problem 2.11 a 50-Ωmicrostrip line uses a 0.6-mm …etemadi/ee324/homework/fall...

19
Problem 2.11 A 50-microstrip line uses a 0.6-mm alumina substrate with ε r = 9. Use CD Module 2.3 to determine the required strip width w. Include a printout of the screen display. Solution: According to the solution provided by CD Module 2.3, the required strip width is w = 0.613 mm.

Upload: trantu

Post on 05-Apr-2018

239 views

Category:

Documents


5 download

TRANSCRIPT

Page 1: Problem 2.11 A 50-Ωmicrostrip line uses a 0.6-mm …etemadi/ee324/Homework/Fall 2012/HW3_solution.pdfgenerator with Veg =300 V and Zg =50 Ωto a load ZL. Determine the time-domain

Problem 2.11 A 50-Ω microstrip line uses a 0.6-mm alumina substrate withεr = 9.Use CD Module 2.3 to determine the required strip widthw. Include a printout of thescreen display.

Solution: According to the solution provided by CD Module 2.3, the required stripwidth is

w = 0.613 mm.

Page 2: Problem 2.11 A 50-Ωmicrostrip line uses a 0.6-mm …etemadi/ee324/Homework/Fall 2012/HW3_solution.pdfgenerator with Veg =300 V and Zg =50 Ωto a load ZL. Determine the time-domain

Problem 2.37 A lossless transmission line is terminated in a short circuit. Howlong (in wavelengths) should the line be for it to appear as an open circuit at its inputterminals?

Solution: From Eq. (2.84),Zscin = jZ0 tanβ l . If β l = (π/2+nπ), thenZsc

in = j∞ (Ω).Hence,

l =λ2π

(π2

+nπ)

=λ4

+nλ2

.

This is evident from Figure 2.19(d).

Page 3: Problem 2.11 A 50-Ωmicrostrip line uses a 0.6-mm …etemadi/ee324/Homework/Fall 2012/HW3_solution.pdfgenerator with Veg =300 V and Zg =50 Ωto a load ZL. Determine the time-domain

Problem 2.39 A 75-Ω resistive load is preceded by aλ/4 section of a 50-Ω losslessline, which itself is preceded by anotherλ/4 section of a 100-Ω line. What is theinput impedance? Compare your result with that obtained through two successiveapplications of CD Module 2.5.

Solution: The input impedance of theλ/4 section of line closest to the load is foundfrom Eq. (2.97):

Zin =Z2

0

ZL=

502

75= 33.33 Ω.

The input impedance of the line section closest to the load can be consideredas theload impedance of the next section of the line. By reapplying Eq. (2.97), thenextsection ofλ/4 line is taken into account:

Zin =Z2

0

ZL=

1002

33.33= 300Ω.

Page 4: Problem 2.11 A 50-Ωmicrostrip line uses a 0.6-mm …etemadi/ee324/Homework/Fall 2012/HW3_solution.pdfgenerator with Veg =300 V and Zg =50 Ωto a load ZL. Determine the time-domain
Page 5: Problem 2.11 A 50-Ωmicrostrip line uses a 0.6-mm …etemadi/ee324/Homework/Fall 2012/HW3_solution.pdfgenerator with Veg =300 V and Zg =50 Ωto a load ZL. Determine the time-domain

Problem 2.40 A 100-MHz FM broadcast station uses a 300-Ω transmission linebetween the transmitter and a tower-mounted half-wave dipole antenna. The antennaimpedance is 73Ω. You are asked to design a quarter-wave transformer to match theantenna to the line.

(a) Determine the electrical length and characteristic impedance of the quarter-wave section.

(b) If the quarter-wave section is a two-wire line withD = 2.5 cm, and the wiresare embedded in polystyrene withεr = 2.6, determine the physical length ofthe quarter-wave section and the radius of the two wire conductors.

Solution:(a) For a match condition, the input impedance of a load must match that of the

transmission line attached to the generator. A line of electrical lengthλ/4 can beused. From Eq. (2.97), the impedance of such a line should be

Z0 =√

ZinZL =√

300×73= 148Ω.

(b)λ4

=up

4 f=

c4√

εr f=

3×108

4√

2.6×100×106= 0.465 m,

and, from Table 2-2,

Z0 =120√

εln

(

Dd

)+

√(Dd

)2

−1

Ω.

Hence,

ln

(

Dd

)+

√(Dd

)2

−1

=

148√

2.6120

= 1.99,

which leads to (Dd

)+

√(Dd

)2

−1 = 7.31,

and whose solution isD/d = 3.73. Hence,d = D/3.73= 2.5 cm/3.73= 0.67 cm.

