processos oxidativos avançados poas - motivação

41
Processos Oxidativos Avançados POAs - Motivação • O que fazer quando um contaminante encontra-se em pequenas concentrações (poucos ppms ou mesmo ppbs)? • O que fazer quando o contaminante é refratário e não pode ser tratado biologicamente? • O que fazer quando contaminantes não podem ser removidos por carvão ativado ou coagulação/floculação?

Upload: bozica

Post on 12-Jan-2016

31 views

Category:

Documents


0 download

DESCRIPTION

Processos Oxidativos Avançados POAs - Motivação. O que fazer quando um contaminante encontra-se em pequenas concentrações (poucos ppms ou mesmo ppbs)? O que fazer quando o contaminante é refratário e não pode ser tratado biologicamente? - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Processos Oxidativos Avançados POAs -  Motivação

Processos Oxidativos Avançados

POAs - Motivação• O que fazer quando um contaminante

encontra-se em pequenas concentrações (poucos ppms ou mesmo ppbs)?

• O que fazer quando o contaminante é refratário e não pode ser tratado biologicamente?

• O que fazer quando contaminantes não podem ser removidos por carvão ativado ou coagulação/floculação?

Page 2: Processos Oxidativos Avançados POAs -  Motivação

Processos Oxidativos Avançados

POAs - MotivaçãoMaior

atuação dos órgãos de controle

ambiental.

Maior preocupação das indústrias quanto à

qualidade do seu efluente final.

Síntese de moléculas cada vez mais complexas, para atender as

necessidades da sociedade como um todo.

Uso de POA’s como substituição ou complemento aos tradicionais processos de

tratamento.

Maior preocupação da sociedade com a

poluição e com acidentes

ambientais.

Page 3: Processos Oxidativos Avançados POAs -  Motivação

Processos Oxidativos Avançados

POAs - Motivação Para responder problemas como esses problemas surgiram os processos avançados de tratamento

de efluentes:• processos por membranas (osmose reversa, ultrafiltração e microfiltração);• flotação por ar dissolvido e eletroflotação; • troca iônica e adsorção química; • desinfecção com ultravioleta e outros agentes desinfetantes;• processos oxidativos avançados;• remoção de nutrientes e micropoluentes por processos físico-químicos e biológicos; • tratamento de lodos; • remoção de compostos recalcitrantes, entre outros.

Page 4: Processos Oxidativos Avançados POAs -  Motivação

Processos Oxidativos Avançados

POAs - Motivação• Processos Oxidativos Avançados são aqueles nos quais

o radical OH atua como principal agente oxidante (E0 =

2,80 V);

• Em 1972, Fujishima e Honda descrevem a oxidação da

água em suspensão de TiO2 gerando H2 e O2;

• A partir do início da década de 80 começaram os

trabalhos em fase aquosa, gasosa, bem como solos;

• Em 1998 a USEPA (Agência de Proteção Ambiental dos

Estados Unidos) reconhece a importância deste

processo ao publicar o Handbook of Advanced Oxidation

Processes.

Page 5: Processos Oxidativos Avançados POAs -  Motivação

Processos Oxidativos Avançados

POAs - DefiniçõesOs POAs promovem a remoção de elétrons de moléculas orgânicas (oxidação química) em uma velocidade milhões de vezes mais rápida do que ocorreria naturalmente. A oxidação química é uma tecnologia limpa, capaz de reduzir

complexas moléculas orgânicas até CO2, H2O e ácidos inorgânicos, utilizando-se de radicais hidroxila OH0.

127,64 %

Page 6: Processos Oxidativos Avançados POAs -  Motivação

Reações entre 0OH e contaminantes

Page 7: Processos Oxidativos Avançados POAs -  Motivação

Processos Oxidativos Avançados

POAs - VantagensMais de 250 tipos de sistemas usando as tecnologias

oxidativas avançadas já foram descritos e é crescente a sua aplicação em efluentes industriais.

A destruição do contaminante é realizada dentro do reator; Os equipamentos são compactos e silenciosos; Pode degradar níveis de contaminantes não detectáveis; Podem ser combinados com carvão ativado, processos biológicos e outros, diminuindo o custo total do tratamento; Não há transferência de fase do poluente, eliminando a responsabilidade de uma segundo tratamento, como por exemplo, carvão ativado; Podem ser realizados à pressão e temperatura ambiente; São eficientes para uma grande faixa de contaminantes e concentrações; Requerem pouca manutenção e exigências operacionais e Podem levar a mineralização completa dos poluentes, se necessário, ou formas biodegradáveis, compostos não tóxicos.

