products handbook 2009

Upload: vickers

Post on 04-Jun-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/14/2019 Products Handbook 2009

    1/170

  • 8/14/2019 Products Handbook 2009

    2/170

  • 8/14/2019 Products Handbook 2009

    3/170

    2

    April 2009

  • 8/14/2019 Products Handbook 2009

    4/170

    3

    Expansion thermostatic expansion valves with interchangeable orifice assembly 16valves PWM solenoid expansion valves with interchangeable orifice 26

    Solenoid valves for refrigerating systems 32valves coils 40

    permanent magnet 43

    connectors 44

    valves for different fluids 44

    Safety devices safety valves 3030 50 safety valves 3060 57

    ball shut-off valves 59

    changeover devices 60

    unions 62

    fusible plugs 63

    Check valves 65

    Water regulating valves 71

    Liquid indicatorsMoisture liquid indicators 77

    Dehydrators dehydration of refrigerants 83 anti-acid solid core filter driers 85

    solid core filter driers with sight glass 94

    solid core bi-flow filter driers 97

    filter driers with replaceable anti-acid solid core 100

    mechanical filters with replaceable filtering block 105

    strainers 110

    Oi105

    Valves hermetic valves 112 receiver valves 114

    stop valves 116

    diaphragm valves 118

    rotalock valves 120

    capped valves 122

    globe valves 124

    ball valves 126

    gauge mounting valves 129

    line piercing valve 130

    Threaded brass fittings 131

    Solder copper fittings 141

    Access fittings 153

    Spare parts 159

    Index

  • 8/14/2019 Products Handbook 2009

    5/170

    4

    The techical data in this handbook are indicative. Castel reserves the

    right to modify the same at any time without any previous notice.

    The products listed in this handbook are protected according to the law

  • 8/14/2019 Products Handbook 2009

    6/170

    5

    From quality our naturaldevelopment

    After more than forty years in the industry of Refrigeration and

    Air Conditioning components, Castel Quality Range of Products

    is well known and highly appreciated all over the world.

    Quality is the main issue of our Company and it has a special

    priority, in every step, all along the production cycle.

    We produce on high tech machinery and updated automatic

    production lines, operating in conformity with the safety and

    environment standards currently enforced.

    Castel offers to the Market and to Manufacturers fully tested

    products suitable with HCFC and HFC Refrigerants currently

    used in the Refrigeration & Air Conditioning Industry.

    UNI EN ISO 9001:2008 issued by ICIM certifies the Quality System

    of the Factory.

    Moreover Castel Products count a number of certifications in

    conformity with the EEC Directives and with European and

    American Quality Approvals.

  • 8/14/2019 Products Handbook 2009

    7/170

    6

    Application of Directive 97/23/EC of the European Parliament

    and of the Council, of 29 May 1997, concerning pressure

    equipment towards Castel refrigeration products

    Maximum / minimum allowable

    temperature (TS):

    the maximum/minimum temperatures for

    which the equipment is designed, as

    specified by the manufacturer

    Volume (V): the internal volume of a

    chamber, including the volume of nozzles to

    the first connection or weld and excluding

    the volume of permanent internal parts.

    Nominal size (DN): numerical designation

    of size, which is common to all components

    in a piping system. Fluids: gases, liquids and vapours in pure

    phase as well as mixture thereof.

    Pressure equipments referred to in Article 3 are

    classified by categories in accordance with

    Annex II, according to ascending level of

    hazard, on the basis of:

    State of the fluid

    Danger classification of the fluid

    Type of equipment

    Dimensions and energetic potential:

    V, DN, PS, PS x V, PS x DNand must satisfy the Essential Safety

    Requirement set out in Annex I of PED.

    Pressure equipments below or equal to the

    limits in Article 3, sections 1.1, 1.2 and 1.3

    and section 2, must not satisfy the Essential

    Safety Requirement set out in Annex I. They

    must be designed and manufactured in

    accordance with the sound engineering practice

    of a Member State in order to ensure safe use

    (Article 3, Section 3).

    In the tables of general characteristics,

    collected in this Handbook, its showed the riskcategory in which every product is classified.

    In Article 9 of PED the fluids are classified,

    according to their hazard, into two groups:

    The Directive 97/23/EC (PED) applies

    to the design, manufacture and conformity

    assessment of pressure equipment

    and assemblies with a maximum allowable

    pressure PS greater than 0,5 bar with

    the exception of the possibilities listed

    in Article 1, Section 3 of the same

    Directive.

    Since 30 May 2002 the Directive

    has become mandatory and,

    in the Member States of European Community,

    it has been possible to placeon the market only pressure equipments

    CE marked according to PED.

    For the purposes of the Directive see the

    following definitions, used in this Handbook

    too:

    Pressure equipment: vessels, piping,

    safety accessories, and pressure

    accessories

    Vessel: a housing designed and built to

    contain fluids under pressure.

    Piping: piping components intended for thetransport of fluids, when connected together

    for integration into a pressure system.

    Safety accessories: devices designed to

    protect pressure equipment against the

    allowable limits being exceeded.

    Pressure accessories: devices with an

    operational function and having pressure-

    bearing housing. For example: solenoid

    valves, valves, indicators.

    Assemblies: several pieces of pressure

    equipment assembled by a manufacturer to

    constitute an integrated and functionalwhole.

    Maximum allowable pressure (PS):

    the maximum pressure for which the

    equipment is designed, as specified by the

    manufacturer.

  • 8/14/2019 Products Handbook 2009

    8/170

    7

    Group I comprises dangerous fluids. A

    dangerous fluid is a substance or

    preparation covered by the definitions in

    Article 2 of Council Directive 67/548/EEC

    of 27 June 1967 and following

    amendments, relating to the classification,

    packaging and labeling of dangerous

    substance. Group I comprises fluids defined

    as: explosive, extremely flammable, highly

    flammable, flammable, very toxic, toxic,

    oxidizing.

    Group II comprises all the others fluids notreferred to in group I.

    Castel products are suitable for using with

    refrigerant fluids proper to the Group II.

    These refrigerant fluids are listed and

    classified A1 in Annex E of standard

    EN 378-1:2008, plus fluids R30, R123,

    R141b and R245fa that are classified in

    other safety groups.

    EXTERNAL LEAKAGE

    All the products illustrated in this Handbook are

    submitted, one by one, to tightness tests

    besides to functional tests.

    Allowable external leakage, measurable during

    the test, agrees to the definition given in the

    Standard EN 12284 : 2003, Par. 9.4:

    During the test, no bubbles shall form over a

    period of at least one minute when the

    specimen is immersed in water with low

    surface tension, .

    PRESSURE CONTAINMENT

    All the products illustrated in this Handbook, if

    submitted to hydrostatic test, guarantee a

    pressure strenght at least equal to 1,43 x PS in

    compliance with the Directive 97/23/EC.

    All the products illustrated in this Handbook, if

    submitted to burst test, guarantee a pressure

    strength at least equal to 3 x PS according to

    to the EN 378-2:2008 Standard. A greatnumber of products illustrated in the Handbook

    can guarantee an higher pressure strength,

    equal to 5 x PS according to the Standard UL

    207 : 2004. (for detailed information about

    these products please contact Castel Technical

    Department).

    WEIGHTS

    The weights of the items listed in this

    Handbook include packaging and are not

    binding for the Company.

  • 8/14/2019 Products Handbook 2009

    9/170

    Application of Directive 2002/95/EC of the European Parliament and

    of the Council, of 27 January 2003, on the restriction of the use of

    certain hazardous substances in electrical and electronic equipment

    listed in the Annex of the same Directive;

    among these applications the following

    exceptions are particularly interesting in air

    conditioning / refrigerating systems:

    Lead as an alloying element in steel

    containing up to 0,35% lead by weight,

    aluminium containing up to 0,4% lead by

    weight and as a copper alloy containing up to

    4% lead by weight

    Hexavalent chromium as an anti-corrosion of

    the carbon steel cooling system in absorption

    refrigerators

    The Member States of European Community had

    to adopt the two Directives 2002/95/EC and

    2002/96/EC, with the next updating

    2003/108/EC, before 13 August 2004, unless

    delays granted by the European Parliament.

    For a long time Castel Company has started a

    careful inquiry, together with its suppliers, to

    identify the presence or not of the above-

    mentioned hazardous substances, either in its

    own products or in its own production processes,

    and to remove them progressively.

    At the end of this wide examination CastelCompany may declare that its products:

    1. Do not contain mercury, cadmium,

    polybrominated biphenyls (PBB),

    polybrominated diphenyl ethers (PBDE)

    2. Do not contain hexavalent chromium, used for

    the surface treatments (yellow zinc plating) of

    steel parts. Castel Company has removed the

    yellow zinc plating treatments from all its

    products, before the end of 2005, and has

    chosen:

    other surface treatments containing trivalent

    chromium instead of hexavalent chromium.

    where possible, other materials which dont

    need surface treatments.

    3. Contain lead as an alloying element in steel,

    aluminium and copper alloys within the

    accepted limits according to the Annex of

    RoHS Directive.

    The purpose of Directive 2002/95/EC (RoHS

    Directive) is to prevent or restrict the use of

    hazardous substances in electrical and

    electronic equipment and to contribute to the

    environmentally sound recovery and disposal of

    waste electrical and electronic equipment.

    RoHS Directive shall apply to electrical and

    electronic equipment falling under the categories

    1, 2, 3, 4, 5, 6, 7 and 10 set out in Annex 1A to

    Directive 2002/96/EC (WEEE Waste electrical

    and electronic equipment) and to electric light

    bulbs and luminaries in households.The equipment proper to the first category,

    Large household appliances, and to the

    10th category, Automatic dispensers, of

    Annex 1A in WEEE Directive, are specified in

    Annex 1B in the same Directive; this list of

    products shows:

    Large cooling appliance

    Refrigerators

    Freezers

    Other large appliances used for refrigeration,

    conservation and storage of food

    Air conditioner appliances

    Other fanning, exhaust ventilation andconditioning equipment

    Automatic dispenser for hot or cold bottles

    and cans

    Article 10 of WEEE Directive establishes that,

    from 13 August 2005, new electrical and

    electronic equipment put on the market are

    appropriately identified as waste subject to

    separate collection, by means of the proper

    symbol shown in Annex IV of the same Directive.

    Article 4 of RoHS Directive establishes that, from

    1 July 2006, new electrical and electronic

    equipment put on the market does not contain

    the following substances:

    Lead

    Mercury

    Cadmium

    Hexavalent chromium

    Polybrominated biphenyls (PBB)

    Polybrominated diphenyl ethers (PBDE)

    The restriction of use of these hazardous

    substances shall not apply to the applications

    8

  • 8/14/2019 Products Handbook 2009

    10/170

    CONNECTIONS OF CASTEL PRODUCTS

    Castel products can be supplied with different

    connections.In particular Castel products are produced

    either with threaded connections or solder

    connections.

    Table 1 shows the equivalence between Castelcodes and dimensions in inches. These codes

    are commonly used in the international market.

    Table 2 shows the equivalence between Castel

    codes and dimensions in millimeters.

    CASTELcode

    Dimension[in]

    TABLE 1 - Equivalence between Castel code

    and dimension in inches

    CASTELcode

    Dimension[mm]

    . /M6

    . /M10

    . /M12

    . /M15

    . /M18

    . /M22

    . /M28

    . /M42

    . /M64

    . /M80

    6

    10

    12

    15

    18

    22

    28

    42

    64

    80

    TABLE 2: Equivalence between Castel code

    and dimension in millimeters

    1/8"

    1/4"

    3/8"

    1/2"

    5/8"

    3/4"

    7/8"

    1"

    1" 1/8

    1" 3/8

    1" 5/8

    2" 1/8

    2" 5/8

    3"

    3" 1/8

    3" 1/2

    3" 5/8

    4" 1/8

    4" 1/4

    . /1

    . /2

    . /3

    . /4

    . /5

    . /6

    . /7

    . /8

    . /9

    . /11

    . /13

    . /17

    . /21

    . /24

    . /25

    . /28

    . /29

    . /33

    . /34

    F.e. 1098/7 solenoid valve with solder connection

    with = 7/8

    F.e. 4411/M42A fi lter drier with replaceable anti-acid

    solid core with solder connection with = 42 mm.