Page 6: Problem 2.11 A 50-Ωmicrostrip line uses a 0.6-mm …etemadi/ee324/Homework/Fall 2012/HW3_solution.pdfgenerator with Veg =300 V and Zg =50 Ωto a load ZL. Determine the time-domain

Problem 2.41 A 50-Ω lossless line of lengthl = 0.375λ connects a 300-MHzgenerator withVg = 300 V andZg = 50 Ω to a loadZL . Determine the time-domaincurrent through the load for:

(a) ZL = (50− j50) Ω(b) ZL = 50 Ω(c) ZL = 0 (short circuit)

For (a), verify your results by deducing the information you need from the outputproducts generated by CD Module 2.4.

Solution:

Vg Zin Z0ZL

~+

-

+

-

Transmission line

Generator Loadz = -l z = 0

Vg

Ii

Zin

~

Vi~~

+

-

(50-j50) Ω

l = 0.375 λ

= 50 Ω

50 Ω

Zg

Figure P2.41: Circuit for Problem 2.41(a).

(a) ZL = (50− j50) Ω, β l = 2πλ ×0.375λ = 2.36 (rad)= 135.

Γ =ZL −Z0

ZL +Z0=

50− j50−5050− j50+50

=− j50

100− j50= 0.45e− j63.43 .

Page 7: Problem 2.11 A 50-Ωmicrostrip line uses a 0.6-mm …etemadi/ee324/Homework/Fall 2012/HW3_solution.pdfgenerator with Veg =300 V and Zg =50 Ωto a load ZL. Determine the time-domain

Application of Eq. (2.79) gives:

Zin = Z0

[ZL + jZ0 tanβ lZ0 + jZL tanβ l

]= 50

[(50− j50)+ j50tan135

50+ j(50− j50) tan135

]= (100+ j50) Ω.

Using Eq. (2.82) gives

V+0 =

(VgZin

Zg +Zin

)(1

ejβ l +Γe− jβ l

)

=300(100+ j50)

50+(100+ j50)

(1

ej135 +0.45e− j63.43e− j135

)

= 150e− j135 (V),

IL =V+

0

Z0(1−Γ) =

150e− j135

50(1−0.45e− j63.43) = 2.68e− j108.44 (A),

iL(t) = Re[ILejωt ]

= Re[2.68e− j108.44ej6π×108t ]

= 2.68cos(6π ×108t −108.44) (A).

(b)

ZL = 50 Ω,

Γ = 0,

Zin = Z0 = 50 Ω,

V+0 =

300×5050+50

(1

ej135 +0

)= 150e− j135 (V),

IL =V+

0

Z0=

15050

e− j135 = 3e− j135 (A),

iL(t) = Re[3e− j135ej6π×108t ] = 3cos(6π ×108t −135) (A).

(c)

ZL = 0,

Γ = −1,

Zin = Z0

(0+ jZ0 tan135

Z0 +0

)= jZ0 tan135 = − j50 (Ω),

V+0 =

300(− j50)50− j50

(1

ej135 −e− j135

)= 150e− j135 (V),

Page 8: Problem 2.11 A 50-Ωmicrostrip line uses a 0.6-mm …etemadi/ee324/Homework/Fall 2012/HW3_solution.pdfgenerator with Veg =300 V and Zg =50 Ωto a load ZL. Determine the time-domain

IL =V+

0

Z0[1−Γ] =

150e− j135

50[1+1] = 6e− j135 (A),

iL(t) = 6cos(6π ×108t −135) (A).

From output of Module 2.4, atd = 0 (load)

I(d) = 2.68∠−1.89 rad,

which corresponds toI(d) = 2.68∠−108.29 .

The equivalent time-domain current atf = 300 MHz is

iL(t) = 2.68cos(6π ×108t −108.29) (A).

Page 9: Problem 2.11 A 50-Ωmicrostrip line uses a 0.6-mm …etemadi/ee324/Homework/Fall 2012/HW3_solution.pdfgenerator with Veg =300 V and Zg =50 Ωto a load ZL. Determine the time-domain

Problem 2.42 A generator withVg = 300 V andZg = 50 Ω is connected to a loadZL = 75 Ω through a 50-Ω lossless line of lengthl = 0.15λ .

(a) ComputeZin, the input impedance of the line at the generator end.

(b) ComputeIi andVi .

(c) Compute the time-average power delivered to the line,Pin = 12Re[Vi I∗i ].

(d) Compute VL , IL , and the time-average power delivered to the load,PL = 1

2Re[VL I∗L ]. How doesPin compare toPL? Explain.

