process oriented analysis

9
PROCESS ORIENTED ANALYSIS Design and Optimization of Industrial Production Systems URS B. MEYER SIMONE E. CREUX ANDREA K. WEBER MARIN @ Taylor &. Francis Taylor & Francis Group Boca Raton London New York CRC is an imprint of the Taylor & Francis Group, an informa business

Upload: others

Post on 24-Mar-2022

13 views

Category:

Documents


0 download

TRANSCRIPT

PROCESS ORIENTED ANALYSIS

Design and Optimization of Industrial

Production Systems

URS B. MEYER SIMONE E. CREUX

ANDREA K. WEBER MARIN

@ Taylor &. Francis Taylor & Francis Group

Boca Raton London New York

CRC is an imprint of the Taylor & Francis Group, an informa business

TABLE OF CONTENTS

I INTRODUCTION TO THE PROCESS ORIENTED ANALYSIS 1

II PROCESS ORIENTED ANALYSIS 3

1.1 Introduction 4 1.2 Concept of POA 6 1.3 Static Analysis 8

1.3.1 System Specification 8 1.3.2 Economical Analysis 9 1.3.3 Ecological Analysis 10

1.4 Dynamic Analysis 11 1.4.1 System Behavior 11 1.4.2 Process Simulation 12 1.4.3 Machine and Process Control 13

1.5 Setup of a Production Analysis 14 1.5.1 The Real World in a Model 14 1.5.2 Model Definitions 15 1.5.3 Capture a System 16 1.5.4 Procedure of Setting Up a Model 16

1.6 Projects Using POA Models 18 1.7 Organization of the Book 20

12 DELIMITATION OF PROCESS ORIENTED ANALYSIS 23

2.1 Introduction 24 2.2 Upper and Lower CASE 25 2.3 Structured Analysis 26

2.3.1 Method Description 26 2.3.2 Delimitation POA to SA 27

2.4 Unified Modeling Language UML 29 2.4.1 Method Description 29 2.4.2 Delimitation POA to UML 30

2.5 Computer Support 32 2.5.1 CASE Tools 32 2.5.2 Programming 34

vii

VIII Table of Contents

S STATIC ANALYSIS TOOLS 35

51 FLOW DIAGRAM 37

1.1 Introduction 38 1.2 Flow Diagram: Why? 39

1.2.1 Purpose 39 1.2.2 Application 40 1.2.3 Delimitation 41

1.3 Flow Diagram Elements 44 1.3.1 Diagram 44 1.3.2 Process 45 1.3.3 Flow 47 1.3.4 Classification of Flows 52 1.3.5 Rules for Processes and Flows 53

1.4 System Boundary 55 1.4.1 External Entity 55 1.4.2 Context Diagram 56 1.4.3 Rules for External Entity and Context Diagram 57

1.5 System Structuring in the Hierarchy 59 1.5.1 System Structuring 59 1.5.2 Numbering of Processes and Diagrams 59 1.5.3 Balancing Parent Process and Child Diagram 60 1.5.4 Principle of Structuring 61 1.5.5 Hierarchy of Flows by Split and Merge 63 1.5.6 Rules for Flow Connections and Hierarchical Structure 66

1.6 Element Specification and Data Dictionary 68 1.6.1 Element Specification 68 1.6.2 Data Dictionary 70

1.7 Setup of a Model and Recommendations 73 1.7.1 Components of a Model 73 1.7.2 Modeling by Hand or CASE Tool 74 1.7.3 Recommendations and Guidelines for Expedient Procedure 75 1.7.4 Recommendations and Guidelines for Easy Legible Diagrams 76 1.7.5 Recommendations for System Optimizations 78

1.8 Application Example: Gas Station 81 1.9 Apply Your Knowledge 91

52 VALUE FLOW DIAGRAM 97

2.1 Introduction 98 2.2 Value Flow Diagram: Why? 99

2.2.1 Purpose 99 2.2.2 Application 100 2.2.3 Delimitation 101

Table of Contents ix

2.2.4 Definitions 102 2.3 VFD Elements 106

2.3.1 From Flow Diagram to VFD 106 2.3.2 Process 106 2.3.3 External Entity 106 2.3.4 Value Flow 106

2.4 Flow Types and Flow Categories 110 2.4.1 Classification of Flows 110 2.4.2 Flow Category: Resource and Information Flow 114 2.4.3 Flow Category: Product Flow 114 2.4.4 Flow Category: Fictitious Value Flow 117 2.4.5 Flow Category: Money Flow 120

2.5 Calculation of the Value 123 2.5.1 Procedure of Value Calculation 123 2.5.2 Principles of the Value Calculation 123 2.5.3 Value Calculation in the Hierarchy 124 2.5.4 Flow Equation 127 2.5.5 Process Balance 130

2.6 Element Specification and Calculation 132 2.6.1 Declaration of Parameters 132 2.6.2 Flow Specification 133 2.6.3 Process Specification 133 2.6.4 Calculation Based on Equations with Parameters 136

