OilOilDamperDamper(32: Wind(32: Wind--inducedinduced

    Vibrations, Weak,Vibrations, Weak,Medium & ExtremeMedium & ExtremeEarthquakes)Earthquakes)

    AMD & Honeycomb Damper

    AMDAMD

    Kyodo News Service (Kyodo News Service (HH= 172.4m)= 172.4m)

    (Habitability to Wind(Habitability to Wind--inducedinduced

    Vibrations)Vibrations)

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    144/156

    HoneycombHoneycomb

    DamperDamper(Extreme Earthquakes)(Extreme Earthquakes)

    Unbonded Brace& Semi-active Oil Damper

    RoppongiRoppongi Hills (Hills (HH= 238m)= 238m)

    UnbondedUnbonded BraceBrace

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    145/156

    SemiSemi--activeactiveOil DamperOil Damper

    UnbondedUnbonded BraceBrace

    SemiSemi--activeactiveOil DamperOil Damper(192: Wind(192: Wind--induced Vibrationinduced Vibration

    & Extreme Earthquakes)& Extreme Earthquakes)

    (356: Extreme Earthquakes))(356: Extreme Earthquakes))

    UnbondedUnbonded BraceBrace

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    146/156

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    147/156

    UnbondedUnbonded BracesBraces(Low(Low--yield Stress Steel)yield Stress Steel)

    UnbondedUnbonded BracesBraces

    Tower YTower Y

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    148/156

    28402840UBsUBs

    TheThe MarunouchiMarunouchi BuildingBuilding (2002)(2002)

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    149/156

    AntiAnti--seismic Shaftseismic Shaftin thein the MarunouchiMarunouchi BuildingBuilding (Inada et al., 2002)(Inada et al., 2002)

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    150/156

    AntiAnti--seismic Shaftseismic Shaftin thein the MarunouchiMarunouchi BuildingBuilding (Inada et al., 2002)(Inada et al., 2002)

    AntiAnti--seismic shaftsseismic shaftsCentral pillarCentral pillar

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    151/156

    LowLow--yieldyield--strengthstrengthSteelSteel

    AntiAnti--seismic shaftseismic shaft (close(close--up view)up view)

    AntiAnti--seismic Shaftseismic Shaftin thein the MarunouchiMarunouchi BuildingBuilding

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    152/156

    LowLow--yield Strength Steelyield Strength Steel

    Vinod J.Vinod J. ModiModiInventor of Tuned Liquid DamperInventor of Tuned Liquid Damper

    ((NutationNutation Damper 1980)Damper 1980)

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    153/156

    ((NutationNutation Damper, 1980)Damper, 1980)

    Vinod J. Modi (1929Vinod J. Modi (1929--2003)2003)

    Vinod J. Modi often quotedVinod J. Modi often quoted

    the following sentences:the following sentences:No equation will ever be able to reveal theNo equation will ever be able to reveal thesecret innocence of a childsecret innocence of a childs smile thes smile the

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    154/156

    secret innocence of a childsecret innocence of a childs smile, thes smile, theelegant effortless glide of a seagull, or theelegant effortless glide of a seagull, or thegentle murmuring of thegentle murmuring of the hinokihinoki cypress atcypress atdawn.dawn.

    Knowledge is but a small islandKnowledge is but a small islandsurrounded by a vast ocean of ignorance.surrounded by a vast ocean of ignorance.

    No matter how far we progress, we willNo matter how far we progress, we willalways remain at the shores of thatalways remain at the shores of thatuncharted world.uncharted world.

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    155/156

    Who is this !Who is this !

    Thank You !Thank You !

  • 8/13/2019 Prof.tamura July19 APSS2010 Wind-universitatea Tokyo

    156/156