    9

  • 8/14/2019 Products Handbook 2009

    11/170

    10

    1) THREADED CONNECTIONS

    They can be of three different types:

    FLARE

    Straight threaded connection (according to SAE

    J513-92; ASME B1.1-89) for junction to a

    copper pipe with a suitable flared end, using a

    right nut (see Table 3).

    NPT

    Taper threaded connection (according to ASME

    B1.20.1-92) to joint fittings, valves, safety

    valves to vessel or steel pipes.

    FPTStraight threaded connection (according to UNI

    ISO 228/1) used in the hydraulic system to

    joint fittings or valves to vessel or steel pipes.

    F.e.: solenoid valves for water or air.

    2) SOLDER CONNECTIONS

    They can be of four different types and can fit

    pipes with diameter both in inches and in

    millimeters:

    ODS (or ODF)

    Female solder connection for copper tubes.

    The indicated size corresponds to the outer

    diameter of the copper tube which to joint.

    F.e.: 1/2" ODS solder connection suitable to receive

    inside a copper pipe with a 1/2" outer diameter.

    ODM

    Male solder connection for copper tubes.

    The indicated size corresponds to the outer

    diameter of the copper tube which to joint.

    F.e.: 16 ODM solder connection suitable to joint a

    copper pipe with a 16 mm outer diameter, by means of

    an M16 female/female copper sleeve (in this case the

    type Castel 7700/M16).

    IDS

    Male solder connection for copper tube.

    The indicated size corresponds to the inner

    diameter of the copper tube which to joint.

    F.e.: 10 IDS solder connection suitable to receive

    outside a copper pipe with an 10 mm inner diameter).

    W

    Solder connection for steel pipes.

    The indicated size corresponds to the external

    diameter of the steel pipe which to joint.

    F.e.: 76,1 W solder connection suitable to connect a

    steel pipe with a 76,1 mm external diameter, by means

    of butt welding.

    FLARESuitable forCopper tube

    thread

    1/4"

    5/16"

    3/8"

    1/2"

    5/8"

    3/4"

    7/8"

    1"

    1/4"

    5/16"

    3/8"

    1/2"

    5/8"

    3/4"

    7/8"

    1"

    7/16" - 20 UNF

    1/2" - 20 UNF

    5/8" - 18 UNF

    3/4" - 16 UNF

    7/8" - 14 UNF

    1.1/16" - 14 UNS

    1.1/4" - 12 UNF

    1.3/8" - 12 UNF

    TABLE 3: Flare connections

    Description of connections that are currently used for Castelproducts.

  • 8/14/2019 Products Handbook 2009

    12/170

    11

    THE Kv FACTOR

    Table 1 shows refrigeration capacity values

    with unit Kv related to the nominal working

    conditions specified in Table 2.

    Appropriate corrective coefficients may be

    calculated taking the values shown from Table

    3 to Table 8 as a basis; this will make it

    possible to predict actual working conditions.

    As a result:

    Liquid line:

    Q = Kv Q1 L1 L2 Suction line

    Q = Kv Q1 S1 S2 Hot gas line

    Q = Kv Q1 H1 H2

    since:

    Q = required refrigeration capacity [kW];

    Kv = characteristic valve coefficient [m3/h];

    Q1 = reference refrigeration capacity [kW]

    (Table 1).

    L1 S1 H1 = are correction factors of the

    refrigeration capacity in the presence of

    operating temperatures different from reference

    conditions.

    L2 S2 H2 = are correction factors of the

    refrigeration capacity for pressure drops

    different from reference conditions.

    The correct sizing of tubes and components of

    a refrigerating system is of the utmost

    importance for all kinds of plants; oversizing

    and undersizing are both to be avoided since

    they are equally hazardous for the correct

    operation of the system.

    The correct selection of a component is based

    on the knowledge of the relationship between

    capacity and pressure drop through that

    component. For this purpose, EN 60534-1,

    EN 60534-2-1 and EN 60534-2-3 standards

    require manufacturers to specify the Kv

    coefficient for every product.

    The Kv factor is defined as the cold water

    flow (volumic mass = 1000 kg/m3) in

    m3/h resulting in a 1 bar pressure drop

    with a completely open valve.

    This definition applies to all products described

    in this handbook.

    The merely physical meaning, this coefficient

    precisely defines the fluid-dynamic and

    construction characteristics of the product, so

    that, with the addition of other parameters

    more closely related to the nature and

    conditions of the fluid under consideration, thecapacity/pressure drop ratio may be precisely

    determined.

    Castel provides appropriate tables for the most

    commonly used refrigerants in typical plant

    working conditions in order to help engineers in

    the correct selection of its products.

    TABLE 1

    KvFactor[m3/h]

    R134a

    Liquid Vapour Hot Gas

    Refrigeration Capacity [kW]

    1 16,85

    R22

    18,00

    R404A

    11,90

    R407C

    18,74

    R410A

    19,04

    R507

    11,80

    R134a

    2,16

    R22

    2,70

    R404A

    2,26

    R407C

    2,68

    R410A

    3,60

    R507

    2,15

    R134a

    8,50

    R22

    11,70

    R404A

    10,00

    R407C

    11,62

    R410A

    13,00

    R507

    7,77

    +4

    TABLE 2 - Nominal Working Conditions

    +18

    +38

    0,15

    1

    ApplicationSuction Temperature

    [C]Condensing Temperature

    [C]Pressure drop

    [bar]

    LIQUID

    VAPOUR

    HOT

    GAS

    Evaporating Temperature[C]

  • 8/14/2019 Products Handbook 2009

    13/170

    12

    Liquid line

    TABLE 3 - Correction Factors L1 of the refrigeration capacity for operating temperatures different from nominal values

    LiquidTemperature

    [C]Refrigerant

    + 10 + 5 0 5 10 15 20 25 30 35 40

    Evaporating Temperature [C]

    0

    +10

    +20

    +30

    +40

    +50

    +60

    R134a

    R22

    R404A

    R407C

    R410A

    R507

    R134a

    R22

    R404A

    R407C

    R410A

    R507

    R134a

    R22

    R404A

    R407C

    R410A

    R507

    R134a

    R22

    R404A

    R407C

    R410A

    R507

    R134a

    R22

    R404A

    R407C

    R410A

    R507

    R134a

    R22

    R404A

    R407C

    R410A

    R507

    R134a

    R22

    R404A

    R407C

    R410A

    R507

    1,23

    1,19

    1,28

    1,23

    1,19

    1,33

    1,12

    1,08

    1,13

    1,12

    1,08

    1,17

    1,00

    0,99

    0,99

    0,99

    1,00

    1,00

    0,88

    0,89

    0,85

    0,85

    0,85

    0,80

    0,76

    0,79

    0,68

    0,71

    0,70

    0,58

    1,21

    1,17

    1,26

    1,22

    1,17

    1,30

    1,10

    1,07

    1,12

    1,10

    1,07

    1,15

    0,98

    0,98

    0,97

    0,97

    0,99

    0,97

    0,86

    0,88

    0,83

    0,84

    0,84

    0,78

    0,74

    0,78

    0,66

    0,70

    0,69

    0,56

    1,19

    1,16

    1,25

    1,20

    1,16

    1,28

    1,08

    1,06

    1,09

    1,08

    1,06

    1,13

    0,96

    0,97

    0,95

    0,96

    0,96

    0,95

    0,84

    0,87

    0,81

    0,82

    0,81

    0,76

    0,72

    0,77

    0,64

    0,68

    0,67

    0,54

    1,17

    1,16

    1,22

    1,18

    1,16

    1,26

    1,06

    1,05

    1,07

    1,06

    1,05

    1,10

    0,94

    0,96

    0,93

    0,94

    0,95

    0,93

    0,82

    0,86

    0,79

    0,80

    0,80

    0,74

    0,70

    0,76

    0,62

    0,66

    0,66

    0,52

    1,15

    1,15

    1,20

    1,16

    1,15

    1,23

    1,04

    1,04

    1,05

    1,04

    1,04

    1,08

    0,92

    0,95

    0,92

    0,92

    0,94

    0,90

    0,80

    0,85

    0,77

    0,79

    0,79

    0,71

    0,68

    0,75

    0,60

    0,65

    0,65

    0,50

    1,13

    1,13

    1,17

    1,15

    1,13

    1,20

    1,02

    1,03

    1,04

    1,03

    1,03

    1,05

    0,90

    0,93

    0,89

    0,90

    0,93

    0,87

    0,78

    0,84

    0,75

    0,77

    0,78

    0,68

    0,66

    0,74

    0,58

    0,63

    0,63

    0,47

    1,34

    1,32

    1,40

    1,35

    1,32

    1,52

    1,23

    1,22

    1,27

    1,23

    1,22

    1,35

    1,11

    1,11

    1,16

    1,13

    1,11

    1,17

    1,00

    1,02

    1,02

    1,00

    1,02

    1,02

    0,88

    0,92

    0,87

    0,89

    0,92

    0,85

    0,76

    0,82

    0,73

    0,75

    0,76

    0,66

    0,64

    0,72

    0,56

    0,61

    0,61

    0,45

    1,32

    1,31

    1,38

    1,33

    1,31

    1,49

    1,21

    1,21

    1,25

    1,21

    1,21

    1,32

    1,09

    1,10

    1,13

    1,11

    1,10

    1,14

    0,98

    1,01

    0,99

    0,99

    1,01

    0,99

    0,86

    0,90

    0,85

    0,87

    0,91

    0,82

    0,74

    0,81

    0,71

    0,73

    0,74

    0,63

    0,62

    0,71

    0,54

    0,60

    0,60

    0,42

    1,30

    1,29

    1,36

    1,31

    1,29

    1,46

    1,18

    1,19

    1,23

    1,19

    1,19

    1,29

    1,07

    1,08

    1,11

    1,09

    1,08

    1,12

    0,96

    0,99

    0,97

    0,97

    0,99

    0,96

    0,84

    0,89

    0,83

    0,85

    0,90

    0,79

    0,72

    0,80

    0,69

    0,72

    0,73

    0,60

    0,60

    0,70

    0,52

    0,58

    0,58

    0,40

    1,28

    1,27

    1,33

    1,29

    1,27

    1,42

    1,16

    1,17

    1,20

    1,18

    1,18

    1,26

    1,05

    1,07

    1,08

    1,07

    1,07

    1,08

    0,94

    0,98

    0,95

    0,95

    0,98

    0,93

    0,82

    0,87

    0,80

    0,83

    0,87

    0,76

    0,70

    0,78

    0,67

    0,70

    0,72

    0,57

    0,58

    0,68

    0,50

    0,56

    0,57

    0,36

    1,26

    1,25

    1,31

    1,25

    1,25

    1,38

    1,14

    1,16

    1,18

    1,16

    1,16

    1,22

    1,03

    1,05

    1,06

    1,06

    1,05

    1,04

    0,91

    0,96

    0,93

    0,94

    0,96

    0,89

    0,80

    0,86

    0,78

    0,82

    0,86

    0,72

    0,68

    0,77

    0,65

    0,69

    0,71

    0,54

    0,56

    0,67

    0,48

    0,55

    0,56

    0,33

    TABLE 4 - Correction Factors L2 of the refrigeration capacity for pressure drops different from nominal values

    Pressuredrop[bar]

    0,01 0,03 0,05 0,10

    L2 0,263 0,456 0,59 0,81 1,00 1,15 1,30 1,40 1,54 1,64 1,72 1,82 1,92 2,00

    0,15 0,20 0,25 0,30 0,35 0,40 0,45 0,50 0,55 0,60

  • 8/14/2019 Products Handbook 2009

    14/170

    13

    Suction line Hot gas line

    Q = Kv Q1 S1 S2 [kW]

    15 = Kv 2,68 0,70 0,82

    15Kv = = 9,75 [m3/h]

    1,538

    The result involves the selection of a 1078/9

    valve with Kv = 10 [m3/h]

    3) Hot gas line:

    Valve selection under the following conditions:

    Refrigerant: R407C

    Set refrigeration capacity: 20 [kW]

    Condensation: + 40 [C]Evaporation: 0 [C]

    Set pressure drop: 0,5 [bar]

    Q = Kv Q1 H1 H2 [kW]

    20 = Kv 11,62 0,94 0.7

    20

    Kv = = 2,61 [m3/h]

    7,64

    The result involves the selection of a 1078/5

    valve with Kv = 2,61 [m3/h]

    APPLICATION EXAMPLES

    1) Liquid line:

    Evaluation of pressure drop across the valveunder the following working conditions:

    Castel 1078/5 valve: Kv = 2,61 [m3/h]

    Refrigerant: R407C

    Set refrigeration capacity: 35 [kW]

    Condensation: + 50 [C]

    Evaporation: 0 [C]

    Q = Kv Q1 L1 L2 [kW]

    35 = 2,61 18,74 0,82 L2 [kW]

    35

    L2 = = 0,87

    40,11

    A pressure drop slightly above 0.11 bar

    corresponds to the L2 = 0.87 correction factor.