2.7 Special Examples 141 2.7.1 Exchange of Value with Outside World 141 2.7.2 Example of Waste Calculation in a Company 142 2.7.3 Notice of Profit and Loss 144 2.7.4 Investment Analysis 146 2.7.5 Intangible Assets: Labels 148

2.8 Application Example: Gas Station 149 2.9 Apply Your Knowledge 159

S3 RESOURCE FLOW DIAGRAM 165

3.1 Introduction 166 3.2 Resource Flow Diagram: Why? 167

3.2.1 Purpose 167 3.2.2 Application 167 3.2.3 Delimitation 168 3.2.4 Definitions 170 3.2.5 Concept of Energy and Exergy 173

3.3 RFD Elements 175 3.3.1 From Flow Diagram to RFD 175 3.3.2 Process 176

X Table of Contents

3.3.3 Resource Flow 176 3.3.4 External Entity 177

3.4 Flow Types and Flow Categories 178 3.4.1 Flow Classification 178 3.4.2 Flow Category 178 3.4.3 Flow Type 179

3.5 Calculation in the Flow and Process Specification 181 3.5.1 Calculation Procedure 181 3.5.2 Parameter Declaration and Assessment 182 3.5.3 Flow Specification in General 183 3.5.4 Process Specification in General 184

3.6 Mass Analysis in the RFD 186 3.6.1 Mass Balance 186 3.6.2 General Flow Calculation 188

3.7 Energy Analysis in the RFD 193 3.7.1 Total Energy of Resource Flows 193 3.7.2 Energy Balance 195 3.7.3 Process Value: Energetic Efficiency 197

3.8 Exergy Analysis 199 3.8.1 Exergy of Resource Flows 199 3.8.2 Exergy Balance 200 3.8.3 Example: Exergy Analysis of a Draw Winding Machine 201 3.8.4 Process Value: Exergetic Efficiency 206

3.9 Embodied Energy Analysis 207 3.9.1 Embodied Energy Calculation 207 3.9.2 Process Value: Embodied Energy Added 208 3.9.3 Example: Embodied Energy Calculation of a Textile Yarn 210

3.10 Application Example: Gas Station 213 3.11 Apply Your Knowledge 219

D DYNAMIC ANALYSIS TOOLS 225

D1 STATE CHART 227

1.1 Introduction 228 1.2 State Chart: Why? , 229

1.2.1 Purpose : 229 1.2.2 Application 229 1.2.3 Delimitation 231

1.3 State Chart Elements 234 1.3.1 Diagram 234 1.3.2 State 234 1.3.3 Transition 235 1.3.4 Rules and Examples for State Charts 240

1.4 Model Structure 244

Table of Contents x i

1.4.1 State Structuring in the Hierarchy 244 1.4.2 Element Specification 248 1.4.3 Data Dictionary 250

1.5 From Flow Diagram to State Chart 253 1.5.1 Hierarchy of Flow Diagram and State Chart 253 1.5.2 Transition from Flow Diagram to State Chart 255 1.5.3 When to Begin with the State Chart in the Hierarchy 258

1.6 Recommendation and Guidelines 260 1.6.1 Recommendation for State Charts 260 1.6.2 Bottom-Up Approach 262 1.6.3 Components of the Model 264

1.7 Application Example: Gas Station 266 1.8 Apply Your Knowledge 271

D2 SIMULATION MODEL 277

2.1 Introduction 278 2.2 Simulation Model: Why? 279

2.2.1 Purpose 279 2.2.2 Application 279 2.2.3 Delimitation 281 2.2.4 Definitions 282

2.3 From Flow Diagram to Code 285 2.3.1 Simulation Theory 285 2.3.2 Step-by-Step Procedure 286 2.3.3 Step 1: Purpose and Goal of System and System Boundaries 287 2.3.4 Step 2: Specify System by the Flow Diagram 287 2.3.5 Step 3: Specify Behavior of Processes in Time 289 2.3.6 Step 4: Program Requirements and User Interface 292 2.3.7 Step 5: Write each Program Module in Code 295 2.3.8 Step 6: Code and Setup of the Simulation Model 303 2.3.9 Step 7: Check and Evaluate System Behavior 305

2.4 Application of Commercial Simulation Packages 307 2.4.1 Connection POA and Commercial Simulation Packages 307 2.4.2 Evaluation of Commercial Simulation Packages 308 2.4.3 Example with Simulation Package: Gas Station 310

2.5 Application Example: Gas Station 314 2.5.1 Static Model 314 2.5.2 Dynamic Model 315 2.5.3 User Interface 317 2.5.4 Coding of the Simulation Model 318

2.6 Apply Your Knowledge 324

XII Table of Contents

D3 REAL-TIME CONTROL 329 3.1 Introduction 330 3.2 POA for Real-Time Control: Why? 331

3.2.1 Purpose 331 3.2.2 Application 332 3.2.3 Delimitation 333 3.2.4 Definitions 334 3.2.5 History of Manufacturing Automation 335

