principles of magnetic resonance imaging · principles of magnetic resonance imaging klaus...

48
Radiologische Physik Biomedical Magnetic Resonance: 1 Introduction Principles of Magnetic Resonance Imaging Klaus Scheffler, PhD Radiological Physics University of Basel University Hospital Basel

Upload: others

Post on 10-Jun-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Principles of Magnetic Resonance Imaging · Principles of Magnetic Resonance Imaging Klaus Scheffler, PhD Radiological Physics University of Basel University Hospital Basel. 2 Hi

1

Hi

Radiologische Physik

Biomedical Magnetic Resonance: 1 Introduction

Principles of Magnetic Resonance Imaging

Klaus Scheffler, PhDRadiological PhysicsUniversity of Basel

University HospitalBasel

Page 2: Principles of Magnetic Resonance Imaging · Principles of Magnetic Resonance Imaging Klaus Scheffler, PhD Radiological Physics University of Basel University Hospital Basel. 2 Hi

2

Hi

Radiologische Physik

Biomedical Magnetic Resonance: 1 Introduction

Magnetic Resonance Imaging

Contents:

1 Introduction

2 Nuclear Magnetic Moments

3 Motion of Magnetization

4 Excitation and reception

5 Magnetic Resonance Imaging

6 Contrast

University HospitalBasel

Page 3: Principles of Magnetic Resonance Imaging · Principles of Magnetic Resonance Imaging Klaus Scheffler, PhD Radiological Physics University of Basel University Hospital Basel. 2 Hi

3

Hi

Radiologische Physik

Biomedical Magnetic Resonance: 1 Introduction

Biomedical Magnetic ResonanceHistory:

University HospitalBasel

198119791974

Page 4: Principles of Magnetic Resonance Imaging · Principles of Magnetic Resonance Imaging Klaus Scheffler, PhD Radiological Physics University of Basel University Hospital Basel. 2 Hi

4

Hi

Radiologische Physik

Biomedical Magnetic Resonance: 1 Introduction

Biomedical Magnetic ResonanceToday:

University HospitalBasel

Page 5: Principles of Magnetic Resonance Imaging · Principles of Magnetic Resonance Imaging Klaus Scheffler, PhD Radiological Physics University of Basel University Hospital Basel. 2 Hi

5

Hi

Radiologische Physik

Biomedical Magnetic Resonance: 2 Nuclear Magnetic Moments

Nuclear Magnetic Moments

Properties of a nucleus:

University HospitalBasel

Nuclues is charged (multiples of e+)

Some nuclei have a spin angular momentum J:J = ħI (I multiples of ½)

Then, they have a dipolar magnetic moment : = J = ħIFor example: 1H, 13C, 19F, 31P

ħ = Planck‘s quantum constant = gyromagnetic ration

+

Page 6: Principles of Magnetic Resonance Imaging · Principles of Magnetic Resonance Imaging Klaus Scheffler, PhD Radiological Physics University of Basel University Hospital Basel. 2 Hi

6

Hi

Radiologische Physik

Nuclear Magnetic Moments

Nucleus in a magnetic field:

University HospitalBasel

We assume I=½ (1H, 13C, 19F, 31P)

Then, the magnetic moment along the field is:

z = ħm = ±½ħ

The magnetic moment z is parallel orantiparallel to the field B0

B0 B0

z = ½ħ z = -½ħ

ħ = Planck‘s quantum constant = gyromagnetic ration

Biomedical Magnetic Resonance: 2 Nuclear Magnetic Moments

Page 7: Principles of Magnetic Resonance Imaging · Principles of Magnetic Resonance Imaging Klaus Scheffler, PhD Radiological Physics University of Basel University Hospital Basel. 2 Hi

7

Hi

Radiologische Physik

Nuclear Magnetic Moments

Nucleus in a magnetic field:

University HospitalBasel

In an external magnetic field,spin up or spin down are associated todifferent energy levels:

Em = -zB0 = -ħB0m, m = ±½.