    Such a pressure drop is compatible with the

    minimum differential pressure required by the

    valve.

    2) Suction line:

    Valve selection under the following conditions:

    Refrigerant: R407C

    Set refrigeration capacity: 15 [kW]

    Condensation: + 40 [C]Evaporation: 10 [C]

    Set pressure drop: 0,1 [bar]

    TABLE 5 - Correction Factors - S1 of the refrigeration capacity

    for operating temperatures different fom nominal values

    EvaporatingTemperature

    [C] + 60 + 55 + 50 + 45 + 40 + 35 + 30

    Condensing Temperature [C]

    +10

    0

    10

    20

    30

    40

    0,87

    0,67

    0,51

    0,35

    0,36*

    0,27*

    0,92

    0,73

    0,55

    0,39

    0,38*

    0,29*

    0,98

    0,78

    0,59

    0,43

    0,41*

    0,31*

    1,04

    0,83

    0,64

    0,50

    0,35

    0,43*

    0,33*

    1,11

    0,85

    0,70

    0,53

    0,37

    0,46*

    0,35*

    1,17

    0,96

    0,76

    0,57

    0,39

    0,48*

    0,37*

    1,23

    1,01

    0,80

    0,60

    0,45

    0,50*

    0,38*

    TABLE 6 - Correction Factors - S2

    of the refrigeration capa-

    city for pressure drops different from nominal values

    Pressuredrop[bar]

    0,04 0,05 0,07 0,10 0,15 0,20 0,30 0,40 0,50 0,70

    S2 0,47 0,57 0,68 0,82 1,00 1,15 1,40 1,64 1,82 2,15

    TABLE 8 - Correction Factors - H2 of the refrigeration capa-

    city for pressure drops different from nominal values

    Pressuredrop[bar]

    0,10 0,20 0,30 0,40 0,50 0,70 1,00 1,50 2,00 2,50

    H2 0,32 0,45 0,54 0,65 0,70 0,83 1,00 1,17 1,30 1,44

    TABLE 7 - Correction Factors - H1 of the refrigeration capacity

    for operating temperatures different from nominal values

    EvaporatingTemperature

    [C] + 60 + 55 + 50 + 45 + 40 + 35 + 30

    Condensing Temperature [C]

    +10

    0

    10

    20

    30

    40

    1,00

    0,83

    0,76

    1,00

    0,90

    0,76

    1,00

    0,92

    0,79

    0,67

    1,03

    0,92

    0,80

    0,71

    1,04

    0,94

    0,84

    0,72

    0,60

    1,05

    0,95

    0,87

    0,76

    0,65

    0,58

    1,05

    0,95

    0,88

    0,77

    0,68

    0,61

    *Two-stages pants,two indipendent circuits, with intermediate

    temperature -10 C.

  • 8/14/2019 Products Handbook 2009

    15/170

    14

  • 8/14/2019 Products Handbook 2009

    16/170

    Expansion valves

  • 8/14/2019 Products Handbook 2009

    17/170

    16

    diaphragm assembly by 1.5 meter length of

    capillary tubing, which transmits bulb pressure

    to the top of the valves diaphragm. The

    sensing bulb pressure is a function of thetemperature of the thermostatic charge that is

    the substance within the bulb.

    The body is made from forged brass with

    connection in angle configuration. The

    interchangeable orifice assembly can be

    replaced through the inlet connection. A steel

    rod, inside the body, transfers the diaphragm

    movement to the plug inside the orifice

    assembly. When the thermostatic charge

    pressure increases, the diaphragm will be

    deflected downward transferring this motion to

    the plug, which lifts from seat and allows the

    liquid passing through orifice. A spring opposes

    the force underneath the diaphragm and the

    side spindle can adjust its tension. Static

    superheat increases by turning the side spindle

    clockwise and decreased by turning the spindle

    counter clockwise.

    The thermostatic element is hardly connected

    by brazing to the forged brass body to avoid any

    leakage.

    The body assembly can be supplied with

    internal or external equalizer; both types can

    also be supplied either with flare connections

    or with solder connections (outlet and externalequalizer if present).

    The nuts for flare connection type and the inlet-

    APPLICATION

    Castel thermostatic expansion valves series 22

    regulate the flow of refrigerant liquid intoevaporators; the liquid injection is controlled by

    the refrigerant superheat.

    The new Castel 22 series are designed to

    work with interchangeable orifice assembly, to

    provide flexibility in selection of capacities, and

    can be used in a wide range of applications as

    listed below:

    Refrigeration systems (display cases in

    supermarkets, freezers, ice cream and ice

    maker machines, transport refrigeration etc).

    Air conditioning systems

    Heat pump systems Liquid chillers

    which use refrigerant fluids proper to the Group

    II (as defined in Article 9, Section 2.2, of

    Directive 97/23/EC and referred to in Directive

    67/548/EEC).

    OPERATION

    Castel thermostatic expansion valves acts as

    throttle device between the high pressure and

    the low pressure sides of refrigeration systems

    and ensure that the rate of refrigerant flow into

    the evaporator exactly matches the rate of

    evaporation of liquid refrigerant in the

    evaporator. If the actual superheat is higher

    than the set point the valve feeds the

    evaporator with more liquid refrigerant, if the

    actual superheat is lower than the set point the

    valve decreases the flow of liquid refrigerant to

    the evaporator. Thus the evaporator is fully

    utilized and no liquid refrigerant may reach the

    compressor.

    CONSTRUCTION

    Castel thermostatic expansion valve series 22

    is made up of two parts that must work

    together: the first is the body, which is the

    actuator of the regulator, and the second is the

    orifice, which contains the valve and attends

    the expansion of the refrigerating fluid.

    Body assembly: two parts make it up: the

    thermostatic (power) element and the body with

    its inner elements.The thermostatic element is the motor of the

    valve; a sensing bulb is connected to the

    THERMOSTATIC EXPANSION VALVES SERIES 22WITH INTERCHANGEABLE ORIFICE ASSEMBLY

  • 8/14/2019 Products Handbook 2009

    18/170

    17

    TABLE 1a: General Characteristics of Body Assemblies of Liquid Charge Thermostatic Expansion Valves

    externalequalizer

    internalequalizer

    Cataloguenumber

    IN OUT Equal. OUT OUT Equal. min max

    PS[bar]

    SAE Flare ODS [mm] ODS [in]

    Refrigerant

    Evaporating

    TemperatureRange

    [C]

    Maxbulb

    temperature[C]

    MOP

    TS [C]Connections

    2210/4E

    2210/M12SE

    2210/4SE

    2220/4E

    2220/M12SE

    2220/4SE

    2230/4E

    2230/M12SE

    2230/4SE

    2210/4

    2210/M12S

    2210/4S

    2220/4

    2220/M12S

    2220/4S

    2230/4

    2230/M12S

    2230/4S

    3/8"

    1/2"

    1/2"

    1/2"

    1/2"

    1/2"

    1/2"

    1/4"

    1/4"

    1/4"

    12

    12

    12

    12

    12

    12

    Equal.

    6

    6

    6

    1/2"

    1/2"

    1/2"

    1/2"

    1/2"

    1/2"

    1/4"

    1/4"

    1/4"

    R22

    R407C

    R134a

    R404A

    R507

    - 40

    + 10

    without 100

    (1)-60 +120 34

    RiskCategoryaccording

    toPED

    Art. 3.3

    (1) When valve is installed. 60 C with element not mounted

    TABLE 1b: General Characteristics of Body Assemblies of MOP Charge Thermostatic Expansion Valves

    externalequalizer

    internalequalizer

    Cataloguenumber

    IN OUT Equal. OUT OUT Equal. min max

    PS[bar]

    SAE Flare ODS [mm] ODS [in]

    Refrigerant

    Evaporating

    temperature

    Range[C]

    Maxbulb

    temperature[C]

    MOP

    TS [C]Connections

    2211/4E

    2211/M12SE

    2211/4SE

    2221/4E

    2221/M12SE

    2221/4SE

    2231/4E

    2231/M12SE

    2231/4SE

    2234/4E

    2234/M12SE

    2234/4SE

    2211/4

    2211/M12S

    2211/4S

    2221/4

    2221/M12S

    2221/4S

    2231/4

    2231/M12S

    2231/4S

    2234/4

    2234/M12S

    2234/4S

    3/8"

    1/2"

    1/2"

    1/2"

    1/2"

    1/2"

    1/2"

    1/2"

    1/2"

    1/4"

    1/4"

    1/4"

    1/4"

    12

    12

    12

    12

    12

    12

    12

    12

    Equal.

    6

    6

    6

    6

    1/2"

    1/2"

    1/2"

    1/2"

    1/2"

    1/2"

    1/2"

    1/2"

    1/4"

    1/4"

    1/4"

    1/4"

    R22

    R407C

    R134a

    R404A

    R507

    - 40

    + 10

    - 60

    - 25

    + 15 C

    (95 psi)

    + 15 C

    (55 psi)

    + 15 C

    (120 psi)

    - 20 C

    (30 psi)

    100

    (1)-60 +120 34

    RiskCategoryaccording

    toPED

    Art. 3.3

    (1) When valve is installed. 60 C with element not mounted

  • 8/14/2019 Products Handbook 2009

    19/170

    18

    charge cannot incorporate MOP functions.

    Gas charge: the behaviour of valves with gas

    charge will be determined by the lowest

    temperature at any part of the expansion valve

    (thermostatic element, capillary tube or bulb). If

    any parts other than the bulb are subjected tothe lowest temperature, malfunction of

    expansion valve may occur (charge migration).

    Castel thermostatic expansion valves with gas

    charge always feature MOP functions and

    include ballasted bulb. Ballast in the bulb has a

    damping effect on the valve regulation and

    leads to slow opening and fast closure of the

    valve.