3.3 Machinery States of Manufacturing Processes 339 3.3.1 Operating and Non-Operating States 339 3.3.2 Monitoring of System States 341 3.3.3 Failure Handling 344

3.4 System View in the State Domain 346 3.4.1 Purpose of the State Domain 346 3.4.2 System with Discrete Parameters 347 3.4.3 System with Continuous and Discrete Parameters 349 3.4.4 System with Continuous Parameters 352 3.4.5 Consideration for Model Hierarchy and State Domain 354 3.4.6 Rules for State Domain, State Map, and System States 358

3.5 Program Design and Coding 359 3.5.1 Step-by-Step Procedure for Real-Time Coding 359 3.5.2 System Analysis for Real-Time Control 361 3.5.3 Program Design and Test Simulation 368 3.5.4 Implementation of Real-Time Control 374

3.6 Programmable Logic Control of a Fan Heater 375 3.6.1 Structure of the System 375 3.6.2 System Behavior , 376 3.6.3 Risk Analysis 378 3.6.4 Programming Languages for PLC 379

3.7 Application Example: Gas Pump 381 3.7.1 Flow Diagram and Specifications 381 3.7.2 State Charts 383 3.7.3 User Interface and Program Code 384

3.8 Apply Your Knowledge 387

С CASE STUDIES 395 C1 SYSTEM ANALYSIS OF A SERVICE ENTERPRISE 397 1.1 Getting to Know the Operation of a Bar 398 1.2 Setting up the Model 399

1.2.1 Specify the Investigated System 399 1.2.2 Detailing of the Diagrams 402

1.3 Evaluation Report and Benefits of the Method 407

Table of Contents xii

C2 ECONOMICAL ANALYSIS OF A WEAVING MILL WITH INTEGRATED FINISHING 409

2.1 Model of a Production Plant 410 2.2 Company and Product 410 2.3 Procedure for Setting up a Model 412 2.4 Value Flow Diagram of WeaveFine 416

2.4.1 Context Diagram 416 2.4.2 VFD Level 1: "Produce Fabric" 417 2.4.3 VFD Lower Levels 424 2.4.4 VFD "Finish + Schedule Article" 427 2.4.5 Fictitious Value Flow to Pass on Costs 428

2.5 Evaluation Report and Benefits of the Method 430

C3 EXERGY ANALYSIS OF AN INDUSTRIAL BAKERY 433

3.1 Energy Analysis of the Croissant Line 434 3.2 Resource Flow Diagrams of the Croissant Line 435

3.2.1 Context Diagram 435 3.2.2 RFD Production Level 436 3.2.3 Mass Calculation of Product Flows 438 3.2.4 Energy Calculation of Resource Flows 440 3.2.5 RFD Second Level of Detail and Production Layout 440

3.3 Exergy Balance of the Baking Process 444 3.3.1 Purpose of the Exergy Balance 444 3.3.2 Exergy Calculation of Material Flows 445 3.3.3 Exergy Calculation of Energy Flows 447 3.3.4 Exergetic Efficiency Calculation 448

3.4 Benefits of the Method 448

C4 SYSTEM CONTROL FOR THE DEMAGNETIZING OF TV DISPLAY TUBES 451

4.1 Demagnetizing of TV Display Tubes 452 4.2 New Conception of a Demagnetizing Process Line 453 4.3 System Architecture of the New Production Line 455 4.4 Process Control for Degauss Production Line 458 4.5 Benefits of the Method 461

C5 OPERATIONAL CONCEPT FOR AN AUTOMATED PLANT 463

5.1 New Production Setup 464 5.2 What is Texturizing? 465

XIV Table of Contents

5.2.1 Set System Boundaries 465 5.2.2 Specify System and its Structure by Flow Diagrams 466

5.3 Dynamic Model of the Texturizing Plant 467 5.3.1 Specify Behavior of Processes in Time 467 5.3.2 State Specification and State List :... 468

5.4 Simulation Program for the Texturizing Plant 469 5.4.1 Specify Requirements of Program and Design User Interface 469 5.4.2 Evaluations Required of Simulation 470 5.4.3 Parameters 470 5.4.4 Options for Machine Design 472 5.4.5 User Interface 472 5.4.6 Write each Module in Program Code 475 5.4.7 Evaluation 476 5.4.8 Code Example 479

5.5 Results and Benefits of the Method 480 5.5.1 Results of the Texturizing Simulation 480 5.5.2 Benefits of the Method 481

C6 REENGINEERING OF A CABLE CAR 483

6.1 Cable Car System 484 6.2 Reengineering of a Transport Process 485 6.3 Flow Diagrams and State Charts 486

6.3.1 Flow Diagrams of the System 486 6.3.2 State Chart of the Cable Car Drive 487 6.3.3 System Hierarchy 490

6.4 Transport Simulation 491 6.4.1 Remote Control 491 6.4.2 User Interface 491 6.4.3 Program Code 493

6.5 Conclusions and Benefits of the Method 495

APPENDIX 497

A.l Abbreviations 497 A.2 Glossary 499 A.3 Bibliography 501

INDEX 503