practical benefits of biochar amendment to agricultural systems: linking soil and microbial...

1
Zi vs Pi Node Discrimina/on Phyla Distribu/on Among Network Nodes Biomass pyrolysis products (biochar) have the poten7al to address both climate change and the degrada7on of agricultural soils. As a soil amendment biochar can provide longterm C sequestra7on, improve soil quality, water reten7on, crop produc7vity and food produc7on sustainability. The prac/cal value of biochar as a soil amendment hinges on whether it produces significant and persistent improvements in crop yields and soil quality and can be incorporated into an economicallyviable, sustainable agronomic system. Background Molecular Ecological Networks Prac/cal Benefits of Biochar Amendment to Agricultural Systems: Linking Microbial Processes to Economic Feasibility and Sustainability Susan Crow 1 , Jonathan Deenik 1 , C. Ryan Penton 2 , John Yanagida 1 ( 1 Univ. of Hawaii at Manoa, HI; 2 Arizona State Univ., College of LeRers and Sciences) Acknowledgements: Susan Migita and Poamoho Research Sta7on, Roger Corrales, Waimanalo Research Sta7on, and Diacarbon. Impact Our longterm goal is to improve resource management through more sustainable agricultural prac7ces by addressing the processlevel origins of improvements in our produc7on systems. Greenhouse gas reduc/on and carbon sequestra/on through biochar amendment, both direct through the incorpora7on of recalcitrant organic maRer and indirect through reduc7on in net GHG flux through impacts on soil biological, chemical, and physical processes, are cri7cal to produc7on systems that strive for environmental sustainability. By focusing in part on the underlying processes driving GHG flux and carbon sequestra7on, the results can be more broadly applied to other agricultural regions. Experimental Outline Microbial Analyses . 16S Illumina sequencing for bacterial community composi7on, 36 samples per treatment/ 7me, processed through QIIME with chimera detec7on, clustered at 3% dissimilarity. RMT analysis using Zhou Lab Molecular Ecological Analysis pipeline and visualized in Cytoscape, sta7s7cs using PRIMERE. Field Trials. Sweet corn and Napier (bioenergy grass) are cropped at two sites (Waimanolomollisol and Poamohooxisol) in a replicated, randomized block design. Fer7lized with fish bone meal, lime applied to the oxisol. Biochar and no biochar treatments. Corn is harvested ~72 days aeer plan7ng, Napier every 6 months. Biochar is applied at 1% rate on 15x20 e plots, fish bone meal applied at 24 lbs/ plot. Current Conclusions USDAAnnual Project Director’s Mee/ng 2015 USDANIFA award number 20126702030234 Current and Future Work Microbial Analyses 1. Fungal ITS sequencing Subset of field samples 2. qPCR NosZ and 16S rRNA genes to correlate with N flux data 3. SIPenabled metagenomics 13 C labeled Napier 4. Aggregatesize Geochip for C func7onal genes 5. Buried biochar bags Bacterial and fungal communi7es 6. Bacterial abundance temperature sensi7vity incuba7ons Temperature Sensi/vity 1. Expanded temperature range 1943 °C for threshold effect Carbon 1. C incorpora7on into aggregate size frac7ons 2. Priming effects on longterm temp. sensi7vity incuba7ons PlantMicrobial Interac/ons 1. Greenhouse corn – Analysis of plant hormone produc7on, possibly PGPR Economic Analyses 1. C value through GHG losses and C sequestra7on 2. Es7mates of payback period also using es7mates of local biochar produc7on RMTbased Molecular Ecological Network Analysis 1.) Biochar amendment resulted in higher modularity, more nodes and links. Representa7ve of a “larger world” with more interac7ons that link at a higher efficiency between taxa. 2.) Lower avg degree of linkages combined with higher diversity of significant nodes (taxa) indicate a more resilient, less fragile microbial community to external pressures (e.g. less probability of community (and func7onal) collapse). 3.) Biochar module hubs were more likely to be N fixers, chi/n degraders with a high number of linkages 4.) A major no biochar module hub (module 12) was Nitrospira, an ammonia oxidizer, not present in biochar network 5.) Major differences in the number of Acidobacteria, Proteobacteria, and Gemma7monadetes between networks. Random Matrix Theorybased Molecular Ecological Network Analysis was performed based on the significant community differences in the Poamoho Napier biochar / no biochar treatments: WNapierPHarv Biochar Composi7on & Crop Yield Crop Yield tended to increase in the Napier crop with no differences observed in the corn harvest. Crop Yield Biochar Par/cle Size Distribu/on 72% of biochar par7cles were less than 1 mm diameter. Flux Data N2O CO2 GHG Flux Data. Biochar amendment tended to decrease emissions of CO 2 and N 2 O in the mollisol but increase emissions in the oxisol. This soiltype dependency on responses is a common trend throughout. Methane consump7on tended to be lower in the biochar amendment, though not significantly. CH4 Soil Chemical Data Biochar affects are NOT UNIVERSAL, but dependent on soil type x crop. Crop Effects: Crop yield tends to increase with Napier but not with corn. GHG Emissions: Changes in CO 2 ,N 2 O and CH 4 consump7on due to biochar did not significantly differ, trends were due to soil type interac7ons with a trend of less CO 2 and N 2 O produc7on in the mollisol but not in the oxisol. Soil Chemical Data: Carbon tended to be retained in the biochar treatment within the Napier crops more than the no biochar treatment. Percent carbon was always higher in the biochar amendment. Nitrogen also tended to be higher in biochar, though generally not significantly. Microbial Communi/es: Microbial communi/es changed significantly in most cases with biochar amendment, though soil type x crop differences exist. Microbial communi/es were “homogenized” with biochar amendment. Biochar does not impact overall microbial diversity. In Poamoho Napier, biochar resulted in a more resilient, less fragile microbial community with more N fixers and aroma/c hydrocarbon degraders compared to ammonia oxidizers (e.g. N loss) in the no biochar treatment. Microbial Community Composi7on nMDS of bacterial community structure represen7ng a total of 39.3 million MiSeq reads at 13,300 seqs/ sample and 19,721 OTUs. Mollisol vs. Oxisol (Waimanolo – Poamoho) Corn vs. Napier Biochar vs. No Biochar PrePlant vs. Harvest PCornPHarv PNapierPPlant WCornPHarv WNapierPPlant BC NBC BC NBC BC NBC Biochar amendment results in: 1. Significantly decreased plotscale heterogeneity “homogenizes the community2. Significant shies in bacterial community composi/on: a. In both corn and napier within the oxisol at Poamoho b. In the corn within the Waimanalo mollisol soil 3. Decreases in # of Acidobacteria and increases in Proteobacteria in Poamoho 4. Larger # of Acidobacteria, Proteobacteria, Crenarchaeota in Waimanalo Differences were best correlated to pH and Mg (BEST, ρ=0.531, p=0.001; ρ=0.35, p=0.01) Time was a significant factor in all plots (e.g. preplant, harvest @ 1 yr) Soil type was also highly significant (F=77.56, p=0.001). Biochar does not generally influence diversity measures. Soil type and plant effects shape the community. NBC BC BC NBC A D B A B A C B A B 7.6 7.2 6.4 6.8 Shannon Diversity H’ P PP Napier W PP Napier W PH Napier W PP Corn P PH Corn Biochar No Biochar Carbon. Preplant and harvest showed biochar with significantly higher %C, due to addi7on. Corn soils all showed C loss from pre plant to harvest. Napier soils showed C gain in biochar amendment while no biochar showed C loss. Change in %C Economic Analysis Flowchart Nitrogen. %N tended to be higher in biochar treatments, though generally not significantly both at preplant and harvest two.