E = +½ħB0 , E = -½ħB0

E = ħB0

ħ = Planck‘s quantum constant = gyromagnetic ration

Biomedical Magnetic Resonance: 2 Nuclear Magnetic Moments

Page 8: Principles of Magnetic Resonance Imaging · Principles of Magnetic Resonance Imaging Klaus Scheffler, PhD Radiological Physics University of Basel University Hospital Basel. 2 Hi

8

Hi

Radiologische Physik

Nuclear Magnetic Moments

University HospitalBasel

01/2 1/2 2 B S

n Bn n nk T

01/2 1/2 2 B S

n Bn n nk T

In thermal equilibrium, there are different probabilitiesfor spin up and down occupation (Boltzmann statistics).The difference in occupation n is given by:

kB : Boltzmann constantTS: Temperature

Biomedical Magnetic Resonance: 2 Nuclear Magnetic Moments

Page 9: Principles of Magnetic Resonance Imaging · Principles of Magnetic Resonance Imaging Klaus Scheffler, PhD Radiological Physics University of Basel University Hospital Basel. 2 Hi

9

Hi

Radiologische Physik

Nuclear Magnetic Moments

University HospitalBasel

Macroscopic magnetization:

Visible magnetization:

20

0 0 0 0( )2 4z z S

B S B S

n B nM n B T Bk T k T

0 izi

M

Sum (macroscopic Magnetization along B0):

0(TS): magnetic susceptibilitykB : Boltzmann constant

Biomedical Magnetic Resonance: 2 Nuclear Magnetic Moments

Page 10: Principles of Magnetic Resonance Imaging · Principles of Magnetic Resonance Imaging Klaus Scheffler, PhD Radiological Physics University of Basel University Hospital Basel. 2 Hi

10

Hi

Radiologische Physik

Biomedical Magnetic Resonance: 3 Motion of Magnetization

Motion of Magnetization

University HospitalBasel

Magnetization and magnetic field:

S

N

= =

M0

N

S

=

N

S

EW=

Page 11: Principles of Magnetic Resonance Imaging · Principles of Magnetic Resonance Imaging Klaus Scheffler, PhD Radiological Physics University of Basel University Hospital Basel. 2 Hi

11

Hi

Radiologische PhysikUniversity Hospital

Basel

Magnetization and magnetic field:

N

S

B0

N

S

B0

N

S

B0

Motion of Magnetization

Biomedical Magnetic Resonance: 3 Motion of Magnetization

Page 12: Principles of Magnetic Resonance Imaging · Principles of Magnetic Resonance Imaging Klaus Scheffler, PhD Radiological Physics University of Basel University Hospital Basel. 2 Hi

12

Hi

Radiologische PhysikUniversity Hospital

Basel

Magnetization and magnetic field:

B0

M0

B0

M0

B0

M0

?

Motion of Magnetization

Biomedical Magnetic Resonance: 3 Motion of Magnetization

Page 13: Principles of Magnetic Resonance Imaging · Principles of Magnetic Resonance Imaging Klaus Scheffler, PhD Radiological Physics University of Basel University Hospital Basel. 2 Hi

13

Hi

Radiologische PhysikUniversity Hospital

Basel

Nuclues is charged (multiples of e+)

Some nuclei have a spin angular momentum J:J = ħI (I multiples of ½)

Then, they have a dipolar magnetic moment : = J = ħI

ħ = Planck‘s quantum constant = gyromagnetic ration

+

Magnetization and magnetic field:

ΣM0

=

Motion of Magnetization

Biomedical Magnetic Resonance: 3 Motion of Magnetization

Page 14: Principles of Magnetic Resonance Imaging · Principles of Magnetic Resonance Imaging Klaus Scheffler, PhD Radiological Physics University of Basel University Hospital Basel. 2 Hi

14

Hi

Radiologische PhysikUniversity Hospital

Basel

M0

=

Magnetization and magnetic field:

N

S

B0

M0

Motion of Magnetization

Biomedical Magnetic Resonance: 3 Motion of Magnetization

Page 15: Principles of Magnetic Resonance Imaging · Principles of Magnetic Resonance Imaging Klaus Scheffler, PhD Radiological Physics University of Basel University Hospital Basel. 2 Hi