    MOP (Maximum Operating Pressure): this

    functionality limits the evaporator pressure to a

    maximum value to protect the compressor from

    the overload condition (Motor Overload

    Protection). MOP is the evaporating pressure at

    which the expansion valve will throttle liquid

    injection into the evaporator and thus prevent

    the evaporating pressure from rising. Expansion

    valve operates as superheat control in normal

    working range and operates as pressure

    regulator within MOP range. The MOP point will

    change if the factory superheat setting of the

    expansion valve is changed. Superheat

    adjustments influence the MOP point as

    following:

    increase of superheatdecrease of MOP

    decrease of superheat

    increase of MOP

    Superheat: this is the controlling parameter of

    the expansion valve. Superheat, measured at

    the evaporator outlet, is defined as the

    difference between actual bulb temperature and

    the evaporating temperature, deduce from

    evaporator pressure. In order to prevent liquid

    refrigerant from entering the compressor, a

    certain minimum superheat must bemaintained. In expansion valve operation the

    following terms are used:

    Static superheat: its the superheat above

    that the valve will begin to open. Castel

    thermo expansion valves are factory preset

    at the following values:

    5 C for Castel valves without MOP

    4 C for Castel valves with MOP

    with nominal operating conditions (see table 2)

    Opening superheat: its the superheat above

    the static one required to produce a given

    valve capacity Operating superheat: its the sum of static

    and opening superheat

    brazing adapter for solder connection type can

    be ordered separately.

    Every body assembly is supplied with a strap,

    code G9150/R61 that allows fixing the bulb to

    the pipe. This code can be ordered separately

    too, as repair kit.

    The main part of body assembly are made with

    the following materials: stainless steel for bulb, capillary tubing,

    diaphragm casing, diaphragm and rod

    hot forged brass EN 12420 CW 617N for

    body

    brass EN 12164 CW 614N for superheat

    setting spindle and spring holder

    steel DIN 17223-1 for spring

    copper tube EN 12735-1 Cu DHP for solder

    connection

    Orifice assembly: interchangeable orifice

    assembly provide a wide range of capacity from

    0,5 up to 15,5 kW (nominal capacity with R22).

    The external cartridge contains the following

    elements: housing, plug (metering device), seat,

    spring and strainer. The rigid design of orifice

    assembly and its internal components make

    sure that plug and seat will withstand all types

    of critical operations (liquid hammering,

    cavitation, sudden variation of pressure and

    temperature contaminants). The spring holds

    the plug firmly to the seat to ensure the

    minimum leakage through the valve; for positive

    shut-off, the installation of a solenoid valve isrequired. Orifice assemblies are available in

    these two solutions:

    with conical flanged strainer, for valves with

    SAE Flare threaded connections.

    with flat flanged strainer, for valves with ODS

    solder connections, to use with adapter

    series 2271.

    Orifice assemblies strainers can be cleaned or

    exchanged, in this last case its possible to

    order separately the following two types of

    strainers.

    strainer 2290 for valves with SAE Flarethreaded connections.

    strainer 2290/S for valves with ODS solder

    connections.

    THERMOSTATIC CHARGES

    Liquid charge: the behaviour of valves with

    liquid charge is exclusively determined by

    temperature changes at the bulb and not

    subject to any cross-ambient interference. Theyfeature a fast response time and thus react

    quickly in the control circuit. Castel

    thermostatic expansion valves with liquid

  • 8/14/2019 Products Handbook 2009

    20/170

    19

    Subcooling: its defined as the difference

    between the condensing temperature (deduced

    from condensing pressure) and the actual

    temperature at inlet valve. Subcooling generally

    increases the capacity of refrigeration system

    and may be accounted for when dimensioning

    an expansion valve. Depending on system

    design, subcooling may be necessary to

    prevent flash gas from forming in the liquid line.If flash gas forms in the liquid line, the capacity

    of expansion valve will be greatly reduced. All

    capacity tables, in this chapter, are calculated

    for a subcooling value of 4 C; if the actual

    subcooling is higher than 4 C the valve

    capacity comes from evaporator capacity

    divided by the correction factor shown in the

    tables below every capacity table.

    41,

    5

    42

  • 8/14/2019 Products Handbook 2009

    21/170

    20

    chosen refrigerant.

    Step 4

    Select a thermostatic charge. Chose the type of

    charge, liquid without MOP or gas with MOP, and

    the temperature range, normal temperature or low

    temperature.

    Step 5

    Determine if external equalizer is required.

    External equalizer is always required if a

    distributor is used or if there is an appreciable

    difference in pressure from the valve outlet to the

    bulb location. Finally determine the type of

    connections and their sizes.

    Step 6

    Order the required componentsIf SAE Flare connections you have to order the

    following two parts:

    - Body assembly (see tabs 1a/1b)- Orifice assembly, completed with strainer (see

    tab 2)

    If ODS connections you have to order the following

    three parts:

    - Body assembly (see tabs 1a/1b)

    - Orifice assembly, completed with strainer

    (see tab 2)

    - Solder adapter (see tab. 3)

    SELECTION

    To correctly select a thermo expansion valve on a

    refrigerating system, the following design

    conditions must be available:

    Type of refrigerant

    Evaporator capacity, Qe

    Evaporating temperature/pressure, Te/ peLowest possible condensing temperature/

    pressure, Tc/ pcLiquid refrigerant temperature, TlPressure drop in the liquid line, distributor and

    evaporator, p

    The following procedure helps to select the correct

    valve for the system.

    Step 1

    Determine the pressure drop across the valve.

    The pressure drop is calculated by the formula:

    where:

    Pc = condensing pressure

    Pe = evaporating pressure

    p = sum of pressure drops in the liquid line,

    distributor and evaporator

    Step 2

    Determine required valve capacity. Use the

    evaporating capacity Qe to select the requiredvalve size at a given evaporating temperature. If

    necessary, correct the evaporator capacity for

    subcooling. Subcooling liquid refrigerant entering

    the evaporator increase the evaporator capacity,

    so that a smaller valve may be required.

    The subcooling is calculated by the formula:

    From the subcooling corrector factor table find the

    appropriate corrector factor Fsub corresponding tothe Tsub calculated and determine the required

    valve capacity by the formula:

    Step 3

    Determine required orifice size. Use the pressure

    drop across the valve, the evaporating

    temperature and the calculated evaporator

    capacity to select the corresponding orifice size

    from the capacity table corresponding to the

    sub

    esub F

    QQ =

    lcsub TTT =

    ( )pppp ectot +=

    TABLE 2: Orifice Assemblies - Rated Capacities in kW

    Valves withSAE Flare

    connections

    Catalogue number

    Valves withODS

    connectionsR22

    R407CR134a

    R404AR507

    R404AR507

    Evaporating Temperature Range [C]

    - 40 + 10 -60 -25

    220X

    2200

    2201

    2202

    2203

    2204

    2205

    2206

    220X/S

    2200/S

    2201/S

    2202/S

    2203/S

    2204/S

    2205/S

    2206/S

    0,5

    1,0

    2,5

    3,5

    5,2

    8,0

    10,5

    15,5

    0,4

    0,9

    1,8

    2,6

    4,6

    6,7

    8,6

    10,5

    0,38

    0,7

    1,6

    2,1

    4,2

    6,0

    7,7

    9,1

    0,38

    0,7

    1,6

    2,1

    3,5

    4,9

    6,0

    6,6

    Rated capacities, for temperature range

    - 40 + 10, are based on:

    Evaporating temperature Tevap = + 5 C

    Condensing temperature Tcond = + 32 C

    Refrigerant liquid temperature ahead

    of valve Tliq = + 28 C

    Rated capacities, for temperature range

    - 60 - 25, are based on:

    Evaporating temperature Tevap = - 30 C

    Condensing temperature Tcond = + 32 C

    Refrigerant liquid temperature ahead

    of valve Tliq = + 28 C

  • 8/14/2019 Products Handbook 2009

    22/170

    21

    pressure drop across the valve = 4,2 bar

    evaporating temperature = - 10 C

    calculated evaporator capacity = 5,55 kW

    select the corresponding orifice 2205 (N.B.:

    the expansion valve capacity must be equal

    or slightly more than the calculated

    evaporator capacity)

    MARKING

    Main valve data are indicated on the upper side

    of the thermostat ic element and on the

    cartridge surface of the orifice assembly.

    On the thermostatic element you may find the

    following data:

    The valve code number

    The refrigerant

    The evaporating temperature range

    The MOP value, if present

    The maximum allowable pressure PS

    The date of production

    On the cartridge of orifice assembly you may

    find the following data:

    The size of the orifice

    The date of production

    On the plastic cap of the orifice assembly

    package the orifice size is marked. The cap can

    easily be fastened around the valve capillary

    tube to clearly identify the valve size.

    TABLE 3: Solder adapters

    Catalogue numberODS Connections

    [in] [mm]

    2271/M6S

    2271/2S

    2271/3S

    2271/M10S

    1/4"

    3/8"

    6

    10

    SIZING EXAMPLE

    Type of refrigerant R134a

    Evaporator capacity, Qe 6 kW

    Evaporating temperature/

    pressure, Te - 10 C

    Lowest possible condensing

    temperature/pressure, Tc + 30 C

    Liquid refrigerant temperature, Tl + 20 C

    Pressure drop in the liquid line, distributor

    and evaporator, p 1,5 bar

    STEP 1 - Determine the pressure drop across

    the valve

    Condensing pressure at

    + 30 C - pc = 6,71 bar

    Evaporating pressure at

    - 10 C - pe = 1,01 bar

    ptot = 6,71 ( 1,01 + 1,5 ) = 4,2 bar

    STEP 2 - Determine required valve capacity

    Tsub = 30 20 = 10 C

    From the subcooling corrector factor table 5b,

    we find the appropriate corrector factor Fsubequal to 1,08 for Tsub = 10 C Required valve

    capacity is:

    Qsub =6/1,08 = 5,55 kW

    STEP 3 - Determine required orifice size

    Using the capacity table for R134a on page 25

    with:

  • 8/14/2019 Products Handbook 2009

    23/170

    22

    TABLE 4a: Refrigerant R22/R407C - Capacities in kW for temperature range - 40 C +10 C

    Orificecode

    Orificecode

    Pressure drop across valve [bar] Pressure drop across valve [bar]