Upload: national-institute-of-food-and-agriculture

Post on 16-Feb-2017

309 views

Category:

Environment


0 download

TRANSCRIPT

Zi    vs  Pi  Node  Discrimina/on   Phyla  Distribu/on  Among  Network  Nodes  

Biomass   pyrolysis   products   (biochar)   have   the   poten7al   to  address   both   climate   change   and   the   degrada7on   of  agricultural  soils.  As  a  soil  amendment  biochar  can  provide  long-­‐term   C   sequestra7on,   improve   soil   quality,   water  reten7on,   crop   produc7vity   and   food   produc7on  sustainability.    The  prac/cal  value  of  biochar  as  a  soil  amendment  hinges  on   whether   it   produces   significant   and   persistent  improvements   in   crop   yields   and   soil   quality   and   can   be  incorporated   into   an   economically-­‐viable,   sustainable  agronomic  system.        

Background   Molecular  Ecological  Networks  

Prac/cal  Benefits  of  Biochar  Amendment  to  Agricultural  Systems:  Linking  Microbial  Processes  to  Economic  Feasibility  and  Sustainability  

     

Susan  Crow  1,  Jonathan  Deenik  1,  C.  Ryan  Penton  2,  John  Yanagida  1  (1  Univ.  of  Hawaii  at  Manoa,  HI;  2  Arizona  State  Univ.,  College  of  LeRers  and  Sciences)    

Acknowledgements:  Susan  Migita  and  Poamoho  Research  Sta7on,  Roger  Corrales,  Waimanalo  Research  Sta7on,  and  Diacarbon.    

