probabilistic analysis of dynamic systems with …...49th aiaa sdm conference, schaumburg, il, april...

17
49 th AIAA SDM Conference, Schaumburg, IL, April 2008 PROBABILISTIC ANALYSIS OF DYNAMIC SYSTEMS WITH COMPLEX-VALUED EIGENSOLUTIONS Sharif Rahman The Uni ersit of Iowa EIGENSOLUTIONS The University of Iowa Iowa City, IA 52245 Work supported by U.S. National Science Foundation (CMMI-0653279)

Upload: others

Post on 03-Nov-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: PROBABILISTIC ANALYSIS OF DYNAMIC SYSTEMS WITH …...49th AIAA SDM Conference, Schaumburg, IL, April 2008 PROBABILISTIC ANALYSIS OF DYNAMIC SYSTEMS WITH COMPLEX-VALUED EIGENSOLUTIONS

49th AIAA SDM Conference, Schaumburg, IL, April 2008

PROBABILISTIC ANALYSIS OF DYNAMIC SYSTEMS WITH COMPLEX-VALUED

EIGENSOLUTIONS

Sharif RahmanThe Uni ersit of Iowa

EIGENSOLUTIONS

The University of IowaIowa City, IA 52245

Work supported by U.S. National Science Foundation (CMMI-0653279)

Page 2: PROBABILISTIC ANALYSIS OF DYNAMIC SYSTEMS WITH …...49th AIAA SDM Conference, Schaumburg, IL, April 2008 PROBABILISTIC ANALYSIS OF DYNAMIC SYSTEMS WITH COMPLEX-VALUED EIGENSOLUTIONS

OUTLINE

Introduction Introduction Dimensional Decomposition Method Examplesp Conclusions & Future Work

Page 3: PROBABILISTIC ANALYSIS OF DYNAMIC SYSTEMS WITH …...49th AIAA SDM Conference, Schaumburg, IL, April 2008 PROBABILISTIC ANALYSIS OF DYNAMIC SYSTEMS WITH COMPLEX-VALUED EIGENSOLUTIONS

INTRODUCTION

A General Random Eigenvalue Problem (XN)

random eigenvector L or L: ( , ) ( , )N N X

1( ); ( ), , ( ) ( )Kf X A X A X X Φ 0

random eigenvector L or L

random matrices LLrandom eigenvalue or

Example Random Eigenvalue Problem Problem/Application1 Linear; undamped or 1 Linear; undamped or

proportionally damped systems

2 Quadratic; non-proportionally damped systems; singularity problems

( ) ( ) ( ) ( ) X M X K X XΦ 0

2 ( ) ( ) ( ) ( ) ( ) ( ) X M X X C X K X XΦ 0p

3 Palindromic; acoustic emissions in high speed trains (M0 = M1

T)

4 Polynomial; optimal control problems

1 0 1( ) ( ) ( ) ( ) ( ) ( )TM M X M X X X X XΦ 0

( ) ( ) ( )kkA

X X XΦ 0

5 Rational; plate vibration (m = 1) & fluid-solid structures (m = 2); vibration of viscoelastic materials

k ( ) ( )( ) ( ) ( ) ( )

( )

mk

k ka

X C XX M X K X XX

Φ 0

Page 4: PROBABILISTIC ANALYSIS OF DYNAMIC SYSTEMS WITH …...49th AIAA SDM Conference, Schaumburg, IL, April 2008 PROBABILISTIC ANALYSIS OF DYNAMIC SYSTEMS WITH COMPLEX-VALUED EIGENSOLUTIONS

INTRODUCTION

Random Matrix Theory Pioneering works by Wishart

(1928) Wigner Mehta and Dyson

Approximate Methods Dominated by perturbation

methods(1928), Wigner, Mehta, and Dyson Analytical solutions for classical

ensembles (GOE, GUE, GSE) and others

methods Other methods

Iteration method (Boyce) Crossing theory (Grigoriu)

Asymptotic result yields statistical solutions dependent only on the global symmetry property of

d t i

C oss g t eo y (G go u) Reduced basis (Nair & Keane) Asymptotic method (Adhikari) Polynomial chaos (Ghanem)

random matrices Impossible or highly non-trivial to

apply for non-asymptotic or general random matrices

Dim. Decomposition (Rahman) Mostly used for real eigensolutions.

