power kripke-platek set theory, ordinal analysis and

127
Power Kripke-Platek Set Theory, Ordinal Analysis and Global Choice Michael Rathjen Leverhulme Fellow Proof Theory, Modal Logic and Reflection Principles Second International Wormshop Ciudad de México, 29 September 2014 POWER KP, ORDINAL ANALYSIS,GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS,GLOBAL CHOICE

Upload: others

Post on 04-Nov-2021

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Power Kripke-Platek Set Theory, Ordinal Analysis and

Power Kripke-Platek Set Theory, Ordinal Analysisand Global Choice

Michael Rathjen

Leverhulme Fellow

Proof Theory, Modal Logic and ReflectionPrinciples

Second International Wormshop

Ciudad de México, 29 September 2014

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 2: Power Kripke-Platek Set Theory, Ordinal Analysis and

Plan of the Talk

1 Some iconic proof-theoretic ordinals

2 Power Kripke-Platek set theory

3 Power Kripke-Platek set theory with global choice

4 The Existence Property for intuitionistic set theories

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 3: Power Kripke-Platek Set Theory, Ordinal Analysis and

Plan of the Talk

1 Some iconic proof-theoretic ordinals

2 Power Kripke-Platek set theory

3 Power Kripke-Platek set theory with global choice

4 The Existence Property for intuitionistic set theories

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 4: Power Kripke-Platek Set Theory, Ordinal Analysis and

Plan of the Talk

1 Some iconic proof-theoretic ordinals

2 Power Kripke-Platek set theory

3 Power Kripke-Platek set theory with global choice

4 The Existence Property for intuitionistic set theories

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 5: Power Kripke-Platek Set Theory, Ordinal Analysis and

Plan of the Talk

1 Some iconic proof-theoretic ordinals

2 Power Kripke-Platek set theory

3 Power Kripke-Platek set theory with global choice

4 The Existence Property for intuitionistic set theories

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 6: Power Kripke-Platek Set Theory, Ordinal Analysis and

Plan of the Talk

1 Some iconic proof-theoretic ordinals

2 Power Kripke-Platek set theory

3 Power Kripke-Platek set theory with global choice

4 The Existence Property for intuitionistic set theories

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 7: Power Kripke-Platek Set Theory, Ordinal Analysis and

Proof-theoretic reductions

Let T1, T2 be a pair of theories with languages L1 and L2,respectively, and let Φ be a (primitive recursive) collectionof formulae common to both languages. Furthermore, Φshould contain the closed equations of the language ofPRA.

T1 is proof-theoretically Φ-reducible to T2

written T1 ≤Φ T2, if there exists a primitive recursivefunction f such that

PRA ` ∀φ ∈ Φ∀x [ProofT1(x , φ) → ProofT2(f (x), φ)]. (1)

T1 and T2 are said to be proof-theoretically Φ-equivalent,written T1 ≡Φ T2, if T1 ≤Φ T2 and T2 ≤Φ T1.

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 8: Power Kripke-Platek Set Theory, Ordinal Analysis and

Proof-theoretic reductions

Let T1, T2 be a pair of theories with languages L1 and L2,respectively, and let Φ be a (primitive recursive) collectionof formulae common to both languages. Furthermore, Φshould contain the closed equations of the language ofPRA.

T1 is proof-theoretically Φ-reducible to T2

written T1 ≤Φ T2, if there exists a primitive recursivefunction f such that

PRA ` ∀φ ∈ Φ∀x [ProofT1(x , φ) → ProofT2(f (x), φ)]. (1)

T1 and T2 are said to be proof-theoretically Φ-equivalent,written T1 ≡Φ T2, if T1 ≤Φ T2 and T2 ≤Φ T1.

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 9: Power Kripke-Platek Set Theory, Ordinal Analysis and

Proof-theoretic reductions

Let T1, T2 be a pair of theories with languages L1 and L2,respectively, and let Φ be a (primitive recursive) collectionof formulae common to both languages. Furthermore, Φshould contain the closed equations of the language ofPRA.

T1 is proof-theoretically Φ-reducible to T2

written T1 ≤Φ T2, if there exists a primitive recursivefunction f such that

PRA ` ∀φ ∈ Φ ∀x [ProofT1(x , φ) → ProofT2(f (x), φ)]. (1)

T1 and T2 are said to be proof-theoretically Φ-equivalent,written T1 ≡Φ T2, if T1 ≤Φ T2 and T2 ≤Φ T1.

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 10: Power Kripke-Platek Set Theory, Ordinal Analysis and

Proof-theoretic ordinals

• In practice, if T1 ≡ T2 is shown through an ordinal analysisthis always entails that the two theories prove at least thesame Π0

2 sentences.

• Given a natural ordinal representation system 〈A,≺, . . .〉 oforder type τ let PRA + TIqf (< τ) be PRA augmented byquantifier-free induction over all initial (externally indexed)segments of ≺.

• We say that a theory T has proof-theoretic ordinal τ ,written |T | = τ , if T can be proof-theoretically reduced toPRA + TIqf (< τ), i.e.,

T ≡Π02

PRA + TIqf (< τ).

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 11: Power Kripke-Platek Set Theory, Ordinal Analysis and

Proof-theoretic ordinals

• In practice, if T1 ≡ T2 is shown through an ordinal analysisthis always entails that the two theories prove at least thesame Π0

2 sentences.

• Given a natural ordinal representation system 〈A,≺, . . .〉 oforder type τ let PRA + TIqf (< τ) be PRA augmented byquantifier-free induction over all initial (externally indexed)segments of ≺.

• We say that a theory T has proof-theoretic ordinal τ ,written |T | = τ , if T can be proof-theoretically reduced toPRA + TIqf (< τ), i.e.,

T ≡Π02

PRA + TIqf (< τ).