Page 8: Processos Oxidativos Avançados POAs -  Motivação

Oxidação direta

• Fotólise: degradação direta de contaminantes por radiação luminosa apropriada;

• Ozonização;

• H2O2: a oxidação direta com H2O2 é rápida e bastante eficiente. O peróxido também pode servir de fonte de 0OH. Deve-se tomar cuidado porque altas [H2O2] podem reduzir a eficiência, através da seguinte reação:

ºº 2222 HOOHOHOH

Page 9: Processos Oxidativos Avançados POAs -  Motivação

Oxidação através de H2O2/UV

Conjuga a fotólise de moléculas orgânicas, com a oxidação direta do H2O2 e ainda com a grande formação de radicais 0OH devido a quebra do

peróxido através da irradiação por radiação UV:

H2O2 +hv 20OH

Ou através da reação com o redical O2-:

2222 º OOHOHOOH

Page 10: Processos Oxidativos Avançados POAs -  Motivação

Ozônio

O conhecimento do poder oxidativo do ozônio data de praticamente um século. A utilização do ozônio para a

desinfecção de água potável é conhecida desde o início

deste século, mais precisamente em 1906 em Nice na França. Atualmente o ozônio vem sendo utilizado também para outros

fins, como:

• Oxidante no controle da flora e odor• Remoção da cor• Remoção de Ferro e Manganês• No auxílio da floculação

Page 11: Processos Oxidativos Avançados POAs -  Motivação

Ozônio

O ozônio é comumente produzido por descarga elétrica (plasma frio) no ar ou oxigênio puro e esta reação pode ser catalisada por radiação, ultrasom,

H2O2 e catalisadores homogêneos (metais).

Page 12: Processos Oxidativos Avançados POAs -  Motivação

Ozônio

Ozônio, a forma triatômica do oxigênio, é um gás incolor de odor pungente. Em fase aquosa, o ozônio se decompõe rapidamente a oxigênio e espécies radicalares. O ozônio é um agente oxidante poderoso (E0 = 2,08 V) quando comparado a outros agentes oxidantes conhecidos como por exemplo H2O2 (E0 = 1,78 V) permitindo com que esta espécie reaja com uma numerosa classe de compostos

Page 13: Processos Oxidativos Avançados POAs -  Motivação

Ozônio

A oxidação de substâncias orgânicas, quando se utiliza o ozônio é, portanto, uma combinação da oxidação pelo ozônio molecular com a oxidação

pelos radicais 0OH formados na decomposição do ozônio. A eficiência do processo será dependente

do pH e das substâncias orgânicas presentes.

Ozonização

Oxidação Direta

Oxidação Indireta

Page 14: Processos Oxidativos Avançados POAs -  Motivação

Ozônio: Oxidação direta

Através deste processo a molécula de ozônio pode reagir diretamente com outras moléculas orgânicas ou

inorgânicas via adição eletrofílica. O ataque eletrofílico do ozônio pode acontecer a átomos com uma densidade de carga negativa (N, P, O ou carbonos nucleofílicos) ou a

ligações duplas ou triplas do tipo carbono-carbono, carbono-nitrogênio e nitrogênio-nitrogênio

Page 15: Processos Oxidativos Avançados POAs -  Motivação

Ozônio: Oxidação indireta

Indiretamente, o ozônio pode reagir através de reação radicalar (principalmente .OH)

que é gerado pela decomposição do ozônio

O3/UV

Page 16: Processos Oxidativos Avançados POAs -  Motivação

Ozônio: Efluente têxtil

Para o tratamento de efluente têxtil o ozônio se mostra muito atrativo. Geralmente, os cromóforos

encontrados neste efluente são compostos orgânicos com grande conjugação de ligações

duplas como mencionado acima. Estas ligações podem ser rompidas por ozônio (direta ou

indiretamente) formando moléculas menores descolorindo assim o efluente.

Page 17: Processos Oxidativos Avançados POAs -  Motivação

Ozônio: tratamento de chorumePode-se observar que o pré-tratamento do chorume reduz a cor do chorume e otimiza a ozonização, uma

vez que menores concentrações de ozônio são necessárias para torná-lo mais biodegradável.

Page 18: Processos Oxidativos Avançados POAs -  Motivação

Ozônio: desativação de microorganismos

Page 19: Processos Oxidativos Avançados POAs -  Motivação

Ozônio: reatores

Para um bom rendimento do processo de ozonização é importante que tenhamos uma

maior área de transferência entre as bolhas de O3 e o efluente.

Para tal temos diversos desenhos de reatores: colunas de borbulhamento em contra-corrente,

leito recheado, coluna compratos, misturadores estáticos, reatores com jatos de

O3 e vasos agitados.