15

Hi

Radiologische PhysikUniversity Hospital

Basel

Magnetization and magnetic field:gravity

N

S

B0

N

S

B0

gravity

B0

M0

Motion of Magnetization

Biomedical Magnetic Resonance: 3 Motion of Magnetization

Page 16: Principles of Magnetic Resonance Imaging · Principles of Magnetic Resonance Imaging Klaus Scheffler, PhD Radiological Physics University of Basel University Hospital Basel. 2 Hi

16

Hi

Radiologische PhysikUniversity Hospital

Basel

Motion of magnetization: precession

( )d Bdt

Motion of Magnetization

Biomedical Magnetic Resonance: 3 Motion of Magnetization

B

d

d Bdt

d

Page 17: Principles of Magnetic Resonance Imaging · Principles of Magnetic Resonance Imaging Klaus Scheffler, PhD Radiological Physics University of Basel University Hospital Basel. 2 Hi

17

Radiologische PhysikUniversity Hospital

Basel

Motion of magnetization: precession

Motion of Magnetization

Biomedical Magnetic Resonance: 3 Motion of Magnetization

( )d Bdt

d Bdt

Page 18: Principles of Magnetic Resonance Imaging · Principles of Magnetic Resonance Imaging Klaus Scheffler, PhD Radiological Physics University of Basel University Hospital Basel. 2 Hi

18

Radiologische PhysikUniversity Hospital

Basel

Motion of magnetization: precession ( )d Bdt

Motion of Magnetization

Biomedical Magnetic Resonance: 3 Motion of Magnetization

d Bdt

Page 19: Principles of Magnetic Resonance Imaging · Principles of Magnetic Resonance Imaging Klaus Scheffler, PhD Radiological Physics University of Basel University Hospital Basel. 2 Hi

19

Hi

Radiologische PhysikUniversity Hospital

Basel

B0 B0

Bx(t) = 2B1cos(t)

B0

Excitation and Reception

Biomedical Magnetic Resonance: 4 Excitation and Reception

Page 20: Principles of Magnetic Resonance Imaging · Principles of Magnetic Resonance Imaging Klaus Scheffler, PhD Radiological Physics University of Basel University Hospital Basel. 2 Hi

20

Hi

Radiologische PhysikUniversity Hospital

Basel

FID: free induction decay

B0

precession of magnetization

a) on-resonance, b) off-resonance, c) spectrum

Excitation and Reception

Biomedical Magnetic Resonance: 4 Excitation and Reception

Page 21: Principles of Magnetic Resonance Imaging · Principles of Magnetic Resonance Imaging Klaus Scheffler, PhD Radiological Physics University of Basel University Hospital Basel. 2 Hi

21

Radiologische Physik

Biomedical Magnetic Resonance: 5 Magnetic Resonance Imaging

University HospitalBasel

Imaging = spatial discrimination

Magnetic Resonance Imaging

Page 22: Principles of Magnetic Resonance Imaging · Principles of Magnetic Resonance Imaging Klaus Scheffler, PhD Radiological Physics University of Basel University Hospital Basel. 2 Hi

22

Radiologische PhysikUniversity Hospital

Basel

Magnetic Resonance Imaging

Biomedical Magnetic Resonance: 5 Magnetic Resonance Imaging

Page 23: Principles of Magnetic Resonance Imaging · Principles of Magnetic Resonance Imaging Klaus Scheffler, PhD Radiological Physics University of Basel University Hospital Basel. 2 Hi

23

Radiologische PhysikUniversity Hospital

Basel

Magnetic Resonance Imaging

Biomedical Magnetic Resonance: 5 Magnetic Resonance Imaging

Bloch equation

= B

dMdt

M B ( )

Larmor equation

Page 24: Principles of Magnetic Resonance Imaging · Principles of Magnetic Resonance Imaging Klaus Scheffler, PhD Radiological Physics University of Basel University Hospital Basel. 2 Hi

24

Radiologische PhysikUniversity Hospital

Basel

Magnetic Resonance Imaging

Biomedical Magnetic Resonance: 5 Magnetic Resonance Imaging

Magnetic Field Gradients

x

B 0 = B0

B0

Sample in a homogenous magnetic field B0

Page 25: Principles of Magnetic Resonance Imaging · Principles of Magnetic Resonance Imaging Klaus Scheffler, PhD Radiological Physics University of Basel University Hospital Basel. 2 Hi