    2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16

    Evaporating temperature = 0 C

    220X 0,37 0,48 0,55 0,59 0,63 0,65 0,66 0,66

    2200 0,84 1,0 1,2 1,3 1,3 1,4 1,4 1,4

    2201 1,9 2,4 2,7 3,0 3,1 3,2 3,3 3,32202 2,6 3,4 4,0 4,3 4,6 4,8 4,9 5,0

    2203 4,6 6,1 7,1 7,8 8,2 8,5 8,7 8,8

    2204 6,9 9,1 10,5 11,5 12,2 12,7 13,0 13,2

    2205 8,8 11,6 13,3 14,6 15,5 16,1 16,4 16,6

    2206 10,8 14,2 16,3 17,8 18,9 19,6 20,0 20,2

    Evaporating temperature =-20 C

    220X 0,44 0,50 0,54 0,57 0,59 0,61 0,61

    2200 0,88 1,0 1,1 1,1 1,2 1,2 1,2

    2201 1,7 1,9 2,0 2,2 2,3 2,3 2,3

    2202 2,4 2,7 2,9 3,1 3,2 3,3 3,3

    2203 4,2 4,8 5,2 5,5 5,8 5,9 6,0

    2204 6,2 7,1 7,7 8,2 8,5 8,7 8,8

    2205 7,9 9,0 9,8 10,3 10,8 11,0 11,2

    2206 9,6 11,0 11,9 12,6 13,1 13,5 13,7

    Evaporating temperature = -40 C

    220X 0,42 0,45 0,48 0,50 0,52 0,53

    2200 0,8 0,86 0,92 0,95 0,98 0,99

    2201 1,3 1,4 1,4 1,5 1,5 1,6

    2202 1,7 1,9 2,0 2,0 2,1 2,1

    2203 3,1 3,4 3,5 3,7 3,8 3,8

    2204 4,6 4,9 5,2 5,4 5,6 5,7

    2205 5,8 6,3 6,6 6,9 7,1 7,2

    2206 7,1 7,7 8,1 8,4 8,7 8,8

    Evaporating temperature = +10 C

    220X 0,37 0,48 0,55 0,60 0,63 0,65 0,65 0,67

    2200 0,87 1,1 1,2 1,3 1,4 1,4 1,4 1,5

    2201 2,2 2,8 3,2 3,4 3,6 3,7 3,8 3,82202 3,0 4,0 4,7 5,1 5,4 5,6 5,8 5,8

    2203 5,4 7,2 8,3 9,1 9,7 10,0 10,2 10,3

    2204 8,1 10,8 12,5 13,8 14,5 15,0 15,5 15,5

    2205 10,2 13,6 15,7 17,2 18,3 18,9 19,3 19,5

    2206 12,6 16,7 19,3 21,0 22,3 23,1 23,5 23,7

    Evaporating temperature = -10 C

    220X 0,37 0,47 0,53 0,57 0,60 0,63 0,64 0,64

    2200 0,79 0,96 1,1 1,2 1,2 1,3 1,3 1,3

    2201 1,6 2,0 2,3 2,5 2,6 2,7 2,8 2,8

    2202 2,2 2,9 3,3 3,6 3,8 4,0 4,1 4,1

    2203 3,9 5,1 5,9 6,4 6,8 7,1 7,3 7,3

    2204 5,8 7,6 8,7 9,5 10,1 10,5 10,8 10,9

    2205 7,4 9,6 11,0 12,0 12,8 13,3 13,6 13,8

    2206 9,1 11,6 13,5 14,7 15,6 16,2 16,6 16,8

    Evaporating temperature = -30 C

    220X 0,40 0,45 0,49 0,52 0,55 0,56 0,57

    2200 0,79 0,9 0,96 1,0 1,1 1,1 1,1

    2201 1,4 1,5 1,7 1,8 1,8 1,9 1,9

    2202 1,9 2,2 2,7 2,5 2,6 2,6 2,7

    2203 3,4 3,9 4,2 4,4 4,6 4,7 4,8

    2204 5,0 5,7 6,2 6,6 6,8 7,0 7,1

    2205 6,4 7,2 7,8 8,3 8,6 8,8 9,0

    2206 7,8 8,8 9,6 10,1 10,5 10,8 11,0

    TABLE 4b: Refrigerant R22/R407C - Correction factor for subcooling tsub > 4 C

    tsub [C] 4 10 15 20 25 30 35 40 45 50

    Fsub 1,00 1,06 1,11 1,15 1,20 1,25 1,30 1,35 1,39 1,44

    When subcooling ahead of the expansion valve is over than 4 C, adjust the evaporator capacity by dividing by the appropriate

    correction factor found in table 4b

  • 8/14/2019 Products Handbook 2009

    24/170

    23

    TABLE 5a: Refrigerant R134a Capacities in kW for temperature range - 40 C + 10 C

    Orificecode

    Orificecode

    Pressure drop accross valve [bar] Pressure drop accross valve [bar]

    2 4 6 8 10 2 4 6 8 10

    Evaporating temperature = 0 C

    220X 0,33 0,42 0,46 0,47 0,49

    2200 0,65 0,78 0,86 0,89 0,91

    2201 1,3 1,6 1,7 1,8 1,82202 1,7 2,2 2,4 2,6 2,6

    2203 3,0 3,9 4,4 4,6 4,7

    2204 4,5 5,7 6,4 6,8 7,0

    2205 5,7 7,3 8,1 8,6 8,8

    2206 7,0 8,9 1,0 10,5 10,8

    Evaporating temperature = -20 C

    220X 0,28 0,35 0,39 0,41 0,42

    2200 0,53 0,62 0,69 0,72 0,73

    2201 0,81 1,0 1,1 1,2 1,2

    2202 1,1 1,4 1,5 1,6 1,7

    2203 2,0 2,5 2,8 2,9 3,0

    2204 2,9 3,6 4,0 4,3 4,4

    2205 3,7 4,6 5,1 5,4 5,5

    2206 4,5 5,6 6,2 6,6 6,8

    Evaporating temperature = -40 C

    220X 0,23 0,28 0,32 0,33 0,34

    2200 0,44 0,50 0,54 0,56 0,57

    2201 0,54 0,65 0,72 0,78 0,77

    2202 0,7 0,9 1,0 1,0 1,0

    2203 1,3 1,6 1,8 1,9 1,9

    2204 1,9 2,3 2,6 2,7 2,7

    2205 2,4 2,9 3,2 3,5 3,5

    2206 3,0 3,6 4,0 4,2 4,3

    Evaporating temperature = +10 C

    220X 0,34 0,43 0,47 0,50 0,51

    2200 0,71 0,86 0,93 0,97 0,98

    2201 1,5 1,9 2,1 2,2 2,22202 2,0 2,6 3,0 3,1 3,2

    2203 3,6 4,7 5,3 5,6 5,8

    2204 5,4 7,0 7,8 8,3 8,6

    2205 6,9 8,9 9,9 10,8 10,9

    2206 8,4 10,8 12,1 12,8 13,2

    Evaporating temperature = -10 C

    220X 0,30 0,36 0,43 0,44 0,44

    2200 0,59 0,70 0,77 0,81 0,82

    2201 1,0 1,3 1,4 1,5 1,5

    2202 1,4 1,8 2,0 2,1 2,1

    2203 2,5 3,1 3,5 3,7 3,8

    2204 3,6 4,6 5,1 5,4 5,6

    2205 4,6 5,8 6,5 6,9 7,1

    2206 5,7 7,1 8,0 8,4 8,6

    Evaporating temperature = -30 C

    220X 0,25 0,32 0,35 0,37 0,38

    2200 0,48 0,55 0,61 0,64 0,64

    2201 0,66 0,80 0,88 0,93 0,95

    2202 0,9 1,1 1,2 1,3 1,3

    2203 1,6 2,0 2,2 2,3 2,3

    2204 2,3 2,9 3,2 3,3 3,4

    2205 3,0 3,6 4,0 4,2 4,3

    2206 3,6 4,4 4,9 5,2 5,3

    TABLE 5b: Refrigerant R134a - Correction factor for subcooling tsub > 4 C

    tsub [C] 4 10 15 20 25 30 35 40 45 50

    Fsub 1,00 1,08 1,13 1,19 1,25 1,31 1,37 1,42 1,48 1,54

    When subcooling ahead of the expansion valve is over than 4 C, adjust the evaporator capacity by dividing by the appropriate

    correction factor found in table 5b

  • 8/14/2019 Products Handbook 2009

    25/170

    24

    TABLE 6a: Refrigerant R404A/R507 Capacities in kW for temperature range - 40 C + 10 C

    Orificecode

    Orificecode

    Pressure drop across valve [bar] Pressure drop across valve [bar]

    2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16

    Evaporating temperature = 0 C

    220X 0,30 0,37 0,41 0,42 0,43 0,43 0,43 0,41

    2200 0,68 0,80 0,87 0,90 0,92 0,93 0,91 0,87

    2201 1,53 1,86 2,04 2,13 2,18 2,18 2,15 2,082202 2,06 2,64 2,95 3,13 3,22 3,25 3,21 3,11

    2203 3,68 4,72 5,27 5,59 5,75 5,80 5,73 5,55

    2204 5,49 7,15 7,86 8,33 8,58 8,64 8,53 8,27

    2205 6,97 8,92 9,95 10,52 10,83 10,90 10,76 10,43

    2206 8,57 10,93 12,16 12,85 13,21 13,30 13,12 12,72

    Evaporating temperature = -20 C

    220X 0,35 0,38 0,40 0,39 0,40 0,39 0,38

    2200 0,70 0,75 0,77 0,79 0,79 0,79 0,76

    2201 1,34 1,45 1,50 1,52 1,52 1,51 1,47

    2202 1,85 2,04 2,14 2,17 2,18 2,16 2,09

    2203 3,32 3,66 3,83 3,89 3,90 3,86 3,75

    2204 4,88 5,40 5,64 5,75 5,77 5,71 5,56

    2205 6,20 6,86 7,17 7,29 7,31 7,23 7,05

    2206 7,60 8,39 8,75 8,91 8,93 8,84 8,61

    Evaporating temperature = -40 C

    220X 0,32 0,33 0,33 0,33 0,32 0,32

    2200 0,60 0,61 0,62 0,61 0,60 0,59

    2201 0,92 0,96 0,97 0,96 0,94 0,91

    2202 1,27 1,32 1,33 1,31 1,28 1,24

    2203 2,28 2,36 2,38 2,36 2,31 2,24

    2204 3,34 3,47 3,50 3,48 3,42 3,33

    2205 4,25 4,41 4,45 4,43 4,36 4,24

    2206 5,19 5,39 5,45 5,42 5,33 5,19

    Evaporating temperature = +10 C

    220X 0,28 0,35 0,40 0,42 0,43 0,43 0,42 0,41

    2200 0,67 0,82 0,90 0,94 0,96 0,96 0,93 0,90

    2201 1,70 2,10 2,30 2,42 2,48 2,46 2,41 2,342202 2,32 3,00 3,39 3,61 3,73 3,74 3,68 3,59

    2203 4,15 5,36 6,03 6,43 6,63 6,66 6,55 6,39

    2204 6,24 8,06 9,06 9,66 9,95 9,98 9,81 9,57

    2205 7,91 10,17 11,43 12,16 12,53 12,56 12,34 12,03

    2206 9,71 12,47 13,98 14,86 15,29 15,31 15,05 14,66

    Evaporating temperature = -10 C

    220X 0,30 0,37 0,40 0,42 0,42 0,42 0,41 0,41

    2200 0,65 0,76 0,82 0,84 0,87 0,87 0,85 0,83

    2201 1,31 1,61 1,74 1,81 1,84 1,85 1,84 1,78

    2202 1,76 2,24 2,50 2,62 2,69 2,71 2,68 2,60

    2203 3,14 4,02 4,47 4,69 4,81 4,84 4,79 4,65

    2204 4,66 5,97 6,61 6,95 7,13 7,18 7,11 6,91

    2205 5,93 7,57 8,39 8,81 9,02 9,08 8,99 8,73

    2206 7,28 9,27 10,26 10,76 11,00 11,08 10,97 10,65

    Evaporating temperature = -30 C

    220X 0,35 0,37 0,36 0,37 0,36 0,35

    2200 0,67 0,70 0,70 0,70 0,69 0,67

    2201 1,18 1,21 1,23 1,21 1,20 1,17

    2202 1,63 1,69 1,71 1,70 1,68 1,64

    2203 2,93 3,04 3,07 3,06 3,02 2,93

    2204 4,28 4,47 4,52 4,51 4,46 4,35

    2205 5,45 5,68 5,74 5,74 5,67 5,52

    2206 6,66 6,94 7,02 7,01 6,93 6,75

    TABLE 6b: Refrigerant R404A/R507 - Correction factor for subcooling tsub > 4 C

    tsub [C] 4 10 15 20 25 30 35 40 45 50

    Fsub 1,00 1,10 1,20 1,29 1,37 1,46 1,54 1,63 1,70 1,78

    When subcooling ahead of the expansion valve is over than 4 C, adjust the evaporator capacity by dividing by the appropriate

    correction factor found in table 6b

  • 8/14/2019 Products Handbook 2009

    26/170

    25

    TABLE 7a: Refrigerant R404A/R507 Capacities in kW for temperature range - 60 C - 25 C

    Orificecode

    Orificecode

    Pressure drop across valve [bar] Pressure drop across valve [bar]

    2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16

    Evaporating temperature = -30 C

    2200 0,53 0,64 0,67 0,70 0,70 0,70 0,69 0,67

    2201 0,88 1,07 1,18 1,21 1,23 1,21 1,20 1,17

    2202 1,18 1,47 1,63 1,69 1,71 1,70 1,68 1,642203 2,12 2,65 2,93 3,04 3,07 3,05 3,02 2,93