(e) Compute the time-average power delivered by the generator,Pg, and the time-average power dissipated inZg. Is conservation of power satisfied?

Solution:

Vg Zin Z0~

+

-

+

-

Transmission line

Generator Loadz = -l z = 0

Vg

IiZg

Zin

~

Vi~~

+

-

⇓ l = 0.15 λ

= 50 Ω

50 Ω

75 Ω

Figure P2.42: Circuit for Problem 2.42.

(a)

β l =2πλ

×0.15λ = 54,

Page 10: Problem 2.11 A 50-Ωmicrostrip line uses a 0.6-mm …etemadi/ee324/Homework/Fall 2012/HW3_solution.pdfgenerator with Veg =300 V and Zg =50 Ωto a load ZL. Determine the time-domain

Zin = Z0

[ZL + jZ0 tanβ lZ0 + jZL tanβ l

]= 50

[75+ j50tan54

50+ j75tan54

]= (41.25− j16.35) Ω.

(b)

Ii =Vg

Zg +Zin=

30050+(41.25− j16.35)

= 3.24ej10.16 (A),

Vi = IiZin = 3.24ej10.16(41.25− j16.35) = 143.6e− j11.46 (V).

(c)

Pin =12Re[Vi I

∗i ] =

12Re[143.6e− j11.46 ×3.24e− j10.16 ]

=143.6×3.24

2cos(21.62) = 216 (W).

(d)

Γ =ZL −Z0

ZL +Z0=

75−5075+50

= 0.2,

V+0 = Vi

(1

ejβ l +Γe− jβ l

)=

143.6e− j11.46

ej54 +0.2e− j54 = 150e− j54 (V),

VL = V+0 (1+Γ) = 150e− j54(1+0.2) = 180e− j54 (V),

IL =V+

0

Z0(1−Γ) =

150e− j54

50(1−0.2) = 2.4e− j54 (A),

PL =12Re[VL I∗L ] =

12Re[180e− j54 ×2.4ej54 ] = 216 (W).

PL = Pin, which is as expected because the line is lossless; power input to the lineends up in the load.

(e)Power delivered by generator:

Pg =12Re[VgIi ] =

12Re[300×3.24ej10.16 ] = 486cos(10.16) = 478.4 (W).

Power dissipated in Zg:

PZg =12Re[IiVZg] =

12Re[Ii I

∗i Zg] =

12|Ii |2Zg =

12

(3.24)2×50= 262.4 (W).

Note 1:Pg = PZg +Pin = 478.4 W.

Page 11: Problem 2.11 A 50-Ωmicrostrip line uses a 0.6-mm …etemadi/ee324/Homework/Fall 2012/HW3_solution.pdfgenerator with Veg =300 V and Zg =50 Ωto a load ZL. Determine the time-domain

Problem 2.44 For the circuit shown in Fig. P2.44, calculate the average incidentpower, the average reflected power, and the average power transmittedinto the infinite100-Ω line. Theλ/2 line is lossless and the infinitely long line is slightly lossy. (Hint:The input impedance of an infinitely long line is equal to its characteristic impedanceso long asα 6= 0.)

Z0 = 50 Ω Z1 = 100 Ω

λ/250 Ω

2 V

Pavi

Pavr

Pavt

8

+

Figure P2.44: Circuit for Problem 2.44.

Solution: Considering the semi-infinite transmission line as equivalent to a load(since all power sent down the line is lost to the rest of the circuit),ZL = Z1 = 100Ω.Since the feed line isλ/2 in length, Eq. (2.96) givesZin = ZL = 100 Ω andβ l = (2π/λ )(λ/2) = π, soe± jβ l = −1. Hence

Γ =ZL −Z0

ZL +Z0=

100−50100+50

=13.

Also, converting the generator to a phasor givesVg = 2ej0 (V). Plugging all theseresults into Eq. (2.82),

V+0 =

(VgZin

Zg +Zin

)(1

ejβ l +Γe− jβ l

)=

(2×10050+100

)[1

(−1)+ 13(−1)

]

= 1ej180 = −1 (V).

From Eqs. (2.104), (2.105), and (2.106),

Piav =

∣∣V+0

∣∣2

2Z0=

|1ej180 |22×50

= 10.0 mW,

Prav = −|Γ|2Pi

av = −∣∣∣∣13

∣∣∣∣2

×10 mW= −1.1 mW,

Pav = Ptav = Pi

av+Prav = 10.0 mW−1.1 mW= 8.9 mW.