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 12: Power Kripke-Platek Set Theory, Ordinal Analysis and

Proof-theoretic ordinals

• In practice, if T1 ≡ T2 is shown through an ordinal analysisthis always entails that the two theories prove at least thesame Π0

2 sentences.

• Given a natural ordinal representation system 〈A,≺, . . .〉 oforder type τ let PRA + TIqf (< τ) be PRA augmented byquantifier-free induction over all initial (externally indexed)segments of ≺.

• We say that a theory T has proof-theoretic ordinal τ ,written |T | = τ , if T can be proof-theoretically reduced toPRA + TIqf (< τ), i.e.,

T ≡Π02

PRA + TIqf (< τ).

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 13: Power Kripke-Platek Set Theory, Ordinal Analysis and

Proof-theoretic ordinals

• In practice, if T1 ≡ T2 is shown through an ordinal analysisthis always entails that the two theories prove at least thesame Π0

2 sentences.

• Given a natural ordinal representation system 〈A,≺, . . .〉 oforder type τ let PRA + TIqf (< τ) be PRA augmented byquantifier-free induction over all initial (externally indexed)segments of ≺.

• We say that a theory T has proof-theoretic ordinal τ ,written |T | = τ , if T can be proof-theoretically reduced toPRA + TIqf (< τ), i.e.,

T ≡Π02

PRA + TIqf (< τ).

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 14: Power Kripke-Platek Set Theory, Ordinal Analysis and

Some iconic ordinals

Theorem 1

(i) |RCA0| = |WKL| = ωω.

(ii) |ACA0| = ε0.

(iii) |ATR0| = Γ0.

(iv) |(Π11−CA)0|, however, eludes expression in the ordinal

representations introduced so far.

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 15: Power Kripke-Platek Set Theory, Ordinal Analysis and

Some iconic ordinals

Theorem 1

(i) |RCA0| = |WKL| = ωω.

(ii) |ACA0| = ε0.

(iii) |ATR0| = Γ0.

(iv) |(Π11−CA)0|, however, eludes expression in the ordinal

representations introduced so far.

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 16: Power Kripke-Platek Set Theory, Ordinal Analysis and

Some iconic ordinals

Theorem 1

(i) |RCA0| = |WKL| = ωω.

(ii) |ACA0| = ε0.

(iii) |ATR0| = Γ0.

(iv) |(Π11−CA)0|, however, eludes expression in the ordinal

representations introduced so far.

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 17: Power Kripke-Platek Set Theory, Ordinal Analysis and

Some iconic ordinals

Theorem 1

(i) |RCA0| = |WKL| = ωω.

(ii) |ACA0| = ε0.

(iii) |ATR0| = Γ0.

(iv) |(Π11−CA)0|, however, eludes expression in the ordinal

representations introduced so far.

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 18: Power Kripke-Platek Set Theory, Ordinal Analysis and

Some iconic ordinals

Theorem 1

(i) |RCA0| = |WKL| = ωω.

(ii) |ACA0| = ε0.

(iii) |ATR0| = Γ0.

(iv) |(Π11−CA)0|, however, eludes expression in the ordinal

representations introduced so far.

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 19: Power Kripke-Platek Set Theory, Ordinal Analysis and

Some iconic ordinals

Theorem 1

(i) |RCA0| = |WKL| = ωω.

(ii) |ACA0| = ε0.

(iii) |ATR0| = Γ0.

(iv) |(Π11−CA)0|, however, eludes expression in the ordinal

representations introduced so far.

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 20: Power Kripke-Platek Set Theory, Ordinal Analysis and

The Bachmann-Howard ordinal

Theorem 2 The following theories have theBachmann-Howard ordinal,

ψΩ1

(εΩ1+1)

as proof-theoretic ordinal:

(i) KP

(ii) ID1

(iii) BI

(iv) CZF

(v) ML1V

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 21: Power Kripke-Platek Set Theory, Ordinal Analysis and

The Bachmann-Howard ordinal

Theorem 2 The following theories have theBachmann-Howard ordinal,

ψΩ1

(εΩ1+1)

as proof-theoretic ordinal:

(i) KP

(ii) ID1

(iii) BI

(iv) CZF

(v) ML1V

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 22: Power Kripke-Platek Set Theory, Ordinal Analysis and

The Bachmann-Howard ordinal

Theorem 2 The following theories have theBachmann-Howard ordinal,

ψΩ1

(εΩ1+1)

as proof-theoretic ordinal:

(i) KP

(ii) ID1

(iii) BI

(iv) CZF

(v) ML1V

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 23: Power Kripke-Platek Set Theory, Ordinal Analysis and

The Bachmann-Howard ordinal

Theorem 2 The following theories have theBachmann-Howard ordinal,

ψΩ1

(εΩ1+1)

as proof-theoretic ordinal:

(i) KP

(ii) ID1

(iii) BI

(iv) CZF

(v) ML1V

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 24: Power Kripke-Platek Set Theory, Ordinal Analysis and

The Bachmann-Howard ordinal

Theorem 2 The following theories have theBachmann-Howard ordinal,

ψΩ1

(εΩ1+1)

as proof-theoretic ordinal:

(i) KP

(ii) ID1

(iii) BI

(iv) CZF

(v) ML1V

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 25: Power Kripke-Platek Set Theory, Ordinal Analysis and

The Bachmann-Howard ordinal

Theorem 2 The following theories have theBachmann-Howard ordinal,

ψΩ1

(εΩ1+1)

as proof-theoretic ordinal:

(i) KP

(ii) ID1

(iii) BI

(iv) CZF

(v) ML1V

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 26: Power Kripke-Platek Set Theory, Ordinal Analysis and

The Bachmann-Howard ordinal

Theorem 2 The following theories have theBachmann-Howard ordinal,

ψΩ1

(εΩ1+1)

as proof-theoretic ordinal:

(i) KP

(ii) ID1

(iii) BI

(iv) CZF

(v) ML1V

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 27: Power Kripke-Platek Set Theory, Ordinal Analysis and

Kripke-Platek Set theory, KP

Though considerably weaker than ZF, a great deal of set theoryrequires only the axioms of KP. KP arises from ZF bycompletely omitting the power set axiom and restrictingseparation and collection to absolute predicates (cf. Barwise:admissible sets and structures (1975)), i.e. predicates definablevia bounded (or ∆0) formulas. These alterations are suggestedby the informal notion of ‘predicative’.

A formula is ∆0 if all its are quantifiers bounded, that is haveone of the forms (∀x ∈b) or (∃x ∈b).

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 28: Power Kripke-Platek Set Theory, Ordinal Analysis and

The Axioms of KP

Extensionality: a = b → [F (a)↔ F (b)].

Foundation: ∀x [∀y ∈ x G(y)→ G(x)]→ ∀x G(x)

Pair: ∃x (x = a,b).

Union: ∃x (x =⋃

a).

Infinity: ∃x[x 6= ∅ ∧ (∀y ∈x)(∃z∈x)(y ∈z)

].

∆0 Separation: ∃x(x = y ∈a : F (y)

)for all ∆0–formulas F .

∆0 Collection: (∀x ∈a)∃yG(x , y)→ ∃z(∀x ∈a)(∃y ∈z)G(x , y)

for all ∆0–formulas G.

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 29: Power Kripke-Platek Set Theory, Ordinal Analysis and

Power Kripke-Platek Set Theory

We call a formula of L∈ ∆P0 if all its quantifiers are of theform Q x ⊆ y or Q x∈y where Q is ∀ or ∃ and x and y aredistinct variables.The ∆P0 formulas are the smallest class of formulaecontaining the atomic formulae closed under ∧,∨,→,¬and the quantifiers

∀x ∈ a, ∃x ∈ a, ∀x ⊆ a, ∃x ⊆ a.

KP(P) has the following axioms: Extensionality, Pairing,Union, Infinity, Powerset, ∆P0 -Separation and∆P0 -Collection.

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 30: Power Kripke-Platek Set Theory, Ordinal Analysis and

Power Kripke-Platek Set Theory

We call a formula of L∈ ∆P0 if all its quantifiers are of theform Q x ⊆ y or Q x∈y where Q is ∀ or ∃ and x and y aredistinct variables.

The ∆P0 formulas are the smallest class of formulaecontaining the atomic formulae closed under ∧,∨,→,¬and the quantifiers

∀x ∈ a, ∃x ∈ a, ∀x ⊆ a, ∃x ⊆ a.

KP(P) has the following axioms: Extensionality, Pairing,Union, Infinity, Powerset, ∆P0 -Separation and∆P0 -Collection.

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 31: Power Kripke-Platek Set Theory, Ordinal Analysis and

Power Kripke-Platek Set Theory

We call a formula of L∈ ∆P0 if all its quantifiers are of theform Q x ⊆ y or Q x∈y where Q is ∀ or ∃ and x and y aredistinct variables.The ∆P0 formulas are the smallest class of formulaecontaining the atomic formulae closed under ∧,∨,→,¬and the quantifiers

∀x ∈ a, ∃x ∈ a, ∀x ⊆ a, ∃x ⊆ a.

KP(P) has the following axioms: Extensionality, Pairing,Union, Infinity, Powerset, ∆P0 -Separation and∆P0 -Collection.

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 32: Power Kripke-Platek Set Theory, Ordinal Analysis and

Power Kripke-Platek Set Theory

We call a formula of L∈ ∆P0 if all its quantifiers are of theform Q x ⊆ y or Q x∈y where Q is ∀ or ∃ and x and y aredistinct variables.The ∆P0 formulas are the smallest class of formulaecontaining the atomic formulae closed under ∧,∨,→,¬and the quantifiers

∀x ∈ a, ∃x ∈ a, ∀x ⊆ a, ∃x ⊆ a.

KP(P) has the following axioms: Extensionality, Pairing,Union, Infinity, Powerset, ∆P0 -Separation and∆P0 -Collection.

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 33: Power Kripke-Platek Set Theory, Ordinal Analysis and

Remark.

1 KP(P) is not the same as KP + Powerset. The latter is amuch weaker theory in which one cannot prove theexistence of Vω+ω.

2 Alternatively, KP(P) can be obtained from KP by adding afunction symbol P for the powerset function as a primitivesymbol to the language and the axiom

∀y [y ∈ P(x)↔ y ⊆ x ]

and extending the schemes of ∆0 Separation andCollection to the ∆0 formulae of this new language.

3 The power admissible sets are the transitive models ofKP(P).

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 34: Power Kripke-Platek Set Theory, Ordinal Analysis and

Remark.

1 KP(P) is not the same as KP + Powerset. The latter is amuch weaker theory in which one cannot prove theexistence of Vω+ω.

2 Alternatively, KP(P) can be obtained from KP by adding afunction symbol P for the powerset function as a primitivesymbol to the language and the axiom

∀y [y ∈ P(x)↔ y ⊆ x ]

and extending the schemes of ∆0 Separation andCollection to the ∆0 formulae of this new language.

3 The power admissible sets are the transitive models ofKP(P).

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 35: Power Kripke-Platek Set Theory, Ordinal Analysis and

Remark.