Complex-valued eigensolutions not studied extensivelygeneral random matrices studied extensively

Obj ti D l di i l d iti th d Objective: Develop dimensional decomposition method for solving complex-valued random eigenvalue problems

Page 5: PROBABILISTIC ANALYSIS OF DYNAMIC SYSTEMS WITH …...49th AIAA SDM Conference, Schaumburg, IL, April 2008 PROBABILISTIC ANALYSIS OF DYNAMIC SYSTEMS WITH COMPLEX-VALUED EIGENSOLUTIONS

DIMENSIONAL DECOMPOSITION

D iti f Q d ti Ei l P bl Decomposition for Quadratic Eigenvalue Problem

( )m x2 ( ) ( ) ( ) ( ) ( ) ( ) x M x x C x K x x 0

NONLINEARSYSTEMInput Nx ( ) ( ) 1 ( )

Output ( ) ( ) 1 ( )

R I

R I

x x x

x x x

( ) ( ) ( ) ( ) ( ) ( ) x M x x C x K x x 0

( ) ( ) ( )R I

Univariate 1 2 1 2

1 2

1

1

1,1

,,0 ,, , 1, 1

( ) ()) , ,( ,( )S

S s

N

m i i i ii ii i

N

m i i i i

N

m i ii

mi ii i

m x x xx x

x

Univariate (individual

effects)

1 2

,2

,

,1

1ˆ ( )

ˆ ( )

ˆ ( )m

S

m

m

S

i i i i

x

x

x

Bivariate (2D cooperative effects)

S variate (SD cooperative effects)

Conjecture: Component functions arising in proposed

S-variate (SD cooperative effects)

decomposition will exhibit insignificant S-variate effects cooperatively when S N.

Page 6: PROBABILISTIC ANALYSIS OF DYNAMIC SYSTEMS WITH …...49th AIAA SDM Conference, Schaumburg, IL, April 2008 PROBABILISTIC ANALYSIS OF DYNAMIC SYSTEMS WITH COMPLEX-VALUED EIGENSOLUTIONS

DIMENSIONAL DECOMPOSITION

L V i t A i ti Lower-Variate Approximations

N

Univariate Approximation reference point

, ,0

,1 ,1 1 1 1 11 ( )

ˆ ˆ( ) ( , , ) ( , , , , , , ) ( 1) ( )m i i m

N

m m N m i i i N mi x

x x c c x c c N

x c

Bivariate Approximation, 1 2 1 2

1 1 1 2 2 2

1 2

( , )

,2 ,2 1 1 1 1 1 1, 1

ˆ ˆ( ) ( , , ) ( , , , , , , , , , , )m i i i ix x

N

m m N m i i i i i i Ni ii i

x x c c x c c x c c

x

Bivariate Approximation

1 2

,

1 1 11 ( )

( 1)( 2)( 2) ( , , , , , , ) ( )2

m i i

i i

N

m i i i N mi x

N NN c c x c c

c

,0m

( ), 1 1 1

1

( ) ( ) ( , , , , , , )n

jm i i j i m i i i N

j

x x c c x c c

,0m

Lagrange h

1 2

1 2 1 2 1 1 2 2 1 1 1 2 2 2

2 1

1

( ) ( ), 1 1 1 1 1

1 1

( , ) ( ) ( ) ( , , , , , , , , , , )

j

n nj j

m i i i i j i j i m i i i i i i Nj j

x x x x c c x c c x c c

shape

functions

Page 7: PROBABILISTIC ANALYSIS OF DYNAMIC SYSTEMS WITH …...49th AIAA SDM Conference, Schaumburg, IL, April 2008 PROBABILISTIC ANALYSIS OF DYNAMIC SYSTEMS WITH COMPLEX-VALUED EIGENSOLUTIONS

DIMENSIONAL DECOMPOSITION

E li it F Explicit Forms

N

Univariate Approximation

(1 1,1

)

11

1

( , , ,ˆ ( ) ( ) (, , , ) ( )1)N n

m j ii j

jm i i i N mc c x c NcX

X c

Bivariate Approximation

1 2

1 1 1 1 21 2 2

1 22

2

2

2

11

( ) ( )1 1 1 1 1,2

, 1 1 1( , , , , , , , , ,ˆ ( ) , )( ) ( )

N n n

m j i j ii i j ji i

j jm i i i i i i Nc c x c c x c cX X

X

Bivariate Approximation

( )1 1

1 11( , ( 1)( 2) ( 2) ( , , ,) , (

2, ) )