Page 20: Processos Oxidativos Avançados POAs -  Motivação

Ozônio: parâmetros ótimos de operação

• pH: mais eficiente para valores elevados;

• Pressão parcial de O3: quanto maior a pressão de O3, maior a taxa de reação, mas maior o custo!;

• Presença de espécies capazes de capturar radicais (íons, substâncias húmicas, HCO3

-): são prejudiciais quando no processo indireto;

• Temperatura de operação: com aumento da temperatura a taxa da reação é maior e a solubilidade de O3 é reduzida;

• Presença de catalisadores: catalisadores como TiO2 fixos em alumina, Fe (II), Mn (II) podem ser usados para aumentar a formação de radicais;

Page 21: Processos Oxidativos Avançados POAs -  Motivação

Ozônio: Vantagens e desvantagens

Page 22: Processos Oxidativos Avançados POAs -  Motivação

Ozônio associado a outros processos oxidativos (O3+ UV)

O3 + UV em meioaquoso

Fotólise do O3 no ar (185 nm)

Uma das limitações que o processo apresenta é de que o meio não deve ser opaco, conter sólidos em suspensão, uma vez que a transmissão da luz UV no meio é fundamental para a formação de radicais •OH e muitos são os

efluentes que não atendem a esta especificação.

Page 23: Processos Oxidativos Avançados POAs -  Motivação

Processo Fenton ou reagentes de Fenton

Este processo vem se desenvolvendo muito nos últimos anos apresentando excelentes perspectivas.

É um processo muito simples, esta é a sua vantagem, que é realizado com uma mistura de H2O2

e íons ferro. Esta combinação resulta comprovadamente em um forte oxidante em pH

ácidos (3-5). As equações abaixo mostram como o radical •OH é gerado.

Page 24: Processos Oxidativos Avançados POAs -  Motivação

Processo Fenton ou reagentes de Fenton

O radical •OH pode reagir com o Fe(II) produzindo Fe(III), ou reagir com poluentes orgânicos

presentes na solução.

Page 25: Processos Oxidativos Avançados POAs -  Motivação

Processo Fenton ou reagentes de Fenton

Os radicais •OH formados oxidam as substâncias orgânicas. No caso do reativo de Fenton, muitas vezes, esta oxidação não leva à mineralização total dos poluentes. O material é inicialmente

transformado em alguns produtos intermediários que são resistentes às reações de oxidação posterior. Isto se deve a complexação destes

intermediários com os íons Fe(III) e às diversas combinações que podem ocorrer com radicais

•OH (reações competitivas).

Page 26: Processos Oxidativos Avançados POAs -  Motivação

Processo Fenton : parâmetros ótimos de operação

• pH: considera-se como pH ótimo 3;• Concentração de íons ferroso: com mais íons

temos mais rápida reação, até um determinado ponto. Ensaios de laboratório são necessários, pois um uso de ferro em excesso aumenta [SS];

• Concentração de H2O2: o aumento é benéfico, mas peróxido aumenta a medida de DQO e a existência de H2O2 residual inibe microorganismos;

• Concentração do poluente: valores baixos favorevem a degradação, mas grandes quantidades de efluentes custam caro para serem tratadas;

Page 27: Processos Oxidativos Avançados POAs -  Motivação

Processo Fenton : parâmetros ótimos de operação

• Reagentes para ajuste do pH: foi observado que o uso de ácido acético apresenta melhor rendimento, enquanto que os piores são sulfúrico e fosfórico (formação de Fe3+ estável);

• Temperatura: em geral não afeta muito (entre 10 e 40ºC), acima de 40ºC o H2O2 é instável. Como são reações exotérmicas, prever resfriamento.

• Coagulação química: altamente recomendada para remoção do excesso de Fe2+ e de possíveis sólidos formados.

Page 28: Processos Oxidativos Avançados POAs -  Motivação

Processo Fenton ou reagentes de Fenton

Esquema típico de um processo de tratamento de efluente através do processo fenton.

Page 29: Processos Oxidativos Avançados POAs -  Motivação

Processo foto-fenton (Fe(II)/Fe(III)/H2O2)

Como vimos anteriormente a oxidação completa normalmente não é atingida! Principalmente devido a

complexação de orgânicos com o ferro.