1 KP(P) is not the same as KP + Powerset. The latter is amuch weaker theory in which one cannot prove theexistence of Vω+ω.

2 Alternatively, KP(P) can be obtained from KP by adding afunction symbol P for the powerset function as a primitivesymbol to the language and the axiom

∀y [y ∈ P(x)↔ y ⊆ x ]

and extending the schemes of ∆0 Separation andCollection to the ∆0 formulae of this new language.

3 The power admissible sets are the transitive models ofKP(P).

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 36: Power Kripke-Platek Set Theory, Ordinal Analysis and

Remark.

1 KP(P) is not the same as KP + Powerset. The latter is amuch weaker theory in which one cannot prove theexistence of Vω+ω.

2 Alternatively, KP(P) can be obtained from KP by adding afunction symbol P for the powerset function as a primitivesymbol to the language and the axiom

∀y [y ∈ P(x)↔ y ⊆ x ]

and extending the schemes of ∆0 Separation andCollection to the ∆0 formulae of this new language.

3 The power admissible sets are the transitive models ofKP(P).

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 37: Power Kripke-Platek Set Theory, Ordinal Analysis and

Example

Here is an example of a structure which is a model of

KP + Powerset

but not of KP(P):

L(ℵω)L

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 38: Power Kripke-Platek Set Theory, Ordinal Analysis and

Example

Here is an example of a structure which is a model of

KP + Powerset

but not of KP(P):

L(ℵω)L

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 39: Power Kripke-Platek Set Theory, Ordinal Analysis and

Example

Here is an example of a structure which is a model of

KP + Powerset

but not of KP(P):

L(ℵω)L

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 40: Power Kripke-Platek Set Theory, Ordinal Analysis and

Older work

Theorem:(H.Friedman 1973)

KP(P) + AC does not prove the existence of a non-recursivevon Neumann ordinal.

Proof uses Barwise compactness and truncation.

Theorem:(Mathias 2001)

KP(P) + V = L proves the consistency of KP(P).

Proof uses forcing in the context of non-standard models ofKP(P) and other techniques.

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 41: Power Kripke-Platek Set Theory, Ordinal Analysis and

Older work

Theorem:(H.Friedman 1973)

KP(P) + AC does not prove the existence of a non-recursivevon Neumann ordinal.

Proof uses Barwise compactness and truncation.

Theorem:(Mathias 2001)

KP(P) + V = L proves the consistency of KP(P).

Proof uses forcing in the context of non-standard models ofKP(P) and other techniques.

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 42: Power Kripke-Platek Set Theory, Ordinal Analysis and

Older work

Theorem:(H.Friedman 1973)

KP(P) + AC does not prove the existence of a non-recursivevon Neumann ordinal.

Proof uses Barwise compactness and truncation.

Theorem:(Mathias 2001)

KP(P) + V = L proves the consistency of KP(P).

Proof uses forcing in the context of non-standard models ofKP(P) and other techniques.

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 43: Power Kripke-Platek Set Theory, Ordinal Analysis and

Warning

KP(P) is not quite the same as the theory

KPP

in Mathias’ 2001 paper.

The difference between KP(P) and KPP is that in the lattersystem set induction only holds for ΣP1 -formulae, or whatamounts to the same, ΠP1 foundation

A 6= ∅ → ∃x ∈ A x ∩ A = ∅

for ΠP1 classes A.

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 44: Power Kripke-Platek Set Theory, Ordinal Analysis and

Warning

KP(P) is not quite the same as the theory

KPP

in Mathias’ 2001 paper.

The difference between KP(P) and KPP is that in the lattersystem set induction only holds for ΣP1 -formulae, or whatamounts to the same, ΠP1 foundation

A 6= ∅ → ∃x ∈ A x ∩ A = ∅

for ΠP1 classes A.

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 45: Power Kripke-Platek Set Theory, Ordinal Analysis and

Warning

KP(P) is not quite the same as the theory

KPP

in Mathias’ 2001 paper.

The difference between KP(P) and KPP is that in the lattersystem set induction only holds for ΣP1 -formulae, or whatamounts to the same, ΠP1 foundation

A 6= ∅ → ∃x ∈ A x ∩ A = ∅

for ΠP1 classes A.

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 46: Power Kripke-Platek Set Theory, Ordinal Analysis and

The techniques used for the ordinal analysis of KP can beadapted to yield the following result about KP(P) + AC:

Theorem:

If A is a ΠP2 -formula and

KP(P) + AC ` A

thenVψΩ(εΩ+1) |= A.

The bound of this Theorem is sharp, that is, ψΩ(εΩ+1) is thefirst ordinal with that property.

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 47: Power Kripke-Platek Set Theory, Ordinal Analysis and

We define the RSPΩ –terms. To each RSPΩ –term t we alsoassign its level, |t |.

1. For each α < Ω, Vα is an RSPΩ –term with |Vα | = α.

2. For each α < Ω, we have infinitely many free variablesaα1 ,a

α2 ,a

α3 , . . . which are RSPΩ –terms with |aαi | = α.

3. If F (x , ~y ) is a ∆P0 formula (whose free variables areexactly those indicated) and ~s ≡ s1, · · · , sn areRSPΩ –terms, then the formal expression

x∈Vα | F (x ,~s )

is an RSPΩ –term with | x∈Vα | F (x ,~s ) | = α.