Impact  Our   long-­‐term   goal   is   to   improve   resource   management   through   more  sustainable   agricultural   prac7ces   by   addressing   the   process-­‐level   origins   of  improvements   in   our   produc7on   systems.     Greenhouse   gas   reduc/on   and  carbon   sequestra/on   through   biochar   amendment,   both   direct   through   the  incorpora7on  of  recalcitrant  organic  maRer  and  indirect  through  reduc7on  in  net  GHG   flux   through   impacts   on   soil   biological,   chemical,   and   physical   processes,  are   cri7cal   to   produc7on   systems   that   strive   for  environmental   sustainability.    By   focusing   in   part   on   the   underlying   processes   driving   GHG   flux   and   carbon  sequestra7on,   the   results   can   be   more   broadly   applied   to   other   agricultural  regions.  

Experimental  Outline  

Microbial   Analyses .   16S   I l lumina  sequencing   for   bacterial   community  composi7on,   36   samples   per   treatment/7me,   processed   through   QIIME   with  chimera   detec7on,   clustered   at   3%  dissimilarity.   RMT  analysis   using   Zhou   Lab  Molecular  Ecological  Analysis  pipeline  and  visualized   in   Cytoscape,   sta7s7cs   using  PRIMER-­‐E.  

Field   Trials.   Sweet   corn   and   Napier  (bioenergy  grass)  are  cropped  at  two  sites  (Waimanolo-­‐mollisol   and  Poamoho-­‐oxisol)  in   a   replicated,   randomized   block   design.  Fer7lized  with  fish  bone  meal,  lime  applied  to   the   oxisol.   Biochar   and   no   biochar  treatments.   Corn   is   harvested   ~72   days  aeer   plan7ng,   Napier   every   6   months.  Biochar   is   applied   at   1%   rate   on   15x20   e  plots,   fish   bone   meal   applied   at   24   lbs/plot.    

Current  Conclusions  

USDA-­‐Annual  Project  Director’s  Mee/ng  2015  USDA-­‐NIFA  award  number  2012-­‐67020-­‐30234      

Current  and  Future  Work  Microbial  Analyses  1.  Fungal  ITS  sequencing-­‐  Subset  of  field  samples  2.  qPCR-­‐  NosZ  and  16S  rRNA  genes  to  correlate  with  N  flux  data  3.  SIP-­‐enabled  metagenomics  -­‐  13C  labeled  Napier  4.  Aggregate-­‐size-­‐  Geochip  for  C  func7onal  genes  5.  Buried  biochar  bags-­‐  Bacterial  and  fungal  communi7es  6.  Bacterial  abundance-­‐  temperature  sensi7vity  incuba7ons  Temperature  Sensi/vity  1.  Expanded  temperature  range  19-­‐43  °C  for  threshold  effect  Carbon    1.  C  incorpora7on  into  aggregate  size  frac7ons  2.  Priming  effects  on  long-­‐term  temp.  sensi7vity  incuba7ons  Plant-­‐Microbial  Interac/ons  1.  Greenhouse  corn  –  Analysis  of  plant  hormone  produc7on,  

possibly  PGPR  Economic  Analyses  1.  C  value  through  GHG  losses  and  C  sequestra7on  2.  Es7mates  of  payback  period  also  using  es7mates  of  local  biochar  

produc7on  

RMT-­‐based  Molecular  Ecological  Network  Analysis  1.)   Biochar   amendment   resulted   in   higher   modularity,   more  nodes   and   links.   Representa7ve   of   a   “larger   world”   with   more  interac7ons  that  link  at  a  higher  efficiency  between  taxa.  2.)  Lower  avg  degree  of  linkages  combined  with  higher  diversity  of  significant   nodes   (taxa)   indicate   a   more   resilient,   less   fragile  microbial   community   to   external   pressures   (e.g.   less   probability  of  community  (and  func7onal)  collapse).  3.)   Biochar  module   hubs  were  more   likely   to   be  N  fixers,   chi/n  degraders  with  a  high  number  of  linkages  4.)  A  major  no  biochar  module  hub  (module  12)  was  Nitrospira,  an  ammonia  oxidizer,  not  present  in  biochar  network  5.)   Major   differences   in   the   number   of   Acidobacteria,  Proteobacteria,  and  Gemma7monadetes  between  networks.      

Random   Matrix   Theory-­‐based   Molecular   Ecological   Network   Analysis   was  performed   based   on   the   significant   community   differences   in   the   Poamoho  Napier  biochar  /  no  biochar  treatments:  

W-­‐Napier-­‐PHarv  

Biochar  Composi7on  &  Crop  Yield  

Crop  Yield  tended  to  increase  in  the  Napier  crop  with  no  differences  observed  in  the  corn  harvest.  

Crop  Yield  Biochar  Par/cle  Size  Distribu/on  

72%  of  biochar  par7cles  were  less  than  1  mm  diameter.  