No foto-fenton busca-se que esses complexos sejam quebrados fotoquimicamente:

Page 30: Processos Oxidativos Avançados POAs -  Motivação

Processo foto-fenton (Fe(II)/Fe(III)/H2O2)

Também busca-se a regeneração do ferro, passando de Fe (III), encontrado na forma de hidróxidos, para Fe (II):

Page 31: Processos Oxidativos Avançados POAs -  Motivação

Processo foto-fenton: parâmetros ótimos de operação

• Comprimento de onda apropriado:– Fe(OH)2+ absorvem radiação na faixa entre

290 e 400 nm;

– No caso de oxalatos [Fe(C2O4)3-3] a absorção

se estende até 570 nm;

A escolha do ácido também é importante, geralmente considera-se que a atividade da

reação é afetada da seguinte forma:ClO4

- > SO4-- > Cl-

Page 32: Processos Oxidativos Avançados POAs -  Motivação

Processo foto-fenton (Fe(II)/Fe(III)/H2O2)

Lâmpada a vapor de mercúrio

Oxigênio

Água

Água

Agitação mágnética

Bulbo protetor(quartzo ou vidro)

Page 33: Processos Oxidativos Avançados POAs -  Motivação

Processo foto-fenton (Fe(II)/Fe(III)/H2O2)

Exemplo: remoção de BTX por foto-fenton:

0 5 10 15 20 25 300,0

0,2

0,4

0,6

0,8

1,0

C/C

0

Tempo (min)

Peróxido residual BTX Fenóis totais

0

5

10

15

20

25

Ab

s/Ab

s0

Variação da concentração (Abs/Abs0) de fenóis totais e peróxido de hidrogênio durante a cinética de degradação dos BTX pelo processo de foto-Fenton. BTX=20mgL-1; vol.=250mL; Fe2+:10mgL-1; H2O2:100mgL-

1; pH:3

Page 34: Processos Oxidativos Avançados POAs -  Motivação

Fundamentos da fotocatálise

Fotocatálise: catálise que utiliza fótons

Fotocatálise Indireta: Mecanismo principal de degradação.

El + SC e-(BC) + h+ (BV)

e- + h+ calor

e- + O2 O2-

h+ + H2Oads OH0 + h+

OH0 + Rhads R0 + H2O

Page 35: Processos Oxidativos Avançados POAs -  Motivação

Vantagens da Fotocatálise

Trata-se de uma tecnologia limpa;

È capaz de degradar compostos altamente refratários;

Possui uma alta atividade, sendo um processo nada seletivo;

Por não ser seletivo é um processo versátil;

Pode ser usada em várias etapas do tratamento de efluentes;

Permite a montagem de pequenas unidades de tratamento;

Através de modificações no catalisador, concentradores solares e de outros artifícios, permite o uso de luz solar.

Page 36: Processos Oxidativos Avançados POAs -  Motivação

Exigências quanto ao efluente

Para o melhor aproveitamento da radiação algumas características do efluente devem

ser avaliadas:

Aeração do efluente;

Concentração do substrato, bem como de matéria orgânica.

pH do meio reacional;

Presença de espécies iônicas;

Page 37: Processos Oxidativos Avançados POAs -  Motivação

Exigências quanto ao reator

A fotocatálise é uma reação heterogênea, isso exige que o reator atenda os requisitos desse tipo de reação, além de permitir uma

eficiente irradiação do catalisador.

Page 38: Processos Oxidativos Avançados POAs -  Motivação

Reator utilizado no LCR

Principais características:

Reator do tipo “slurry”;

Aberto a atmosfera;

Isolamento em papel alumínio;

Controle da temperatura e injeção de ar;

Coleta de amostras manual;

Lâmpada de luz negra de 28 W (380 nm);

Mistura reacionalcom o catalisadorem suspensão

Page 39: Processos Oxidativos Avançados POAs -  Motivação

Processo estudado no LCR

Degradação fotocatalítica de corante industrial:

Corante estudado: Rodamina B (RB, C28H31N2O3Cl);

Catalisador: TiO2 P-25 da empresa Degussa;

Modelo Cinético: Langmuir-Hinshelwood, desconsiderando-se o efeito da adsorção do O2, proposto por Turchi e Ollis (1990). Esse modelo tem como limites os modelos de pseudoprimeira e de pseudozero ordem;

Onde, C = concentração do substrato (g/m3);Kads = const. de adsorção (1/m3*g);kr = constante de reação de L-H (g/m3*s);Vreac = volume do reator (m3);Vtot = volume total de líquido (m3)

Page 40: Processos Oxidativos Avançados POAs -  Motivação

Cinética da degradação de RB

Para (1>> Kads*C) temos uma cinética de pseudoprimeira ordem.

Para (1<< Kads*C) temos uma cinética de pseudozero ordem.

Onde,

k1 ou kapp= constante de taxapara pseudoprimeira ordem(1/s)

k0 = constante de taxapara pseudozero ordem(g/m3*s)

1

Page 41: Processos Oxidativos Avançados POAs -  Motivação

Cinética da degradação de RBObservou-se que a reação segue uma cinética de pseudoprimeira

ordem, sendo portanto, limitada pela transferência de massa da RB até asuperfície do catalisador.

-dC / dt = kapp*C ln (C0/C) = k*t

Pela lei de Beer:C0/C = A0/A

Onde, A0 = absorbância medida em t0;A = absorbância medida em t.