    2204 3,09 3,88 4,28 4,47 4,52 4,51 4,46 4,35

    2205 3,94 4,94 5,45 5,68 5,74 5,74 5,67 5,52

    2206 4,83 6,06 6,66 6,94 7,02 7,01 6,93 6,75

    Evaporating temperature = -50 C

    2200 0,49 0,53 0,54 0,54 0,53 0,52 0,50

    2201 0,51 0,57 0,60 0,60 0,60 0,60 0,59

    2202 0,91 0,99 1,02 1,02 1,01 0,98 0,95

    2203 1,63 1,73 1,84 1,84 1,81 1,78 1,72

    2204 2,36 2,60 2,69 2,71 2,68 2,63 2,56

    2205 3,02 3,30 3,43 3,45 3,42 3,35 3,26

    2206 3,69 4,04 4,20 4,22 4,18 4,12 4,00

    Evaporating temperature = -25 C

    2200 0,57 0,67 0,72 0,73 0,74 0,85 0,74 0,71

    2201 0,98 1,20 1,31 1,36 1,37 1,37 1,35 1,31

    2202 1,31 1,65 1,83 1,91 1,93 1,93 1,90 1,852203 2,35 2,97 3,28 3,42 3,47 3,46 3,42 3,32

    2204 3,45 4,37 4,82 5,04 5,11 5,12 5,06 4,93

    2205 4,40 5,56 6,14 6,40 6,49 6,49 6,42 6,26

    2206 5,40 6,30 7,49 7,81 7,93 7,93 7,85 7,64

    Evaporating temperature = -40 C

    2200 0,56 0,60 0,61 0,62 0,61 0,60 0,59

    2201 0,65 0,72 0,75 0,77 0,77 0,77 0,75

    2202 1,17 1,27 1,32 1,33 1,31 1,28 1,24

    2203 2,09 2,28 2,36 2,38 2,36 2,31 2,24

    2204 3,03 3,34 3,47 3,50 3,48 3,42 3,33

    2205 3,87 4,25 4,41 4,45 4,43 4,36 4,24

    2206 4,73 5,19 5,39 5,45 5,47 5,33 5,19

    Evaporating temperature = -60 C

    2200 0,46 0,48 0,47 0,45 0,45 0,43

    2201 0,58 0,60 0,60 0,58 0,56 0,54

    2202 0,78 0,80 0,80 0,78 0,75 0,72

    2203 1,40 1,44 1,43 1,40 1,36 1,30

    2204 2,04 2,11 2,11 2,07 2,03 1,96

    2205 2,59 2,69 2,66 2,65 2,59 2,50

    2206 3,16 3,28 3,30 3,25 3,18 3,07

    TABLE 7b: Refrigerant R404A/R507 - Correction factor for subcooling tsub > 4 C

    tsub [C] 4 10 15 20 25 30 35 40 45 50

    Fsub 1,00 1,10 1,20 1,29 1,37 1,46 1,54 1,63 1,70 1,78

    When subcooling ahead of the expansion valve is over than 4 C, adjust the evaporator capacity by dividing by the appropriate

    correction factor found in table 7b

  • 8/14/2019 Products Handbook 2009

    27/170

    26

    PWM SOLENOID EXPANSION VALVE WITHINTERCHANGEABLE ORIFICE

    APPLICATION

    Solenoid expansion valve Castel type 2028

    regulates the refrigerant flow into theevaporator by modulating the opening time

    phase of the plug and so permitting a wide

    range of power.

    This valve must be used with a coil type HM4

    (see table 2), controlled by an electronic

    regulator device (not supplied by Castel).

    This valve is most frequently used in

    refrigeration systems, in particular refrigerated

    cabinets in the supermarket, which use

    refrigerant fluids proper to the Group II (as

    defined in Article 9, Section 2.2 of Directive

    97/23/CE, and referred in Directive67/548/CE).

    OPERATION

    Valve type 2028 is a lamination device that

    receives liquid from the condenser and injects

    it into the evaporator, operating the necessary

    pressure drop across the expansion orifice.

    Its an ON/OFF valve that must be regulated

    with the Pulse Width Modulation (PWM)

    method and it can be actuated by a very simple

    electronic controller. In according to the PWM

    method, the evaporator refrigerant capacity QT,

    required in a fixed period T, is delivered by

    the valve in a time interval t, shorter than

    T. During the period t the valve opens and

    permits maximum flow (ON phase); in the

    remaining period T-t the valve closes with no

    flow (OFF phase).

    For an effective PWM regulation, the valve must

    be sized in such a way that in the hardest

    conditions of the system, the orifice of the

    valve is big enough to deliver the refrigerant

    requested; in these extreme conditions the

    valve will last opened for the entire period T.

    The use of an electronic regulator allows a

    more accurate metering of the refrigerant

    reaching a greater efficiency (and then a

    sensible decrement of the machinery

    management costs) and a faster response to

    the variations of the evaporation load.

    CONSTRUCTION

    Valve is supplied complete with its orifice; there

    are seven different orifices corresponding toseven different evaporator capacities , that

    increase passing from orifice 01 to orifice 07.

    The last two numbers in the code identify what

    size of orifice has been mounted on the valve

    into the factory; for example the code

    2028/3S02 identifies a valve with 3/8 solder

    connections, size 02 orifice. The orifices are

    interchangeable and can be mounted even if

    the valve is soldered on the system; in this

    case use the corresponding spare parts kit, in

    according to table 3.

    The main parts of the valves are made with the

    following materials:

    Hot forged brass EN 12420 CW 617N for

    body and the housing pipe of the mobile plug

    Copper tube EN 12735-1 Cu-DHP for solder

    connections

    Austenitic stainless steel EN 10088-3

    1.4301 for the filter

    Ferritic stainless steel EN 10088-3 1.4105

    for mobile and fixed plugs

    Austenitic stainless steel EN 10088-3

    1.4305 for orifices

    Chloroprene rubber (CR) for outlet seal

    gaskets

    P.T.F.E. for seat gaskets

    COILS AND CONNECTORS

    Coils type HM4 must be mounted on these

    valves. Table 2 presents the most important

    characteristics of coils and corresponding

    connectors. For further technical characteristics

    about HM4 coils and their connectors see to

    the solenoid valve chapter.

    SELECTION

    To correctly select a solenoid expansion valve

    on a refrigerating system, the following design

    conditions must be available:

    Type of refrigerant

    Evaporator capacity, Qe Evaporating temperature/pressure, Te/ pe Lowest possible condensing

    temperature/pressure, Tc/ pc Liquid refrigerant temperature, Tl Pressure drop in the liquid line, distributor

    and evaporator, p

  • 8/14/2019 Products Handbook 2009

    28/170

    27

    TABLE 1: General Characteristics of PWM solenoid expansion valves

    Cataloguenumber

    0,5 0,01

    0,07 0,017

    0,8 0,023

    1,1 0,043

    1,3 0,065

    1,7 0,113

    2,3 0,2

    OrificeFlow[mm]

    KvFactor[m3/h] MinOPD

    0 18PWM

    (PulseWidthModulating)

    1 -40 100 45 Art.

    3.3

    MOPD

    AC/RAC DC

    Operating

    principles Minimum

    workingtime[s]

    Opening pressure differential [bar]

    min max

    PS[bar]

    TS [C]

    ODS Connections

    [mm][in]

    IN OUT IN OUT

    RiskCategoryaccording

    toPED

    2028/3S01 3/8 1/2

    2028/M10S01 10 12

    2028/3S02 3/8 1/2 2028/M10S02 10 12

    2028/3S03 3/8 1/2

    2028/M10S03 10 12

    2028/3S04 3/8 1/2

    2028/M10S04 10 12

    2028/3S05 3/8 1/2

    2028/M10S05 10 12

    2028/3S06 3/8 1/2

    2028/M10S06 10 12

    2028/4S07 1/2 5/8

    2028/M12S07 12 16

    18

    14

    Nominal capacities are referred to:

    Evaporating temperature Tevap = +5C

    Condensating temperature Tcond = +32C

    inlet temperature of liquid Tliq = +28C

    The following procedure helps to select the

    correct valve for the system.

    Step 1

    Determine the pressure drop across the valve.

    The pressure drop is calculated by the formula:

    ( )pppp ectot +=

    where:

    Pc = condensing pressure

    Pe = evaporating pressure

    p = sum of pressure drops in the liquid line,

    distributor and evaporator

    Step 2

    Subcooling correction. Use the evaporating

    capacity Qe to select the required valve size ata given evaporating temperature. If necessary,

    TABLE 2: General Characteristic of coils

    Coiltype Protection

    DegreeIP65

    ProtectionDegree

    IP65/IP68

    ConnectionsConsumption at 20C [mA]

    Start

    50 [Hz] D.C. 50 [Hz] D.C.

    WorkingFrequency[Hz]

    Voltagetolerance [%]

    Voltage[V]

    Cataloguenumber

    HM4

    9160/RA2

    9160/RA6

    9160/RD1

    9160/RD2

    24 A.C.

    220/230 A.C.

    12 D.C.

    24 D.C.

    1490

    162

    -

    700

    76

    -

    -

    1350

    650

    -

    1350

    650

    +6 / -10

    +10 / -15

    50

    -

    9155/R019150/R02

    TABLE 3: Orifice Nominal capacities in kW

    Catalogue number

    Refrigerent

    Orifice type

    Orifice size

    [mm] R22 R134aR404A

    R507

    R407C R410A

    9150/R63 01 0,5 1 0,9 0,8 1,1 1,3

    9150/R64 02 0,7 1,9 1,7 1,6 2 2,4

    9150/R65 03 0,8 2,5 2 1,9 2,4 3

    9150/R66 04 1,1 3,9 3,2 2,9 3,8 4,8

    9150/R67 05 1,3 6,7 5,6 5,1 6,7 8,4

    9150/R68 06 1,7 9,2 7,7 7 9,1 11,4

    9150/R69 07 2,3 14,7 12,2 11,3 15,3 18,2

  • 8/14/2019 Products Handbook 2009

    29/170

    28

    a given evaporating temperature. If necessary,

    correct the evaporator capacity for subcooling.

    Subcooling liquid refrigerant entering the

    evaporator increase the evaporator capacity, so

    that a smaller valve may be required. The

    subcooling is calculated by the formula:

    From the subcooling corrector factor table find

    the appropriate corrector factor Fsubcorresponding to the !Tsub calculated and

    determine the required valve capacity by the

    formula:

    Qsub = Fsub . Qe

    Step 3

    Application correction. To obtain a correct

    regulation with this valve, is necessary to

    oversize it so its closing period is between the

    25% and the 50% of the total period T of the

    regulator. The correct choice of this closing

    period depends on the application, that can

    have peaks of load, and on the criterion used by

    the electronic regulator.

