presentazione standard di...

14
Magnetic Sensors 1) Hall sensors Hall effect: Discovered by Edwin Hall in 1879

Upload: others

Post on 03-Nov-2019

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Presentazione standard di PowerPointdocenti.ing.unipi.it/~a008309/mat_stud/MIXED/2018/Lecture_notes/...Case 1: Use a couple of orthogonal Hall effect based on crystalline silicon bias

Magnetic Sensors

1) Hall sensors

Hall effect: Discovered by Edwin Hall in 1879

Page 2: Presentazione standard di PowerPointdocenti.ing.unipi.it/~a008309/mat_stud/MIXED/2018/Lecture_notes/...Case 1: Use a couple of orthogonal Hall effect based on crystalline silicon bias
Page 3: Presentazione standard di PowerPointdocenti.ing.unipi.it/~a008309/mat_stud/MIXED/2018/Lecture_notes/...Case 1: Use a couple of orthogonal Hall effect based on crystalline silicon bias

Resistive Magnetic Sensors

Page 4: Presentazione standard di PowerPointdocenti.ing.unipi.it/~a008309/mat_stud/MIXED/2018/Lecture_notes/...Case 1: Use a couple of orthogonal Hall effect based on crystalline silicon bias

Ex. 1: Electronic Compass

Earth’s Magnetic Field Intensity : 25-65 mT (0.25–0.65 G)

Horizontal component in Pisa (from map) 23300 nT ~ 23 mT

Page 5: Presentazione standard di PowerPointdocenti.ing.unipi.it/~a008309/mat_stud/MIXED/2018/Lecture_notes/...Case 1: Use a couple of orthogonal Hall effect based on crystalline silicon bias

Let us consider a maximum error of 5° :

rad087.0180

5e

T2T1028087.0maxmax6

m

Hee BB

H

ee

B

B

BY

BX

Sensor arrangement:

Two orhogonal sensors that

measures the X and Y

(horizontal components)

component of the magnetic

field B

Angular resolution:

Page 6: Presentazione standard di PowerPointdocenti.ing.unipi.it/~a008309/mat_stud/MIXED/2018/Lecture_notes/...Case 1: Use a couple of orthogonal Hall effect based on crystalline silicon bias

Case 1: Use a couple of orthogonal Hall effect based on crystalline silicon

biasHH

A Inqt

rG

B

VS

VH-VH+

Ibias

SA=0.0412 V/T

R0=2.2 kW

Page 7: Presentazione standard di PowerPointdocenti.ing.unipi.it/~a008309/mat_stud/MIXED/2018/Lecture_notes/...Case 1: Use a couple of orthogonal Hall effect based on crystalline silicon bias

Typical readout approach for precise measurements:

Current Spinning

1 2 3 4

Ibias

Page 8: Presentazione standard di PowerPointdocenti.ing.unipi.it/~a008309/mat_stud/MIXED/2018/Lecture_notes/...Case 1: Use a couple of orthogonal Hall effect based on crystalline silicon bias

Sensor offset

Bio25 mT

Bio(T

)

DBio<5 mT (between 25 and 35 °C)

since 2 mT -> 5° angular error then:

Offset: -> 62.5° angular error

Drift: -> 12.5° angular error

Page 9: Presentazione standard di PowerPointdocenti.ing.unipi.it/~a008309/mat_stud/MIXED/2018/Lecture_notes/...Case 1: Use a couple of orthogonal Hall effect based on crystalline silicon bias

Sensor noise

04kTRSvR R0=2.2 kW

HznV/93.54 0 kTRSvR

over 100 Hz BW:

BW=0.1-100Hz

vnS-rms=59.3 nV

vnS-pp=237 nV

T75.5 m

A

ppnS

ppnSS

vB

Page 10: Presentazione standard di PowerPointdocenti.ing.unipi.it/~a008309/mat_stud/MIXED/2018/Lecture_notes/...Case 1: Use a couple of orthogonal Hall effect based on crystalline silicon bias

Amplifier contribution to the angular error (1)

Case 1: AD 620. Offset: accuracy

Noise: Resolution

Offset voltage (typ.) Input: 15 mV Output 200 mV

Vio-total= Vosi+Voso/G with G=1000 Vio-totalVosi=15 mV

Vosi drift (typ.) : 0.1 mV / °C (1 mV between 25 and 35 °C)

Offset current contribution: IioR0= 0.3 nA x 2.2 kW =0.66 mV << Vio-total

Noise: BW 0.1-100 Hz

Broad Band noise: eni=√SVBB=9 nV √ Hz Integrated over BW=100Hz:

vnBB-rms=90 nV -> vnBB-pp=360 nV

Low frequency (Flicker) noise over 0.1-10 Hz -> 280 nV

Total noise voltage of the amplifier:

nV45622

ppnFppnBBppnA vvv

Page 11: Presentazione standard di PowerPointdocenti.ing.unipi.it/~a008309/mat_stud/MIXED/2018/Lecture_notes/...Case 1: Use a couple of orthogonal Hall effect based on crystalline silicon bias

Amplifier contribution to the angular error (2)

Current noise: Broad-band component

HzS

SRS

S

RRRSS

VI

I

I

VI

SSIVI

/nV155.0

Hz/fA1002

k1.12

2

0

02

W

Flicker component:

nV222

0

Riv ppnppfni

Noise voltage components due to the input bias current noise are

negligible with respect to the input noise voltage components.

Page 12: Presentazione standard di PowerPointdocenti.ing.unipi.it/~a008309/mat_stud/MIXED/2018/Lecture_notes/...Case 1: Use a couple of orthogonal Hall effect based on crystalline silicon bias

Design of an electronic compass using the HMC 1002

Magneto-resistive sensor (2 axis)

Sensor characteristics:

V supply (typ) = 5 V

Output resistance: 850 W

Sensitivity: 3.2 mV/V/gauss SA=160 mV / mT (with Vsupply =5 V)

Noise: √SVBB= 30 nV/ √Hz ; √ Kf=30 nV

Offset max: 60 mV

Offset: can be strongly reduced

using the set-reset measurement

cycle (see datasheet).

The residual offset can be assumed

to be given by the set-reset

repeatability: 2mV

Page 13: Presentazione standard di PowerPointdocenti.ing.unipi.it/~a008309/mat_stud/MIXED/2018/Lecture_notes/...Case 1: Use a couple of orthogonal Hall effect based on crystalline silicon bias

Noise:

BW 0.01 – 100 Hz (four decades)

V6.14 m BWev nppn

nV3633.24 decfppn nkv

thermal

flicker

Vn=1.64 mV p-p (total)

Equivalent errors on the magnetic field:

T05.01032

106.16

6

m

S

ppn

ppnk

vB

T062.01032

1026

6

m

S

ioio

k

vB

Noise

Offset

Page 14: Presentazione standard di PowerPointdocenti.ing.unipi.it/~a008309/mat_stud/MIXED/2018/Lecture_notes/...Case 1: Use a couple of orthogonal Hall effect based on crystalline silicon bias

Conclusion

The offset and noise errors on the measured magnetic field is much

smaller than the initial specification (2.4 mT).

Therefore the sensor is suitable to obtain angular accuracies much

better than the 5° specification.