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 48: Power Kripke-Platek Set Theory, Ordinal Analysis and

Same strength

Theorem:(R. 2012) The following theories have the same proof-theoreticstrength

(i) KP(P)

(ii) CZF + Powerset

(Basically IZF with Bounded Separation)

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 49: Power Kripke-Platek Set Theory, Ordinal Analysis and

Same strength

Theorem:(R. 2012) The following theories have the same proof-theoreticstrength

(i) KP(P)

(ii) CZF + Powerset

(Basically IZF with Bounded Separation)

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 50: Power Kripke-Platek Set Theory, Ordinal Analysis and

Same strength

Theorem:(R. 2012) The following theories have the same proof-theoreticstrength

(i) KP(P)

(ii) CZF + Powerset

(Basically IZF with Bounded Separation)

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 51: Power Kripke-Platek Set Theory, Ordinal Analysis and

Theorem:

KPP + V = L proves the consistency, actually the ΣP1soundness, of KP(P) + AC.

This follows from the ordinal analysis of KP(P) + AC andthe fact that KPP + V = L proves the existence of theBachmann-Howard ordinal (as a set-theoretic ordinal).

This strengthens Mathias’ result and also provides anentirely different proof.

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 52: Power Kripke-Platek Set Theory, Ordinal Analysis and

Theorem:

KPP + V = L proves the consistency, actually the ΣP1soundness, of KP(P) + AC.

This follows from the ordinal analysis of KP(P) + AC andthe fact that KPP + V = L proves the existence of theBachmann-Howard ordinal (as a set-theoretic ordinal).

This strengthens Mathias’ result and also provides anentirely different proof.

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 53: Power Kripke-Platek Set Theory, Ordinal Analysis and

Theorem:

KPP + V = L proves the consistency, actually the ΣP1soundness, of KP(P) + AC.

This follows from the ordinal analysis of KP(P) + AC andthe fact that KPP + V = L proves the existence of theBachmann-Howard ordinal (as a set-theoretic ordinal).

This strengthens Mathias’ result and also provides anentirely different proof.

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 54: Power Kripke-Platek Set Theory, Ordinal Analysis and

Theorem:

KPP + V = L proves the consistency, actually the ΣP1soundness, of KP(P) + AC.

This follows from the ordinal analysis of KP(P) + AC andthe fact that KPP + V = L proves the existence of theBachmann-Howard ordinal (as a set-theoretic ordinal).

This strengthens Mathias’ result and also provides anentirely different proof.

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 55: Power Kripke-Platek Set Theory, Ordinal Analysis and

What about the strength of KP + Powerset + V = L?

Theorem:KP + Powerset + V = L and KP + Powerset have the samestrength.

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 56: Power Kripke-Platek Set Theory, Ordinal Analysis and

What about the strength of KP + Powerset + V = L?

Theorem:KP + Powerset + V = L and KP + Powerset have the samestrength.

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 57: Power Kripke-Platek Set Theory, Ordinal Analysis and

Mathias’ question

Does KP(P) + AC have the same proof-theoretic strengthas KP(P)?

Let GAC be the axiom of global choice.For instance, add new two place predicate symbol R to thelanguage and the following axioms:

(a) ∀x [x 6= ∅ → ∃y ∈ x R(x , y)]

(b) ∀x∀y∀z [R(x , y) ∧ R(x , z)→ y = z]

(c) Extend schemata of KP(P) to new language.

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 58: Power Kripke-Platek Set Theory, Ordinal Analysis and

Mathias’ question

Does KP(P) + AC have the same proof-theoretic strengthas KP(P)?

Let GAC be the axiom of global choice.For instance, add new two place predicate symbol R to thelanguage and the following axioms:

(a) ∀x [x 6= ∅ → ∃y ∈ x R(x , y)]

(b) ∀x∀y∀z [R(x , y) ∧ R(x , z)→ y = z]

(c) Extend schemata of KP(P) to new language.

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 59: Power Kripke-Platek Set Theory, Ordinal Analysis and

Mathias’ question

Does KP(P) + AC have the same proof-theoretic strengthas KP(P)?

Let GAC be the axiom of global choice.

For instance, add new two place predicate symbol R to thelanguage and the following axioms:

(a) ∀x [x 6= ∅ → ∃y ∈ x R(x , y)]

(b) ∀x∀y∀z [R(x , y) ∧ R(x , z)→ y = z]

(c) Extend schemata of KP(P) to new language.

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 60: Power Kripke-Platek Set Theory, Ordinal Analysis and

Mathias’ question

Does KP(P) + AC have the same proof-theoretic strengthas KP(P)?

Let GAC be the axiom of global choice.For instance, add new two place predicate symbol R to thelanguage and the following axioms:

(a) ∀x [x 6= ∅ → ∃y ∈ x R(x , y)]

(b) ∀x∀y∀z [R(x , y) ∧ R(x , z)→ y = z]

(c) Extend schemata of KP(P) to new language.

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 61: Power Kripke-Platek Set Theory, Ordinal Analysis and

Mathias’ question

Does KP(P) + AC have the same proof-theoretic strengthas KP(P)?

Let GAC be the axiom of global choice.For instance, add new two place predicate symbol R to thelanguage and the following axioms:(a) ∀x [x 6= ∅ → ∃y ∈ x R(x , y)]

(b) ∀x∀y∀z [R(x , y) ∧ R(x , z)→ y = z]

(c) Extend schemata of KP(P) to new language.

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 62: Power Kripke-Platek Set Theory, Ordinal Analysis and

Mathias’ question

Does KP(P) + AC have the same proof-theoretic strengthas KP(P)?

Let GAC be the axiom of global choice.For instance, add new two place predicate symbol R to thelanguage and the following axioms:(a) ∀x [x 6= ∅ → ∃y ∈ x R(x , y)]

(b) ∀x∀y∀z [R(x , y) ∧ R(x , z)→ y = z]

(c) Extend schemata of KP(P) to new language.