Page 12: Problem 2.11 A 50-Ωmicrostrip line uses a 0.6-mm …etemadi/ee324/Homework/Fall 2012/HW3_solution.pdfgenerator with Veg =300 V and Zg =50 Ωto a load ZL. Determine the time-domain

Problem 2.47 Use the Smith chart to find the reflection coefficient correspondingto a load impedance of

(a) ZL = 3Z0

(b) ZL = (2− j2)Z0

(c) ZL = − j2Z0

(d) ZL = 0 (short circuit)

Solution: Refer to Fig. P2.47.(a) PointA is zL = 3+ j0. Γ = 0.5e0

(b) PointB is zL = 2− j2. Γ = 0.62e−29.7

(c) PointC is zL = 0− j2. Γ = 1.0e−53.1

(d) PointD is zL = 0+ j0. Γ = 1.0e180.0

Page 13: Problem 2.11 A 50-Ωmicrostrip line uses a 0.6-mm …etemadi/ee324/Homework/Fall 2012/HW3_solution.pdfgenerator with Veg =300 V and Zg =50 Ωto a load ZL. Determine the time-domain

0.1

0.1

0.1

0.2

0.2

0.2

0.3

0.3

0.3

0.4

0.4

0.4

0.5

0.5

0.5

0.6

0.6

0.6

0.7

0.7

0.7

0.8

0.8

0.8

0.9

0.9

0.9

1.0

1.0

1.0

1.2

1.2

1.2

1.4

1.4

1.4

1.6

1.6

1.6

1.8

1.8

1.8

2.0

2.0

2.0

3.0

3.0

3.0

4.0

4.0

4.0

5.0

5.0

5.0

10

10

10

20

20

20

50

50

50

0.2

0.2

0.2

0.2

0.4

0.4

0.4

0.4

0.6

0.6

0.6

0.6

0.8

0.8

0.8

0.8

1.0

1.0

1.0

1.0

20-20

30-30

40-40

50

-50

60

-60

70

-70

80

-80

90

-90

100

-100

110

-110

120

-120

130

-130

140

-140

150

-150

160

-160

170

-170

180

±

0.04

0.04

0.05

0.05

0.06

0.06

0.07

0.07

0.08

0.08

0.09

0.09

0.1

0.1

0.11

0.11

0.12

0.12

0.13

0.13

0.14

0.14

0.15

0.15

0.16

0.16

0.17

0.17

0.18

0.18

0.190.19

0.2

0.2

0.21

0.210.22

0.220.23

0.230.24

0.24

0.25

0.25

0.26

0.26

0.27

0.27

0.28

0.28

0.29

0.29

0.3

0.3

0.31

0.31

0.32

0.32

0.33

0.33

0.34

0.34

0.35

0.35

0.36

0.36

0.37

0.37

0.38

0.38

0.39

0.39

0.4

0.4

0.41

0.41

0.42

0.42

0.43

0.43

0.44

0.44

0.45

0.45

0.46

0.46

0.47

0.47

0.48

0.48

0.49

0.49

0.0

0.0

AN

GL

E O

F R

EF

LE

CT

ION

CO

EF

FIC

IEN

T IN

DE

GR

EE

S

—>

WA

VE

LE

NG

TH

S T

OW

AR

D G

EN

ER

AT

OR

—>

<—

WA

VE

LE

NG

TH

S T

OW

AR

D L

OA

D <

IND

UC

TIV

E R

EA

CT

AN

CE

CO

MPO

NEN

T (+jX

/Zo), O

R CAPACIT

IVE SUSCEPTANCE (+jB/Yo)

CAPACITIVE REACTANCE COM

PONEN

T (-jX

/Zo), O

R IN

DU

CT

IVE

SU

SCE

PT

AN

CE

(-j

B/

Yo

)

RESISTANCE COMPONENT (R/Zo), OR CONDUCTANCE COMPONENT (G/Yo)

A

B

C

D

Figure P2.47: Solution of Problem 2.47.

Page 14: Problem 2.11 A 50-Ωmicrostrip line uses a 0.6-mm …etemadi/ee324/Homework/Fall 2012/HW3_solution.pdfgenerator with Veg =300 V and Zg =50 Ωto a load ZL. Determine the time-domain

Problem 2.48 Repeat Problem 2.47 using CD Module 2.6.