N n

j ii

jm i i i N

jmc c x c c N NN X

c

S variate Approximation

1 1,0 1 1 1

1ˆ ( ) ( 1) ( ) ( )S i S i

S N n ni

m S j k j ki k k j j

N SX X

ii

X

S-variate Approximation

1

1

1

1 1

11

( )( )1 1 1 1 1

0 , , 1 1 1

( , , , , , , , , , ) , S i

S i S

S i S i

i i

S i

S

jjm

i k k j jk

k

k

k k k k k Nc c x c c x c

i

c

Page 8: PROBABILISTIC ANALYSIS OF DYNAMIC SYSTEMS WITH …...49th AIAA SDM Conference, Schaumburg, IL, April 2008 PROBABILISTIC ANALYSIS OF DYNAMIC SYSTEMS WITH COMPLEX-VALUED EIGENSOLUTIONS

DIMENSIONAL DECOMPOSITION

C t ti l Eff t (C l l ti C ffi i t ) Computational Effort (Calculating Coefficients)2 ( ) ( ) ( ) ( ) ( ) ( ) X M X X C X K X X 0

12 ( ) ( )det ( ) ( ) ( ) 0 c ccM c C K c

2 ( )1 1 1

( )1 1 1( , , , , , , )det ( , , , , , , )j

i i i Nj

i i i Nc c x c c c c x c c M Char.Eq.

nN( )1 1 1

( )1 1 1

( )1 1 1

( , , , , , , ( , , , , , , )

( , , , , , , ) 0; 1, , ; 1, ,

) ji i i N

j

ji i i

i i N

N

i

c c x c c x c c

c c x c c i N j

c

n

c

C

K

( ) ( )2d ( )j j

q(FEA)

N(N-1)n2/2

1 2

1 1 1 2 2 2

1 2

1 1 1

1 2

1

2

2 2

2

1

2

1 2

( ) ( )21 1 1 1 1

( ) ( )

( ) ( )1

1

1 1 1 1

11 1 1

det

( , , , , , , , , , , )

( , , , , , , , , , , )

( , , , , , , , , , , )

j

j ji i i i i i N

j ji i

ji i i i i i N

i i i i N

c c x c c x c c

c c x c

c c x c c

c x

x c

c c

c

M

1 ( , ,c cC 1 2

1 1 1 2 2 2

1 2

1 1 1 2 2 2

( ) ( )1 1 1 1

( ) ( )1 1 1 1 1 1 2 1 2

, , , , , , , , )

( , , , , , , , , , , ) 0; , 1, , ; , 1, ,

j ji i i i i i N

j ji i i i i i N

x c c x c c

c c x c c x c c i i N j j n

K

Univariate: nN + 1 (linear)Bivariate: N(N-1)n2/2 + nN + 1 (quadratic)

Page 9: PROBABILISTIC ANALYSIS OF DYNAMIC SYSTEMS WITH …...49th AIAA SDM Conference, Schaumburg, IL, April 2008 PROBABILISTIC ANALYSIS OF DYNAMIC SYSTEMS WITH COMPLEX-VALUED EIGENSOLUTIONS

EXAMPLES

E l 1 3DOF S i M D Example 1: 3DOF Spring-Mass-Damper

y1 y2 y3 1( ) MM X X

MK

C

KM M

K

2

3

( )( )

1 kg

C

K

M

C XK X

XX

KK

KK0.3 N-s/m1 N/m

C

K

( ) 0 0( ) 0 ( ) 0

0 0 ( )

MM

M

XM X X

X

0 0 0( ) 0 ( ) 0

0 0 0C

C X X2 ( ) ( ) 0

( ) ( ) 2 ( ) ( )0 ( ) 2 ( )

K KK K K

K K

X XK X X X X

X X0 0 ( )M X 0 0 0 0 ( ) 2 ( )K K X X

( ) ( ) ( ){ ( )} { ( ) 1 ( )}; 1,2,3i i iR I i X X X 6 eigenvalues

31 2 3

2

{ , , } is independent lognormal vector

( , ; 0.25 or 0.5)

TX X X

v v

X X

X

X I

1

Page 10: PROBABILISTIC ANALYSIS OF DYNAMIC SYSTEMS WITH …...49th AIAA SDM Conference, Schaumburg, IL, April 2008 PROBABILISTIC ANALYSIS OF DYNAMIC SYSTEMS WITH COMPLEX-VALUED EIGENSOLUTIONS