25

Radiologische PhysikUniversity Hospital

Basel

Magnetic Resonance Imaging

Biomedical Magnetic Resonance: 5 Magnetic Resonance Imaging

Magnetic Field Gradients

x

B(x) = B0 + xGx

B0

Sample in a magnetic gradient field B0 + B

am

Page 26: Principles of Magnetic Resonance Imaging · Principles of Magnetic Resonance Imaging Klaus Scheffler, PhD Radiological Physics University of Basel University Hospital Basel. 2 Hi

26

Radiologische PhysikUniversity Hospital

Basel

Magnetic Resonance Imaging

Biomedical Magnetic Resonance: 5 Magnetic Resonance Imaging

BB

xx

yyMagneticMagnetic fieldfield IsoIso--FluxFlux GraphGraph

Problem: 2D Problem: 2D oror higherhigher -- FrequenciesFrequencies ambiguousambiguous

xx

yy

Page 27: Principles of Magnetic Resonance Imaging · Principles of Magnetic Resonance Imaging Klaus Scheffler, PhD Radiological Physics University of Basel University Hospital Basel. 2 Hi

27

Radiologische PhysikUniversity Hospital

Basel

Magnetic Resonance Imaging

Biomedical Magnetic Resonance: 5 Magnetic Resonance Imaging

Magnetic Field Gradients

Swichable, linear magnetic field gradientsindependently in x, y and z direction

Page 28: Principles of Magnetic Resonance Imaging · Principles of Magnetic Resonance Imaging Klaus Scheffler, PhD Radiological Physics University of Basel University Hospital Basel. 2 Hi

28

Radiologische PhysikUniversity Hospital

BaselMagnetic Resonance Imaging

Biomedical Magnetic Resonance: 5 Magnetic Resonance Imaging

Spatially resolved reception

GradientGradient

x2x2

x1x1

Page 29: Principles of Magnetic Resonance Imaging · Principles of Magnetic Resonance Imaging Klaus Scheffler, PhD Radiological Physics University of Basel University Hospital Basel. 2 Hi

29

Radiologische PhysikUniversity Hospital

BaselMagnetic Resonance Imaging

Biomedical Magnetic Resonance: 5 Magnetic Resonance Imaging

Spatially resolved reception

Spatial encoding: the Fourier Transform

Page 30: Principles of Magnetic Resonance Imaging · Principles of Magnetic Resonance Imaging Klaus Scheffler, PhD Radiological Physics University of Basel University Hospital Basel. 2 Hi

30

Radiologische PhysikUniversity Hospital

BaselMagnetic Resonance Imaging

Biomedical Magnetic Resonance: 5 Magnetic Resonance Imaging

Spatially resolved reception

RF excitation

z gradient

x gradient

GradientGradient

x2x2

x1x1

MR signal

FT

Page 31: Principles of Magnetic Resonance Imaging · Principles of Magnetic Resonance Imaging Klaus Scheffler, PhD Radiological Physics University of Basel University Hospital Basel. 2 Hi

31

Radiologische PhysikUniversity Hospital

BaselMagnetic Resonance Imaging

Biomedical Magnetic Resonance: 5 Magnetic Resonance Imaging

Spatially resolved reception

Back projection: imaging sequence

RF excitation

z gradient

x gradient

y gradient

Signal acquisition sinogram

FT

recon

k

Page 32: Principles of Magnetic Resonance Imaging · Principles of Magnetic Resonance Imaging Klaus Scheffler, PhD Radiological Physics University of Basel University Hospital Basel. 2 Hi

32

Radiologische PhysikUniversity Hospital

BaselMagnetic Resonance Imaging

Biomedical Magnetic Resonance: 5 Magnetic Resonance Imaging

Imaging in k-space

2DFT2DFT

k-space image

i2 kxS(k) (x) e dx -i 2(x) S(k) e dkkx

S(k) = S(k(t)) = S(t)

Page 33: Principles of Magnetic Resonance Imaging · Principles of Magnetic Resonance Imaging Klaus Scheffler, PhD Radiological Physics University of Basel University Hospital Basel. 2 Hi