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 63: Power Kripke-Platek Set Theory, Ordinal Analysis and

Mathias’ question

Does KP(P) + AC have the same proof-theoretic strengthas KP(P)?

Let GAC be the axiom of global choice.For instance, add new two place predicate symbol R to thelanguage and the following axioms:(a) ∀x [x 6= ∅ → ∃y ∈ x R(x , y)]

(b) ∀x∀y∀z [R(x , y) ∧ R(x , z)→ y = z]

(c) Extend schemata of KP(P) to new language.

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 64: Power Kripke-Platek Set Theory, Ordinal Analysis and

Theorem:

IfKP(P) + GAC ` θ

where θ is a ΣP -sentence, then one can explicitly find anordinal (notation) τ < ψΩ(εΩ+1) such that

KP+AC+the von Neumann hierarchy (Vα)α≤τ exists

proves θ.

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 65: Power Kripke-Platek Set Theory, Ordinal Analysis and

Theorem:

Let τ be a limit ordinal. If

KP+AC+the von Neumann hierarchy (Vα)α<τ exists

proves a Π14 statements Φ of second order arithmetic, then

Z + the von Neumann hierarchy (Vα)α<τ ·4+4 exists

proves Φ.

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 66: Power Kripke-Platek Set Theory, Ordinal Analysis and

Corollary:

If Φ is Π14 sentence such that

KP(P) + GAC ` Φ

thenKP(P) ` Φ.

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 67: Power Kripke-Platek Set Theory, Ordinal Analysis and

Same strength

Theorem:The following have the same proof-theoretic strength

(i) KP(P)

(ii) KP(P) + GAC.

(iii) CZF + Powerset

(iv) CZF + AC

(v) ML1Prop.

(vi) CZF + Pow¬¬

(vii) OST(P)

(viii) Z + ‘ Vτ exists’τ∈BH

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 68: Power Kripke-Platek Set Theory, Ordinal Analysis and

Same strength

Theorem:The following have the same proof-theoretic strength

(i) KP(P)

(ii) KP(P) + GAC.

(iii) CZF + Powerset

(iv) CZF + AC

(v) ML1Prop.

(vi) CZF + Pow¬¬

(vii) OST(P)

(viii) Z + ‘ Vτ exists’τ∈BH

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 69: Power Kripke-Platek Set Theory, Ordinal Analysis and

Same strength

Theorem:The following have the same proof-theoretic strength

(i) KP(P)

(ii) KP(P) + GAC.

(iii) CZF + Powerset

(iv) CZF + AC

(v) ML1Prop.

(vi) CZF + Pow¬¬

(vii) OST(P)

(viii) Z + ‘ Vτ exists’τ∈BH

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 70: Power Kripke-Platek Set Theory, Ordinal Analysis and

Same strength

Theorem:The following have the same proof-theoretic strength

(i) KP(P)

(ii) KP(P) + GAC.

(iii) CZF + Powerset

(iv) CZF + AC

(v) ML1Prop.

(vi) CZF + Pow¬¬

(vii) OST(P)

(viii) Z + ‘ Vτ exists’τ∈BH

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 71: Power Kripke-Platek Set Theory, Ordinal Analysis and

Same strength

Theorem:The following have the same proof-theoretic strength

(i) KP(P)

(ii) KP(P) + GAC.

(iii) CZF + Powerset

(iv) CZF + AC

(v) ML1Prop.

(vi) CZF + Pow¬¬

(vii) OST(P)

(viii) Z + ‘ Vτ exists’τ∈BH

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 72: Power Kripke-Platek Set Theory, Ordinal Analysis and

Same strength

Theorem:The following have the same proof-theoretic strength

(i) KP(P)

(ii) KP(P) + GAC.

(iii) CZF + Powerset

(iv) CZF + AC

(v) ML1Prop.

(vi) CZF + Pow¬¬

(vii) OST(P)

(viii) Z + ‘ Vτ exists’τ∈BH

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 73: Power Kripke-Platek Set Theory, Ordinal Analysis and

Same strength

Theorem:The following have the same proof-theoretic strength

(i) KP(P)

(ii) KP(P) + GAC.

(iii) CZF + Powerset

(iv) CZF + AC

(v) ML1Prop.

(vi) CZF + Pow¬¬

(vii) OST(P)

(viii) Z + ‘ Vτ exists’τ∈BH

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 74: Power Kripke-Platek Set Theory, Ordinal Analysis and

Same strength

Theorem:The following have the same proof-theoretic strength

(i) KP(P)

(ii) KP(P) + GAC.

(iii) CZF + Powerset

(iv) CZF + AC

(v) ML1Prop.

(vi) CZF + Pow¬¬

(vii) OST(P)

(viii) Z + ‘ Vτ exists’τ∈BH

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 75: Power Kripke-Platek Set Theory, Ordinal Analysis and

Same strength

Theorem:The following have the same proof-theoretic strength

(i) KP(P)

(ii) KP(P) + GAC.

(iii) CZF + Powerset

(iv) CZF + AC

(v) ML1Prop.

(vi) CZF + Pow¬¬

(vii) OST(P)

(viii) Z + ‘ Vτ exists’τ∈BH

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 76: Power Kripke-Platek Set Theory, Ordinal Analysis and

Same strength

Theorem:The following have the same proof-theoretic strength

(i) KP(P)

(ii) KP(P) + GAC.

(iii) CZF + Powerset

(iv) CZF + AC

(v) ML1Prop.