    Generally, anyway, this correcting factor Fev is

    str ict ly dependent by the evaporat ion

    temperature so it be assumed that Fev = 1.25

    for Tev >= -15C and Fev = 1.50 for Tev

  • 8/14/2019 Products Handbook 2009

    30/170

    29

    TABLE 4: Refrigerant R22 Capacities in kW

    2

    Pressure drop across valve [bar]Orifice

    type 4 68 10 12 14 16 18

    01 0,7 0,9 1,0 1,1 1,2 1,2 1,2 1,2 1,2

    02 1,3 1,7 1,9 2,2 2,2 2,3 2,3 2,4 2,3

    03 1,7 2,2 2,5 2,7 2,8 2,9 2,9 2,9 2,9

    04 2,7 3,4 3,9 4,2 4,4 4,5 4,6 4,7 4,7

    05 4,6 6,0 6,7 7,2 7,6 7,9 8,0 8,1 8,1

    06 6,3 8,1 9,2 9,9 10,4 10,6 10,9 11,0 11,1

    07 10,1 13,0 14,7 15,8 16,6 17,0 17,4 17,6 (1) 17,4 (2)

    TABLE 5: Refrigerant R134a Capacities in kW

    2

    Pressure drop across valve [bar]Orifice

    type 4 6 8 10 12 14 16 18

    01 0,6 0,8 0,9 0,9 0,9 0,9 0,9 0,9 0,9

    02 1,1 1,4 1,7 1,7 1,8 1,8 1,8 1,8 1,7

    03 1,4 1,8 2,0 2,2 2,2 2,3 2,3 2,2 2,2

    04 2,3 2,9 3,2 3,4 3,5 3,6 3,6 3,5 3,4

    05 3,9 5,0 5,6 6,0 6,2 6,2 6,2 6,2 6,0

    06 5,3 6,8 7,7 8,1 8,4 8,5 8,5 8,4 8,1

    07 8,5 10,9 12,2 13,0 13,3 13,5 13,5 13,3 (1) 13 (2)

    TABLE 6: Refrigerant R404A/R507 Capacities in kW

    2

    Pressure drop across valve [bar]Orifice

    type 4 68 10 12 14 16 18

    01 0,6 0,7 0,8 0,8 0,9 0,8 0,8 0,8 0,8

    02 1,1 1,3 1,6 1,6 1,7 1,7 1,6 1,6 1,4

    03 1,3 1,7 1,9 2,0 2,0 2,0 2,0 1,9 1,8

    04 2,2 2,8 2,9 3,1 3,2 3,2 3,1 3,1 2,9

    05 3,8 4,7 5,1 5,5 5,6 5,6 5,6 5,4 5,1

    06 5,0 6,4 7,0 7,4 7,6 7,7 7,6 7,4 6,9

    07 8,1 10,3 11,3 11,9 12,2 12,2 12,1 11,8 (1) 11,2 (2)

    TABLE 7: Refrigerant R407C Capacities in kW

    2

    Pressure drop across valve [bar]Orifice

    type 4 6 8 10 12 14 16 18

    01 0,7 1,0 1,1 1,1 1,2 1,2 1,2 1,2 1,2

    02 1,4 1,8 2,0 2,0 2,3 2,3 2,4 2,4 2,3

    03 1,7 2,3 2,4 2,7 2,8 2,9 2,9 2,9 2,9

    04 2,9 3,6 3,8 4,3 4,5 4,6 4,7 4,7 4,7

    05 4,9 6,2 6,7 7,5 7,8 7,9 8,1 8,1 8,0

    06 6,7 8,5 9,1 10,2 10,5 10,8 11,0 11,0 10,9

    07 10,7 13,6 15,3 15,7 16,9 17,2 17,6 17,6 (1) 17,2 (2)

    (1) Pressure differential not available with coils 9160/RD2

    (2) Pressure differential not available with coils 9160/RD1 and 9160/RD2

  • 8/14/2019 Products Handbook 2009

    31/170

    30

    TABLE 8: Refrigerant R410A Capacities in kW

    2

    Pressure drop across valve [bar]Orifice

    type 4 68 10 12 14 16 18

    01 0,9 1,1 1,3 1,4 1,5 1,5 1,6 1,6 1,6

    02 1,7 2,2 2,4 2,6 2,8 2,9 3,0 3,0 3,0

    03 2,0 2,7 3,0 3,2 3,4 3,6 3,7 3,7 3,8

    04 3,2 4,2 4,8 5,2 5,5 5,7 5,9 6,0 6,1

    05 5,6 7,4 8,4 9,1 9,6 10,0 10,2 10,4 10,9

    06 7,7 10,0 11,4 12,3 13,1 13,5 13,9 14,1 14,3

    07 12,2 15,9 18,2 19,8 20,9 21,6 22,2 22,7 (1) 22,9 (2)

    TABLE 9: Correction factor for subcooling tsub > 4C

    4KRefrigerant 10K 15K 20K 25K 30K 35K 40K 45K 50K

    R22 1 0,94 0,9 0,87 0,83 0,8 0,77 0,74 0,72 0,69

    R134a 1 093 0,88 0,84 0,8 0,76 0,73 0,7 0,68 0,65

    R404A/R507 1 0,91 0,83 0,78 0,73 0,68 0,65 0,61 0,59 0,56

    R407C 1 0,93 0,88 0,83 0,79 0,75 0,72 0,69 0,66 0,64

    R410A 1 0,95 0,9 0,85 0,81 0,77 0,73 0,7 0,67 0,64

    When subcooling ahead of the expansion valve is over than 4 C, adjust the evaporator capacity by dividing by the appropriate

    correction factor found in table 8

    (1) Pressure differential not available with coils 9160/RD2

    (2) Pressure differential not available with coils 9160/RD1 and 9160/RD2

    The dimensions in brakets are referred to 2028/4S07 & 2028/M12S07 models

  • 8/14/2019 Products Handbook 2009

    32/170

    Solenoid valves

  • 8/14/2019 Products Handbook 2009

    33/170

    32

    cover;

    chloroprene rubber (CR) for outlet seal

    gaskets;

    P.T.F.E. for seat gaskets.

    INSTALLATION

    The valves can be installed in all sections of a

    refrigerating system, in compliance with the

    limits and capacities indicated in Tables 3 and 6.

    Tables 1 and 4 show the following functional

    characteristics of a solenoid valve:

    PS;

    TS;

    Kv factor;

    minimum Opening Pressure Differential

    (minOPD), that is the minimum pressure

    differential between inlet and outlet at which

    a solenoid valve, pilot operated, can open

    and stay opened;

    maximum Opening Pressure Differential

    (MOPD according to ARI STANDARD 760:

    2001), that is the maximum pressure

    differential between inlet and outlet at which

    a solenoid valve, pilot operated, can open.

    Before connecting the valve to the pipe it is

    advisable to make sure that the refrigerating

    system is clean. In fact the valves with P.T.F.E.gaskets are particularly sensitive to dirt and

    debris.

    Furthermore check that the flow direction in the

    pipe corresponds to the arrow stamped on the

    body of the valve.

    All valves can be mounted in whatever position

    except with the coil pointing downwards.

    The brazing of valves with solder connections

    should be carried out with care, using a low

    melting point filler material. It is not necessary

    to disassemble the valves before brazing but

    its important to avoid direct contact betweenthe torch flame and the valve body, which could

    be damaged and compromise the proper

    functioning of the valve.

    Before connecting a valve to the electrical

    system, be sure that the line voltage and

    frequency correspond to the values marked on

    the coil.

    The NO valves have been designed to work only

    with direct current coils.

    To use them in applications with 220/230 VAC

    suplly its necessary to mate the NO valve with

    the following components:Coil 9120/RD6 +

    Connector/ Rectifier 9150/R45

    APPLICATIONS

    The solenoid valves, shown in this chapter, are

    classified Pressure accessories in the senseof the Pressure Equipment Directive 97/23/EC,

    Article 1, Section 2.1.4 and are subject of

    Article 3, Section 1.3 of the same Directive.

    They are designed for installation on

    commercial refrigerating systems and on civil

    and industrial conditioning plants, which use

    refrigerant fluids proper to the Group II (as

    defined in Article 9, Section 2.2 of Directive

    97/23/EC and referred to in Directive

    67/548/EEC).

    OPERATION

    The valves series 1020; 1028; 1050; 1058;

    1059; 1064; 1068; 1070; 1078; 1079; 1090;

    1098; 1099 are normally closed.

    NC = when the coil is de-energised the plunger

    stops the refrigerant flow.

    The valves series 1150; 1158; 1164; 1168;

    1170; 1178;1190; 1198 are normally open.

    NO = when the coil is energised the plunger

    stops the refrigerant flow.

    The valves series 1020 and 1028 are direct

    acting, while the valves of all the other series

    are pilot operated, with diaphragm or piston.

    The NC valves are supplied either without coil

    (S type) or with coil (example: A6 type with coil

    HM2220 Vac).

    The NO valves are supplied only without coil (S

    type).

    N.B.: the NO valve visually differs from the

    corresponding NC model by means of the red

    ring installed below the yellow nut that fastens

    the coil.

    CONSTRUCTION

    The main parts of the valves are made with the

    following materials:

    hot forged brass EN 12420 CW 617N for

    body and cover;

    copper tube EN 12735-1 Cu-DHP for solder

    connections;

    austenitic stainless steel EN 10088-2

    1.4303 for enclosure where the plunger

    moves;

    ferritic stainless steel EN 10088-3 1.4105

    for plunger:

    austenitic stainless steel EN ISO 3506 A2-70 for tightening screws between body and

    SOLENOID VALVES FOR REFRIGERATING SYSTEMS

  • 8/14/2019 Products Handbook 2009

    34/170

    33

    TABLE 1a: General Characteristics of NC valves (normally closed) with SAE Flare connections

    Cataloguenumber SAE

    Flare

    1/4"

    3/8"

    3/8"

    1/2"

    1/2"

    5/8"

    5/8"

    3/4"

    5/8"

    3/4"

    2,5

    3

    7

    12,5

    16,5

    0,175

    0,23

    0,80

    2,20

    2,61

    3,80

    4,80

    3,80

    4,80

    0

    0,05

    0,07

    0,05

    25

    (3)

    21

    19

    18

    13

    35

    +105

    (1)

    +110

    (2)

    +105

    (1)

    45 Art. 3.3

    ConnectionsSeat sizeNominal

    [mm]

    KvFactor[m3/h]

    OperatingPrinciples

    minOPD

    MOPDCoil type

    Opening Pressure Differential [bar]

    HM4(AC)

    21

    HM2CM2(AC)

    HM3(DC)

    min.

    TS [C]

    max.

    PS[bar]

    RiskCategory

    according toPED

    DirectActing

    DiaphragmPilot

    Operated

    1020/2

    1020/3

    1064/3

    1064/4

    1070/4

    1070/5

    1050/5

    1050/6

    1090/5

    1090/6

    PistonPilot

    Operated

    DiaphragmPilot

    Operated

    (1) Temperature peaks of 120 C are allowed during defrosting.

    (2) Temperature peaks of 130 C are allowed during defrosting.

    (3) For information about higher MOPD, please contact Castel Technical Departement.

    TABLE 1b: General Characteristics of NC valves (normally closed) with ODS connections

    Cataloguenumber

    1/4"

    1/4"

    3/8"

    3/8"

    1/2"

    1/2"

    5/8"

    7/8"

    5/8"

    3/4"

    7/8"

    1.1/8"

    5/8"

    3/4"

    7/8"

    1.1/8"

    1.1/8"

    1.3/8"

    1.1/8"

    1.3/8"

    1.3/8"

    1.5/8"

    10

    10

    12

    12

    16

    22

    16

    22

    16

    22

    35

    35

    35

    42

    2,2

    3

    7

    12,5

    16,5

    25,5

    25

    27

    0,15

    0,23

    0,80

    2,20

    2,61

    3,80

    4,80

    5,70

    3,80

    4,80

    5,70

    10

    10

    16

    0

    0,05

    0,07

    0,05

    0,07

    25

    (3)

    21

    25

    (3)

    19

    18

    13

    19

    35

    +105

    (1)

    +110

    (2)

    +105

    (1)

    +110

    (2)

    45 Art. 3.3

    [in.]

    [mm]

    ODS

    ConnectionsSeat sizeNominal

    [mm]

    KvFactor[m3/h]

    OperatingPrinciples min

    OPD

    MOPDCoil type

    Opening Pressure Differential [bar]

    HM4(AC)

    21

    HM2CM2(AC)

    HM3(DC)

    min.

    TS [C]

    max.

    PS[bar]

    RiskCategory

    according toPED

    Direc

    tAc

    ting

    Diap

    hragm

    Pilo

    tOp

    era

    ted

    1028/2

    1028/2E

    1028/3

    1028/M10

    1068/3

    1068/M10

    1068/M12

    1068/4

    1078/M12

    1078/4

    1078/5

    1079/7

    1058/5

    1058/6

    1058/7

    1059/9

    1098/5

    1098/6

    1098/7

    1099/9

    1078/9

    1079/11

    1098/9

    1099/11

    1078/11

    1079/13

    1079/M42

    (1) Temperature peaks of 120 C are allowed during defrosting.