33

Radiologische PhysikUniversity Hospital

BaselMagnetic Resonance Imaging

Biomedical Magnetic Resonance: 5 Magnetic Resonance Imaging

Properties of k-space

kx

ky

Page 34: Principles of Magnetic Resonance Imaging · Principles of Magnetic Resonance Imaging Klaus Scheffler, PhD Radiological Physics University of Basel University Hospital Basel. 2 Hi

34

Radiologische PhysikUniversity Hospital

BaselMagnetic Resonance Imaging

Biomedical Magnetic Resonance: 5 Magnetic Resonance Imaging

Properties of k-space

8 x 8512 x 512

Page 35: Principles of Magnetic Resonance Imaging · Principles of Magnetic Resonance Imaging Klaus Scheffler, PhD Radiological Physics University of Basel University Hospital Basel. 2 Hi

35

Radiologische PhysikUniversity Hospital

BaselMagnetic Resonance Imaging

Biomedical Magnetic Resonance: 5 Magnetic Resonance Imaging

Imaging in k-space

k-space

i2 kxS(k) (x) e dx

S(k) = S(k(t)) = S(t)

RF excitation

z gradient

x gradient

y gradient

Signal acquisition

t

0

1( ) (t) dt2

k t G

Page 36: Principles of Magnetic Resonance Imaging · Principles of Magnetic Resonance Imaging Klaus Scheffler, PhD Radiological Physics University of Basel University Hospital Basel. 2 Hi

36

Radiologische PhysikUniversity Hospital

BaselMagnetic Resonance Imaging

Biomedical Magnetic Resonance: 5 Magnetic Resonance Imaging

Imaging in k-space: gradient echo (GE) sequence

k-space

i2 kxS(k) (x) e dx

S(k) = S(k(t)) = S(t)

RF excitation

z gradient

x gradient

y gradient

Signal acquisition

t

0

1( ) (t) dt2

k t G

Page 37: Principles of Magnetic Resonance Imaging · Principles of Magnetic Resonance Imaging Klaus Scheffler, PhD Radiological Physics University of Basel University Hospital Basel. 2 Hi

37

Radiologische PhysikUniversity Hospital

BaselMagnetic Resonance Imaging

Biomedical Magnetic Resonance: 5 Magnetic Resonance Imaging

Imaging in k-space: gradient echo (GE) sequence (EPI)

k-space

i2 kxS(k) (x) e dx

S(k) = S(k(t)) = S(t)

RF excitation

z gradient

x gradient

y gradient

Signal acquisition

t

0

1( ) (t) dt2

k t G

Page 38: Principles of Magnetic Resonance Imaging · Principles of Magnetic Resonance Imaging Klaus Scheffler, PhD Radiological Physics University of Basel University Hospital Basel. 2 Hi

38

Radiologische PhysikUniversity Hospital

BaselMagnetic Resonance Imaging

Biomedical Magnetic Resonance: 5 Magnetic Resonance Imaging

Imaging in k-space: gradient echo (GE) sequence (spiral EPI)

k-space

i2 kxS(k) (x) e dx

S(k) = S(k(t)) = S(t)

RF excitation

z gradient

x gradient

y gradient

Signal acquisition

t

0

1( ) (t) dt2

k t G

Page 39: Principles of Magnetic Resonance Imaging · Principles of Magnetic Resonance Imaging Klaus Scheffler, PhD Radiological Physics University of Basel University Hospital Basel. 2 Hi

39

Radiologische PhysikUniversity Hospital

BaselMagnetic Resonance Imaging

Biomedical Magnetic Resonance: 5 Magnetic Resonance Imaging

Imaging in k-space: spin echo (SE) sequence

k-space

i2 kxS(k) (x) e dx

S(k) = S(k(t)) = S(t)

RF excitation

z gradient

x gradient

y gradient

Signal acquisition

t

0

1( ) (t) dt2

k t G

90°

Page 40: Principles of Magnetic Resonance Imaging · Principles of Magnetic Resonance Imaging Klaus Scheffler, PhD Radiological Physics University of Basel University Hospital Basel. 2 Hi