EXAMPLES

Variances of Eigenvalues

( ) ( ) ( ){ ( )} { ( ) 1 ( )}; 1,2,3i i iR I i X X X

v = 0.25 v = 0.5

Univariate

BivariateMonte Carlo

Univariate

Bivariate

Monte Carlo

(1) 2R(1), s-2 0.00078 0.00087 0.00087 0.00382 0.00596 0.00606

R(2), s-2 0 0 0 0 0 0

R(3), s-2 0.0007 0.00076 0.00076 0.00317 0.004 0.00422

I(1), s-2 0.01813 0.01859 0.01859 0.07097 0.07746 0.07795

I(2), s-2 0.06201 0.06361 0.06361 0.24293 0.26576 0.26655

I(3), s-2 0.10479 0.10741 0.10742 0.40935 0.44593 0.44669

10,000 samples; n = 5

Max Error by Univariate: 10% (v = 0.25); 37% (v = 0.5)

p

Max Error by Bivariate: 0% (v = 0.25); 5% (v = 0.5)

Page 11: PROBABILISTIC ANALYSIS OF DYNAMIC SYSTEMS WITH …...49th AIAA SDM Conference, Schaumburg, IL, April 2008 PROBABILISTIC ANALYSIS OF DYNAMIC SYSTEMS WITH COMPLEX-VALUED EIGENSOLUTIONS

EXAMPLES Example 2: Flexural Vibration of Beam Example 2: Flexural Vibration of Beam

y7

MlRandom InputPoint masses ( )M

l

y6

y5

k6

k

M

Point masses ( )Damping coefficient at bottom ( )Rotational stiffness at bottom ( )

MC

K

S i ll i iff ( )di i d bkl

l

y4

k5

k4

M

M

Spatially varying stiffness ( )discretized by 6 rotational stiffnesses ( ); 1, ,6i i

k xk k x i

l

l

y3

y2

k3M

91 9{ , , } is independent

and lognormally distributed

TX X X

l

x

y1

k2

k1

M7 7

( ) ( ) ( )

( ), ( ), ( )

{ ( )} { ( ) 1 ( )}; 1, ,7i i iR I i

M X C X K X

X X X

l KC

M

14 eigenvalues

Page 12: PROBABILISTIC ANALYSIS OF DYNAMIC SYSTEMS WITH …...49th AIAA SDM Conference, Schaumburg, IL, April 2008 PROBABILISTIC ANALYSIS OF DYNAMIC SYSTEMS WITH COMPLEX-VALUED EIGENSOLUTIONS

EXAMPLES Marginal PDFs of Eigenvalues (Real) Marginal PDFs of Eigenvalues (Real)

56789

R) 0. 3

0. 4

0. 5

R)

0. 06

0. 08

)

-0. 7 -0. 6 -0. 5 -0. 4 -0. 3 -0. 2 -0. 1 0. 0012345

f 1(R

-14 -12 -10 -8 -6 -4 -2 00. 0

0. 1

0. 2f 2(R

-70 -60 -50 -40 -30 -20 -10 00. 00

0. 02

0. 04

f 3(R)

R RR

0. 02

0. 03

(R) 0 . 015

0. 020

0. 025(

R) 0 . 015

0. 020

0. 025

(R)

-200 -150 -100 -50 0

R

0. 00

0. 01

f 4

-200 -150 -100 -50 0

R

0. 000

0. 005

0. 010f 5

-250 -200 -150 -100 -50 0

R

0. 000

0. 005

0. 010f 6(

R R R

0. 012

0. 018

f 7(R)

UnivariateMonte Carlo Univariate: 37 analyses

Bivariate: 613 analyses

-300 -250 -200 -150 -100 -50 0

R

0. 000

0. 006 Bivariatey

Monte Carlo: 105 analyses

Page 13: PROBABILISTIC ANALYSIS OF DYNAMIC SYSTEMS WITH …...49th AIAA SDM Conference, Schaumburg, IL, April 2008 PROBABILISTIC ANALYSIS OF DYNAMIC SYSTEMS WITH COMPLEX-VALUED EIGENSOLUTIONS

EXAMPLES Marginal PDFs of Eigenvalues (Imaginary) Marginal PDFs of Eigenvalues (Imaginary)

0. 3

0. 4

0. 5

)

0. 06

0. 08

) 0. 015

0. 020

0. 025

I)

4 6 8 10 12 140. 0

0. 1

0. 2f 1(I)

30 40 50 60 70 80 90 1000. 00

0. 02

0. 04

f 2(I)