    (2) Temperature peaks of 130 C are allowed during defrosting.

    (3) For information about higher MOPD, please contact Castel Technical Departement.

    Piston

    Pilo

    t

    Opera

    ted

    Diap

    hragm

    Pilo

    t

    Opera

    ted

    Piston

    Pilo

    t

    Opera

    ted

  • 8/14/2019 Products Handbook 2009

    35/170

    34

    SOLENOID VALVES FORREFRIGERATING SYSTEMS

    TABLE 2: Dimensions and Weights of NC valves with 9100 coil (1)

    Cataloguenumber

    Weight[g]

    H1 H2 H3 L1 L2 Q

    75

    82

    91

    121

    106

    115

    157

    175

    62,5

    69,5

    75

    93

    78

    96

    127

    141

    34

    40

    47

    65

    50

    72

    99

    113

    58

    65

    125

    125

    125

    125

    68

    72

    111

    111

    127

    127

    100

    106

    127

    127

    175

    190

    120

    124

    175

    175

    180

    216

    120

    124

    175

    175

    180

    216

    250

    292

    235

    277

    278

    50

    45

    57

    80

    68

    80

    340

    355

    350

    350

    365

    365

    400

    415

    400

    395

    420

    420

    710

    755

    690

    680

    775

    765

    1157

    1487

    1117

    1307

    1292

    1347

    1035

    1365

    995

    1185

    1170

    1225

    2565

    2620

    2050

    2130

    2710

    27502750

    Dimensions [mm]

    1020/2

    1020/3

    1028/2

    1028/2E

    1028/3

    1028/M10

    1064/3

    1064/4

    1068/3

    1068/M10

    1068/M12

    1068/4

    1070/4

    1070/5

    1078/M12

    1078/4

    1078/5

    1079/7

    1050/5

    1050/6

    1058/5

    1058/6

    1058/7

    1059/9

    1090/5

    1090/6

    1098/5

    1098/6

    1098/7

    1099/9

    1078/9

    1079/11

    1098/9

    1099/11

    1078/11

    1079/131079/M42

    (1) With coil type 9120 the dimension L2 is equal to 64 mm and the valves weights must be increased of 305 g.

  • 8/14/2019 Products Handbook 2009

    36/170

    35

    Connectors are not included in the boxes and have to be ordered separately.

  • 8/14/2019 Products Handbook 2009

    37/170

    36

    SOLENOID VALVES FOR REFRIGERATING SYSTEMS

    TABLE 3: Refrigerant Flow Capacity of NC valves

    Cataloguenumber

    R134a R22 R407C R404A R134a R22 R407C R404A R134a R22 R407C R404A

    Liquid Vapour Hot Gas

    Refrigerant Flow Capacity [kW]

    1020/2

    1020/3

    1028/2

    1028/2E

    1028/3

    1028/M10

    1064/3

    1064/4

    1068/3

    1068/M10

    1068/M12

    1068/4

    1070/4

    1070/5

    1078/M12

    1078/4

    1078/5

    1079/7

    1050/5

    1050/6

    1058/5

    1058/6

    1058/7

    1059/9

    1090/5

    1090/6

    1098/5

    1098/6

    1098/7

    1099/9

    1078/9

    1079/11

    1098/9

    1099/11

    1078/11

    1079/13

    1079/M42

    2,95

    3,88

    2,53

    3,88

    13,5

    37,1

    44,0

    37,1

    44,0

    64,0

    80,9

    64,0

    80,9

    96,0

    64,0

    80,9

    64,0

    80,9

    96,0

    168,5

    168,5

    269,6

    3,15

    4,14

    2,70

    4,14

    14,4

    39,6

    47,0

    39,6

    47,0

    68,4

    86,4

    68,4

    86,4

    102,6

    68,4

    86,4

    68,4

    86,4

    102,6

    180,0

    180,0

    288,0

    3,28

    4,31

    2,81

    4,31

    15,0

    41,2

    48,9

    41,2

    48,9

    71,2

    90,0

    71,2

    90,0

    106,8

    71,2

    90,0

    71,2

    90,0

    106,8

    187,4

    187,4

    299,8

    2,08

    2,74

    1,79

    2,74

    9,5

    26,2

    31,1

    26,2

    31,1

    45,2

    57,1

    45,2

    57,1

    67,8

    45,2

    57,1

    45,2

    57,1

    67,8

    119,0

    119,0

    190,4

    R410A

    3,33

    4,38

    2,86

    4,38

    15,2

    41,9

    49,7

    41,9

    49,7

    72,4

    91,4

    72,4

    91,4

    108,5

    72,4

    91,4

    72,4

    91,4

    108,5

    190,4

    190,4

    304,6

    1,73

    4,75

    5,64

    4,75

    5,64

    8,2

    10,4

    8,2

    10,4

    12,3

    8,2

    10,4

    8,2

    10,4

    12,3

    21,6

    21,6

    34,6

    2,16

    5,94

    7,05

    5,94

    7,05

    10,3

    13,0

    10,3

    13,0

    15,4

    10,3

    13,0

    10,3

    13,0

    15,4

    27,0

    27,0

    43,2

    2,14

    5,90

    6,99

    5,90

    6,99

    10,2

    12,9

    10,2

    12,9

    15,3

    10,2

    12,9

    10,2

    12,9

    15,3

    26,8

    26,8

    42,9

    1,81

    4,97

    5,90

    4,97

    5,90

    8,6

    10,8

    8,6

    10,8

    12,9

    8,6

    10,8

    8,6

    10,8

    12,9

    22,6

    22,6

    36,2

    R410A

    2,88

    7,92

    9,40

    7,92

    9,40

    13,7

    17,3

    13,7

    17,3

    20,5

    13,7

    17,3

    13,7

    17,3

    20,5

    36,0

    36,0

    57,6

    1,49

    1,96

    1,28

    1,96

    6,8

    18,7

    22,2

    18,7

    22,2

    32,3

    40,8

    32,3

    40,8

    48,5

    32,3

    40,8

    32,3

    40,8

    48,5

    85,0

    85,0

    136,0

    2,05

    2,69

    1,76

    2,69

    9,4

    25,7

    30,5

    25,7

    30,5

    44,5

    56,2

    44,5

    56,2

    66,7

    44,5

    56,2

    44,5

    56,2

    66,7

    117,0

    117,0

    187,2

    2,03

    2,67

    1,74

    2,67

    9,3

    25,6

    30,3

    25,6

    30,3

    44,2

    55,8

    44,2

    55,8

    66,2

    44,2

    55,8

    44,2

    55,8

    66,2

    116,2

    116,2

    185,9

    1,75

    2,30

    1,50

    2,30

    8,0

    22,0

    26,1

    22,0

    26,1

    38,0

    48,0

    38,0

    48,0

    57,0

    38,0

    48,0

    38,0

    48,0

    57,0

    100,0

    100,0

    160,0

    R410A

    2,28

    2,99

    1,95

    2,99

    10,4

    28,6

    33,9

    28,6

    33,9

    49,4

    62,4

    49,4

    62,4

    74,1

    49,4

    62,4

    49,4

    62,4

    74,1

    130,0

    130,0

    208,0

    Refrigerant flow capacity referred to the following operating conditions: Particularly for hot gas:

    Evaporating temperatre: +4 C Suction temperature: +18 C

    Condensing temperature: +38 C Pressure drop: 1 bar

    Pressure drop: 0,15 bar

  • 8/14/2019 Products Handbook 2009

    38/170

    37

    TABLE 4a: General Characteristics of NO valves (normally open) with SAE Flare connections

    Cataloguenumber

    0,05

    0,07

    0,05

    SAEFlare

    3/8"

    1/2"

    5/8"

    5/8"

    3/4"

    5/8"

    3/4

    7

    12,5

    16,5

    0,80

    2,20

    2,61

    3,80

    4,80

    3,80

    4,80

    21

    19

    35

    +105

    (1)

    +110

    (2)

    +105

    (1)

    32 Art. 3.3

    ConnectionsSeat sizenominal

    [mm]

    KvFactor[m3/h]

    OperatingPrinciples

    MOPD

    Opening PressureDifferential [bar]

    minOPD

    min.

    TS [C]

    max.

    PS[bar]

    RiskCategory

    according toPED

    Coiltype

    HM3(D

    .C.)

    1164/3

    1170/4

    1170/5

    1150/5

    1150/6

    1190/5

    1190/6 R

    R

    R

    R

    R

    R

    RDiaphragm

    pilot

    operated

    Diaphragm

    Pilot

    Operated

    Piston

    Pilot

    Operated

    Piston

    Pilot

    Operated

    Diaphragm

    Pilot

    Operated

    Diaphragm pilot

    operated

    Piston Pilot

    Operated

    (1) Temperature peaks of 120 C are allowed during defrosting.

    (2) Temperature peaks of 130 C are allowed during defrosting.

    Available on request.R

    TABLE 4b: General Characteristics of NO valves (normally open) with ODS connections

    Cataloguenumber

    3/8"

    1/2"

    5/8"

    5/8"

    3/4"

    7/8"

    5/8"

    3/4"

    7/8"

    1.1/8"

    1.1/8"

    1.3/8"

    10

    12

    16

    16

    22

    16

    22

    35

    7

    12,5

    16,5

    25,5

    25

    27

    0,80

    2,20

    2,61

    3,80

    4,80

    5,70

    3,80

    4,80

    5,70

    10

    10

    16

    0,05

    0,07

    0,05

    0,07

    21

    19

    35

    +105

    (1)

    +110

    (2)

    +105

    (1)

    +110

    (2)

    32 Art. 3.3

    [in.]

    [mm]

    ODS

    ConnectionsSeat sizenominal

    [mm]

    KvFactor[m3/h]

    OperatingPrinciples

    MOPD

    Opening PressureDifferential [bar]

    minOPD

    min.

    TS [C]

    max.

    PS[bar]

    RiskCategory

    according toPED

    Coiltype

    HM3(D

    .C.)

    1168/3

    1168/M10

    1178/M12

    1178/4

    1178/5

    1158/5

    1158/6

    1158/7

    1198/5

    1198/6

    1198/7

    1178/9

    1198/9

    1178/11 R

    R

    R

    R

    R

    R

    R

    R

    R

    R

    R

    R

    R

    R

    (1) Temperature peaks of 120 C are allowed during defrosting.

    (2) Temperature peaks of 130 C are allowed during defrosting.

    Available on request.R

  • 8/14/2019 Products Handbook 2009

    39/170

    38

    Connectors and coils are not included in the boxes and have to be ordered separately.

    SOLENOID VALVES FOR REFRIGERATING SYSTEMS

    1164/3

    1168/3

    1168/M10

    1170/4

    1170/5

    1178/M12

    1178/4

    1178/5

    1150/5

    1150/6

    1190/5

    1190/6

    1158/5

    1158/6

    1158/7

    1198/5

    1198/6

    1198/7

    1178/9

    1198/9

    1178/11

  • 8/14/2019 Products Handbook 2009

    40/170

    39

    TABLE 5: Dimensions and Weights of NO valves with 9120 coil

    Cataloguenumber

    Weight[g]

    H1 H2 H3 L1 L2 Q

    87

    96

    126

    111

    120

    162

    177

    74,5

    80

    98

    83

    101

    132

    143

    40

    47

    70

    50

    72

    99

    110

    68

    111

    111

    100

    106

    127

    127

    175

    120

    124

    175

    175

    180

    120

    124

    175

    175

    180

    250

    235

    278

    64

    45

    57

    80

    68

    68

    705

    705

    700

    1015

    1060

    995

    985

    1080

    1462

    1792

    1422

    1612

    1597

    1340

    1670

    1300

    1