(vi) CZF + Pow¬¬

(vii) OST(P)

(viii) Z + ‘ Vτ exists’τ∈BH

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 77: Power Kripke-Platek Set Theory, Ordinal Analysis and

The Existence Property

1 T has the numerical existence property, NEP, ifwhenever

T ` (∃x∈ω)φ(x)

holds for a formula φ(x) with at most the free variable x ,then

T ` φ(n)

for some n.2 T has the existence property, EP, if whenever

T ` ∃xφ(x)

holds for a formula φ(x) having at most the free variable x ,then there is a formula ϑ(x) with exactly x free, so that

T ` ∃!x ϑ(x) and T ` ∃x [ϑ(x) ∧ φ(x)].

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 78: Power Kripke-Platek Set Theory, Ordinal Analysis and

The Existence Property

1 T has the numerical existence property, NEP, ifwhenever

T ` (∃x∈ω)φ(x)

holds for a formula φ(x) with at most the free variable x ,then

T ` φ(n)

for some n.

2 T has the existence property, EP, if whenever

T ` ∃xφ(x)

holds for a formula φ(x) having at most the free variable x ,then there is a formula ϑ(x) with exactly x free, so that

T ` ∃!x ϑ(x) and T ` ∃x [ϑ(x) ∧ φ(x)].

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 79: Power Kripke-Platek Set Theory, Ordinal Analysis and

The Existence Property

1 T has the numerical existence property, NEP, ifwhenever

T ` (∃x∈ω)φ(x)

holds for a formula φ(x) with at most the free variable x ,then

T ` φ(n)

for some n.2 T has the existence property, EP, if whenever

T ` ∃xφ(x)

holds for a formula φ(x) having at most the free variable x ,then there is a formula ϑ(x) with exactly x free, so that

T ` ∃!x ϑ(x) and T ` ∃x [ϑ(x) ∧ φ(x)].

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 80: Power Kripke-Platek Set Theory, Ordinal Analysis and

Intuitionistic Zermelo-Fraenkel set theory, IZF

* Extensionality• Pairing, Union, Infinity• Full Separation• Powerset

# Collection

(∀x ∈a) ∃y ϕ(x , y) → ∃b (∀x ∈a) (∃y ∈b) ϕ(x , y)

* Set Induction

(IND∈) ∀a (∀x ∈a ϕ(x) → ϕ(a)) → ∀a ϕ(a),

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 81: Power Kripke-Platek Set Theory, Ordinal Analysis and

Intuitionistic Zermelo-Fraenkel set theory, IZF

* Extensionality

• Pairing, Union, Infinity• Full Separation• Powerset

# Collection

(∀x ∈a) ∃y ϕ(x , y) → ∃b (∀x ∈a) (∃y ∈b) ϕ(x , y)

* Set Induction

(IND∈) ∀a (∀x ∈a ϕ(x) → ϕ(a)) → ∀a ϕ(a),

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 82: Power Kripke-Platek Set Theory, Ordinal Analysis and

Intuitionistic Zermelo-Fraenkel set theory, IZF

* Extensionality• Pairing, Union, Infinity

• Full Separation• Powerset

# Collection

(∀x ∈a) ∃y ϕ(x , y) → ∃b (∀x ∈a) (∃y ∈b) ϕ(x , y)

* Set Induction

(IND∈) ∀a (∀x ∈a ϕ(x) → ϕ(a)) → ∀a ϕ(a),

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 83: Power Kripke-Platek Set Theory, Ordinal Analysis and

Intuitionistic Zermelo-Fraenkel set theory, IZF

* Extensionality• Pairing, Union, Infinity• Full Separation• Powerset

# Collection

(∀x ∈a) ∃y ϕ(x , y) → ∃b (∀x ∈a) (∃y ∈b) ϕ(x , y)

* Set Induction

(IND∈) ∀a (∀x ∈a ϕ(x) → ϕ(a)) → ∀a ϕ(a),

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 84: Power Kripke-Platek Set Theory, Ordinal Analysis and

Intuitionistic Zermelo-Fraenkel set theory, IZF

* Extensionality• Pairing, Union, Infinity• Full Separation• Powerset

# Collection

(∀x ∈a) ∃y ϕ(x , y) → ∃b (∀x ∈a) (∃y ∈b) ϕ(x , y)

* Set Induction

(IND∈) ∀a (∀x ∈a ϕ(x) → ϕ(a)) → ∀a ϕ(a),

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 85: Power Kripke-Platek Set Theory, Ordinal Analysis and

Intuitionistic Zermelo-Fraenkel set theory, IZF

* Extensionality• Pairing, Union, Infinity• Full Separation• Powerset

# Collection

(∀x ∈a) ∃y ϕ(x , y) → ∃b (∀x ∈a) (∃y ∈b) ϕ(x , y)

* Set Induction

(IND∈) ∀a (∀x ∈a ϕ(x) → ϕ(a)) → ∀a ϕ(a),

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 86: Power Kripke-Platek Set Theory, Ordinal Analysis and

Constructive Zermelo-Fraenkel set theory, CZF

* Extensionality• Pairing, Union, Infinity• Bounded Separation• Exponentiation

# Strong Collection

(∀x ∈a)∃y ϕ(x , y) →∃b [ (∀x ∈a) (∃y ∈b) ϕ(x , y) ∧ (∀y ∈b) (∃x ∈a) ϕ(x , y) ]

* Set Induction scheme

CZF− is CZF without Exponentiation.

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 87: Power Kripke-Platek Set Theory, Ordinal Analysis and

Constructive Zermelo-Fraenkel set theory, CZF

* Extensionality

• Pairing, Union, Infinity• Bounded Separation• Exponentiation

# Strong Collection

(∀x ∈a)∃y ϕ(x , y) →∃b [ (∀x ∈a) (∃y ∈b) ϕ(x , y) ∧ (∀y ∈b) (∃x ∈a) ϕ(x , y) ]

* Set Induction scheme

CZF− is CZF without Exponentiation.