40

Radiologische PhysikUniversity Hospital

BaselMagnetic Resonance Imaging

Biomedical Magnetic Resonance: 5 Magnetic Resonance Imaging

Imaging in k-space: spin echo (SE) sequence

k-space

i2 kxS(k) (x) e dx

S(k) = S(k(t)) = S(t)

RF excitation

z gradient

x gradient

y gradient

Signal acquisition

t

0

1( ) (t) dt2

k t G

90°

180°

Page 41: Principles of Magnetic Resonance Imaging · Principles of Magnetic Resonance Imaging Klaus Scheffler, PhD Radiological Physics University of Basel University Hospital Basel. 2 Hi

41

Radiologische PhysikUniversity Hospital

BaselMagnetic Resonance Imaging

Biomedical Magnetic Resonance: 5 Magnetic Resonance Imaging

Imaging in k-space: spin echo (SE) sequence

k-space

i2 kxS(k) (x) e dx

S(k) = S(k(t)) = S(t)

RF excitation

z gradient

x gradient

y gradient

Signal acquisition

t

0

1( ) (t) dt2

k t G

90°

180°

Page 42: Principles of Magnetic Resonance Imaging · Principles of Magnetic Resonance Imaging Klaus Scheffler, PhD Radiological Physics University of Basel University Hospital Basel. 2 Hi

42

Radiologische PhysikUniversity Hospital

Basel

Contrast

Biomedical Magnetic Resonance: 6 Contrast

Page 43: Principles of Magnetic Resonance Imaging · Principles of Magnetic Resonance Imaging Klaus Scheffler, PhD Radiological Physics University of Basel University Hospital Basel. 2 Hi

43

Radiologische PhysikUniversity Hospital

BaselContrast

Relaxation in living tissue

T1: recovery of longitudinal magnetization

T2* : loss of phase coherence of transverse magnetization

T2`

staticdephasing

randomdephasing

T2

T2*

x

z

T1 T2*

M

2

2

1

/

/

/0 0( )

t Tx xi

t Ty yi

t Tz zi

M M e

M M e

M M M e M

Biomedical Magnetic Resonance: 6 Contrast

Page 44: Principles of Magnetic Resonance Imaging · Principles of Magnetic Resonance Imaging Klaus Scheffler, PhD Radiological Physics University of Basel University Hospital Basel. 2 Hi

44

Hi

Radiologische PhysikUniversity Hospital

Basel

Spin Echoes

Biomedical Magnetic Resonance: 5 Magnetic Resonance Imaging

Page 45: Principles of Magnetic Resonance Imaging · Principles of Magnetic Resonance Imaging Klaus Scheffler, PhD Radiological Physics University of Basel University Hospital Basel. 2 Hi

45

Radiologische PhysikUniversity Hospital

Basel

Relaxation in living tissue

Contrast

Biomedical Magnetic Resonance: 6 Contrast

Page 46: Principles of Magnetic Resonance Imaging · Principles of Magnetic Resonance Imaging Klaus Scheffler, PhD Radiological Physics University of Basel University Hospital Basel. 2 Hi

46

Radiologische PhysikUniversity Hospital

Basel

Contrast of imaging sequences

k-space RF excitation

z gradient

x gradient

y gradient

Signal acquisition

Repeat hundreds of times

Contrast

Biomedical Magnetic Resonance: 6 Contrast

Page 47: Principles of Magnetic Resonance Imaging · Principles of Magnetic Resonance Imaging Klaus Scheffler, PhD Radiological Physics University of Basel University Hospital Basel. 2 Hi

47

Radiologische PhysikUniversity Hospital

Basel

Contrast of imaging sequences:TR~T1>T2

t

MzM0

0 1 2 3 4 5 6 7 8

M0cos

Mt

M0sin

RF (flip angle )

Contrast

Biomedical Magnetic Resonance: 6 Contrast

Page 48: Principles of Magnetic Resonance Imaging · Principles of Magnetic Resonance Imaging Klaus Scheffler, PhD Radiological Physics University of Basel University Hospital Basel. 2 Hi

48

Radiologische PhysikUniversity Hospital

Basel

200 500 1000 3000 6000

10

40

70

100

TRTE

Contrast

Biomedical Magnetic Resonance: 6 Contrast