Flux  Data  

N2O  

CO2  

GHG  Flux  Data.  B i o c h a r   am e n dme n t  t e n d e d   t o   d e c r e a s e  emissions   of   CO2   and   N2O  in  the  mollisol  but   increase  emissions  in  the  oxisol.    This   soil-­‐type   dependency  on   responses   is   a   common  trend  throughout.    Methane   consump7on  tended   to   be   lower   in   the  b i o c h a r   amendmen t ,  though  not  significantly.  

CH4  

Soil  Chemical  Data  

Biochar  affects  are  NOT  UNIVERSAL,  but  dependent  on  soil  type  x  crop.  Crop  Effects:  •  Crop  yield  tends  to  increase  with  Napier  but  not  with  corn.    GHG  Emissions:  •   Changes  in  CO2,  N2O  and  CH4  consump7on  due  to  biochar  did  not  significantly              differ,  trends  were  due  to  soil  type  interac7ons  with  a  trend  of  less  CO2  and                N2O  produc7on  in  the  mollisol  but  not  in  the  oxisol.    Soil  Chemical  Data:                Carbon  tended  to  be  retained  in  the  biochar  treatment  within  the  Napier  crops                more  than  the  no  biochar  treatment.  Percent  carbon  was  always  higher  in  the                biochar  amendment.  Nitrogen  also  tended  to  be  higher  in  biochar,  though                  generally  not  significantly.    Microbial  Communi/es:  •  Microbial  communi/es  changed  significantly  in  most  cases  with  biochar  

amendment,  though  soil  type  x  crop  differences  exist.  •  Microbial  communi/es  were  “homogenized”  with  biochar  amendment.  •  Biochar  does  not  impact  overall  microbial  diversity.  •  In  Poamoho  Napier,  biochar  resulted  in  a  more  resilient,  less  fragile  microbial  

community  with  more  N  fixers  and  aroma/c  hydrocarbon  degraders            compared  to  ammonia  oxidizers  (e.g.  N  loss)  in  the  no  biochar  treatment.  

 

Microbial  Community  Composi7on  nMDS  of  bacterial  community  structure  represen7ng  a  total  of  39.3  million  MiSeq  reads  at  13,300  seqs/sample  and  19,721  OTUs.    

Mollisol  vs.  Oxisol  (Waimanolo  –  Poamoho)  

Corn  vs.  Napier  Biochar  vs.  No  Biochar  Pre-­‐Plant  vs.  Harvest  

P-­‐Corn-­‐PHarv  

P-­‐Napier-­‐PPlant  

W-­‐Corn-­‐PHarv  

W-­‐Napier-­‐PPlant  

BC  

NBC  

BC  NBC  

BC  NBC  

Biochar  amendment  results  in:  1.  Significantly  decreased  plot-­‐scale  heterogeneity  -­‐  “homogenizes  the  community”  2.   Significant  shies  in  bacterial  community  composi/on:                a.  In  both  corn  and  napier  within  the  oxisol  at  Poamoho                b.  In  the  corn  within  the  Waimanalo  mollisol  soil  3.  Decreases  in  #  of  Acidobacteria  and  increases  in  Proteobacteria  in  Poamoho  4.  Larger  #  of  Acidobacteria,  Proteobacteria,  Crenarchaeota  in  Waimanalo    Differences  were  best  correlated  to  pH  and  Mg  (BEST,  ρ=0.531,  p=0.001;  ρ=0.35,  p=0.01)  Time  was  a  significant  factor  in  all  plots  (e.g.  pre-­‐plant,  harvest  @  1  yr)  Soil  type  was  also  highly  significant  (F=77.56,  p=0.001).    

Biochar  does  not  generally  influence  diversity  measures.    Soil  type  and  plant  effects  shape  the  community.    

NBC  

BC  

BC  

NBC  

A

D

B

A

B

A

C

B

A

B

6.4

6.8

7.2

7.6

8

P_PP_NAPIER W_PP_NAPIER W_PH_NAPIER W_PP_CORN P_PH_CORN

H'(l

oge)

Shannon's Diversity

BC

NBC

7.6  

7.2  

6.4  

6.8  

Shanno

n  Diversity

 H’  

P  PP  Napier              W  PP  Napier                W  PH  Napier                  W  PP  Corn                      P  PH  Corn  

Biocha

r  No  Biocha

r  

Carbon.   Pre-­‐plant   and   harvest  showed  biochar  with  significantly  higher  %C,  due  to  addi7on.  Corn  soils  all   showed  C   loss   from  pre-­‐plant   to   harvest.   Napier   soils  showed   C   gain   in   biochar  amendment   while   no   biochar  showed  C  loss.  

Change  in  %C  

Economic  Analysis  Flowchart  

Nitrogen.  %N   tended   to   be   higher   in   biochar   treatments,   though   generally  not  significantly  both  at  pre-­‐plant  and  harvest  two.