Solution:

Figure P2.48(a)

Page 15: Problem 2.11 A 50-Ωmicrostrip line uses a 0.6-mm …etemadi/ee324/Homework/Fall 2012/HW3_solution.pdfgenerator with Veg =300 V and Zg =50 Ωto a load ZL. Determine the time-domain

Figure P2.48(b)

Page 16: Problem 2.11 A 50-Ωmicrostrip line uses a 0.6-mm …etemadi/ee324/Homework/Fall 2012/HW3_solution.pdfgenerator with Veg =300 V and Zg =50 Ωto a load ZL. Determine the time-domain

Figure P2.48(c)

Page 17: Problem 2.11 A 50-Ωmicrostrip line uses a 0.6-mm …etemadi/ee324/Homework/Fall 2012/HW3_solution.pdfgenerator with Veg =300 V and Zg =50 Ωto a load ZL. Determine the time-domain

Figure P2.48(d)

Page 18: Problem 2.11 A 50-Ωmicrostrip line uses a 0.6-mm …etemadi/ee324/Homework/Fall 2012/HW3_solution.pdfgenerator with Veg =300 V and Zg =50 Ωto a load ZL. Determine the time-domain

Problem 2.49 Use the Smith chart to find the normalized load impedancecorresponding to a reflection coefficient of

(a) Γ = 0.5

(b) Γ = 0.5∠60

(c) Γ = −1

(d) Γ = 0.3∠−30

(e) Γ = 0

(f) Γ = j

0.1

0.1

0.1

0.2

0.2

0.2

0.3

0.3

0.3

0.4

0.4

0.4

0.5

0.5

0.5

0.6

0.6

0.6

0.7

0.7

0.7

0.8

0.8

0.8

0.9

0.9

0.9

1.0

1.0

1.0

1.2

1.2

1.2

1.4

1.4

1.4

1.6

1.6

1.6

1.8

1.8

1.8

2.0

2.0

2.0

3.0

3.0

3.0

4.0

4.0

4.0

5.0

5.0

5.0

10

10

10

20

20

20

50

50

50

0.2

0.2

0.2

0.2

0.4

0.4

0.4

0.4

0.6

0.6

0.6

0.6

0.8

0.8

0.8

0.8

1.0

1.0

1.0

1.0

20-20

30-30

40-40

50

-50

60

-60

70

-70

80

-80

90

-90

100

-100

110

-110

120

-120

130

-130

140

-140

150

-150

160

-160

170

-170

180

±

0.04

0.04

0.05

0.05

0.06

0.06

0.07

0.07

0.08

0.08

0.09

0.09

0.1

0.1

0.11

0.11

0.12

0.12

0.13

0.13

0.14

0.14

0.15

0.15

0.16

0.16

0.17

0.17

0.18

0.18

0.190.19

0.2

0.2

0.21

0.210.22

0.220.23

0.230.24

0.24

0.25

0.25

0.26

0.26

0.27

0.27

0.28

0.28

0.29

0.29

0.3

0.3

0.31

0.31

0.32

0.32

0.33

0.33

0.34

0.34

0.35

0.35

0.36

0.36

0.37

0.37

0.38

0.38

0.39

0.39

0.4

0.4

0.41

0.41

0.42

0.42

0.43

0.43

0.44

0.44

0.45

0.45

0.46

0.46

0.47

0.47

0.48

0.48

0.49

0.49

0.0

0.0

AN

GL

E O

F R

EF

LE

CT

ION

CO

EF

FIC

IEN

T IN

DE

GR

EE

S

—>

WA

VE

LE

NG

TH

S T

OW

AR

D G

EN

ER

AT

OR

—>

<—

WA

VE

LE

NG

TH

S T

OW

AR

D L

OA

D <

IND

UC

TIV

E R

EA

CT

AN

CE

CO

MPO

NEN

T (+jX

/Zo), O

R CAPACIT

IVE SUSCEPTANCE (+jB/Yo)

CAPACITIVE REACTANCE COM

PONEN

T (-jX

/Zo), O

R IN

DU

CT

IVE

SU

SCE

PT

AN

CE

(-j

B/

Yo

)

RESISTANCE COMPONENT (R/Zo), OR CONDUCTANCE COMPONENT (G/Yo)

A’

B’

C’

D’

E’

F’

Figure P2.49: Solution of Problem 2.49.

Solution: Refer to Fig. P2.49.

Page 19: Problem 2.11 A 50-Ωmicrostrip line uses a 0.6-mm …etemadi/ee324/Homework/Fall 2012/HW3_solution.pdfgenerator with Veg =300 V and Zg =50 Ωto a load ZL. Determine the time-domain

(a) PointA′ is Γ = 0.5 atzL = 3+ j0.(b) PointB′ is Γ = 0.5ej60 atzL = 1+ j1.15.(c) PointC ′ is Γ = −1 atzL = 0+ j0.(d) PointD′ is Γ = 0.3e− j30 atzL = 1.60− j0.53.(e) PointE′ is Γ = 0 atzL = 1+ j0.(f) PointF ′ is Γ = j atzL = 0+ j1.