80 120 160 200 240 2800. 000

0. 005

0. 010

f 3(I

I, rad/s I, rad/s I, rad/s

0. 006

0. 009

0. 012

(I)

0 . 004

0. 006

0. 008

(I) 0 . 002

0. 003

0. 004

(I)

200 300 400 500 600

I, rad/s

0. 000

0. 003

f 4(

400 550 700 850 1000

I, rad/s

0. 000

0. 002

f 5(

800 1100 1400 1700 2000

I, rad/s

0. 000

0. 001

f 6(UnivariateMonte Carlo

I, I, I,

0. 0005

0. 0010

f 7(I)

Univariate: 37 analysesBivariate: 613 analyses

Bivariate

2500 3400 4300 5200 6100 7000

I, rad/s

0. 0000

f yMonte Carlo: 105 analyses

Page 14: PROBABILISTIC ANALYSIS OF DYNAMIC SYSTEMS WITH …...49th AIAA SDM Conference, Schaumburg, IL, April 2008 PROBABILISTIC ANALYSIS OF DYNAMIC SYSTEMS WITH COMPLEX-VALUED EIGENSOLUTIONS

EXAMPLES

E l 3 B k S l A l i Example 3: Brake Squeal Analysis

Random Input1

1111 2222 2

1122 2

1133 2233 2

125 GPa5.94 GPa

0.76 GPa0.98 GPa

cE XD D XD XD D X

1133 2233 2

3333 2

1212 2

1313 2323 2

2.27 GPa2.59 GPa

1.18 GPa207 GP

D XD XD D XE X

3

6 34

5

207 GPa

7.2 10 kg/mms

c

r

E X

Xf X

5{ } LNTX X X 1 5{ , , } LNX X X

Two-Step Analysis- Apply pressure to develop No damping

DOF 881 460pp y p p

contact betw. rotor & pads- Apply rot. vel. of 5 rad/s to

create steady-state motion

DOF = 881,460Unsymmetric K(X)

Page 15: PROBABILISTIC ANALYSIS OF DYNAMIC SYSTEMS WITH …...49th AIAA SDM Conference, Schaumburg, IL, April 2008 PROBABILISTIC ANALYSIS OF DYNAMIC SYSTEMS WITH COMPLEX-VALUED EIGENSOLUTIONS

EXAMPLES Effects of Friction Effects of Friction

8000

10000

, Hz

mean input(fr = 0.5)

Results of First 55 Eigenvalues

closely spaced modes (fr = 0)

6000

8000

art (

freq

uenc

y),

r

2000

4000

Imag

inar

y pa

-200 -100 0 100 200Real part

0

merged modes (fr = 0.5)

Page 16: PROBABILISTIC ANALYSIS OF DYNAMIC SYSTEMS WITH …...49th AIAA SDM Conference, Schaumburg, IL, April 2008 PROBABILISTIC ANALYSIS OF DYNAMIC SYSTEMS WITH COMPLEX-VALUED EIGENSOLUTIONS

EXAMPLES

CDF f I t bilit I d b U i i t (21 FEA) CDF of Instability Index by Univariate (21 FEA)

( ) ( )( ) 2Re ( ) Im ( )uN

i iu uU X X X

1i

10 0

[f ] 0 510 -1

< u]

[fr] = 0.5

10 -2

P[U

(X) < [fr] = 0.3

10 -4

10 -3[fr] = 0.1

-0.10 -0.08 -0.06 -0.04 -0.02 0.00

Instability index (u)

10 4

Page 17: PROBABILISTIC ANALYSIS OF DYNAMIC SYSTEMS WITH …...49th AIAA SDM Conference, Schaumburg, IL, April 2008 PROBABILISTIC ANALYSIS OF DYNAMIC SYSTEMS WITH COMPLEX-VALUED EIGENSOLUTIONS

CONCLUSIONS & FUTURE WORK

A novel decomposition method was developed for solving complex-valued random eigenvalue problems Yi ld t ffi i t & t l ti Yields accurate, efficient, & convergent solutions Univariate & bivariate methods entail linear &

quadratic cost scalings w r t no of random variablesquadratic cost scalings w.r.t. no. of random variables

Neither the derivatives of eigensolutions nor the assumption of small input variability neededp p y

Non-intrusiveness permits easy coupling with external codes for solving industrial-scale problems

Future works involve developing/solving Computationally efficient bivariate method Computationally efficient bivariate method Discontinuous/non-smooth problems