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 88: Power Kripke-Platek Set Theory, Ordinal Analysis and

Constructive Zermelo-Fraenkel set theory, CZF

* Extensionality• Pairing, Union, Infinity

• Bounded Separation• Exponentiation

# Strong Collection

(∀x ∈a)∃y ϕ(x , y) →∃b [ (∀x ∈a) (∃y ∈b) ϕ(x , y) ∧ (∀y ∈b) (∃x ∈a) ϕ(x , y) ]

* Set Induction scheme

CZF− is CZF without Exponentiation.

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 89: Power Kripke-Platek Set Theory, Ordinal Analysis and

Constructive Zermelo-Fraenkel set theory, CZF

* Extensionality• Pairing, Union, Infinity• Bounded Separation

• Exponentiation# Strong Collection

(∀x ∈a)∃y ϕ(x , y) →∃b [ (∀x ∈a) (∃y ∈b) ϕ(x , y) ∧ (∀y ∈b) (∃x ∈a) ϕ(x , y) ]

* Set Induction scheme

CZF− is CZF without Exponentiation.

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 90: Power Kripke-Platek Set Theory, Ordinal Analysis and

Constructive Zermelo-Fraenkel set theory, CZF

* Extensionality• Pairing, Union, Infinity• Bounded Separation• Exponentiation

# Strong Collection

(∀x ∈a)∃y ϕ(x , y) →∃b [ (∀x ∈a) (∃y ∈b) ϕ(x , y) ∧ (∀y ∈b) (∃x ∈a) ϕ(x , y) ]

* Set Induction scheme

CZF− is CZF without Exponentiation.

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 91: Power Kripke-Platek Set Theory, Ordinal Analysis and

Constructive Zermelo-Fraenkel set theory, CZF

* Extensionality• Pairing, Union, Infinity• Bounded Separation• Exponentiation

# Strong Collection

(∀x ∈a)∃y ϕ(x , y) →∃b [ (∀x ∈a) (∃y ∈b) ϕ(x , y) ∧ (∀y ∈b) (∃x ∈a) ϕ(x , y) ]

* Set Induction scheme

CZF− is CZF without Exponentiation.

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 92: Power Kripke-Platek Set Theory, Ordinal Analysis and

Constructive Zermelo-Fraenkel set theory, CZF

* Extensionality• Pairing, Union, Infinity• Bounded Separation• Exponentiation

# Strong Collection

(∀x ∈a)∃y ϕ(x , y) →∃b [ (∀x ∈a) (∃y ∈b) ϕ(x , y) ∧ (∀y ∈b) (∃x ∈a) ϕ(x , y) ]

* Set Induction scheme

CZF− is CZF without Exponentiation.

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 93: Power Kripke-Platek Set Theory, Ordinal Analysis and

Constructive Zermelo-Fraenkel set theory, CZF

* Extensionality• Pairing, Union, Infinity• Bounded Separation• Exponentiation

# Strong Collection

(∀x ∈a)∃y ϕ(x , y) →∃b [ (∀x ∈a) (∃y ∈b) ϕ(x , y) ∧ (∀y ∈b) (∃x ∈a) ϕ(x , y) ]

* Set Induction scheme

CZF− is CZF without Exponentiation.

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 94: Power Kripke-Platek Set Theory, Ordinal Analysis and

Problems

Theorem. ( Friedman, Šcedrov 1985) IZF does not havethe existence property.

• (Beeson 1985) Does any reasonable set theory withCollection have the existential definability property?

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 95: Power Kripke-Platek Set Theory, Ordinal Analysis and

Problems

Theorem. ( Friedman, Šcedrov 1985) IZF does not havethe existence property.

• (Beeson 1985) Does any reasonable set theory withCollection have the existential definability property?

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 96: Power Kripke-Platek Set Theory, Ordinal Analysis and

Problems

Theorem. ( Friedman, Šcedrov 1985) IZF does not havethe existence property.

• (Beeson 1985) Does any reasonable set theory withCollection have the existential definability property?

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 97: Power Kripke-Platek Set Theory, Ordinal Analysis and

The Weak Existence Property

T has the weak existence property, wEP, if whenever

T ` ∃xφ(x)

holds for a formula φ(x) having at most the free variable x ,then there is a formula ϑ(x) with exactly x free, so that

T ` ∃!x ϑ(x),

T ` ∀x [ϑ(x)→ ∃u u ∈ x ],

T ` ∀x [ϑ(x)→ ∀u ∈ x φ(u)].

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 98: Power Kripke-Platek Set Theory, Ordinal Analysis and

The Weak Existence Property

T has the weak existence property, wEP, if whenever

T ` ∃xφ(x)

holds for a formula φ(x) having at most the free variable x ,then there is a formula ϑ(x) with exactly x free, so that

T ` ∃!x ϑ(x),

T ` ∀x [ϑ(x)→ ∃u u ∈ x ],

T ` ∀x [ϑ(x)→ ∀u ∈ x φ(u)].

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 99: Power Kripke-Platek Set Theory, Ordinal Analysis and

IZF and wEP

Theorem IZF does not have the weak existence propertyproperty.

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 100: Power Kripke-Platek Set Theory, Ordinal Analysis and

IZF and wEP

Theorem IZF does not have the weak existence propertyproperty.

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 101: Power Kripke-Platek Set Theory, Ordinal Analysis and

The Uniform Weak Existence Property

T has the uniform weak existence property, uwEP, ifthe following holds: if

T ` ∀u ∃xA(u, x)

holds for a formula A(u, x) having at most the freevariables u, x , then there is a formula B(u, x) with exactlyu, x free, so that

T ` ∀u ∃!x B(u, x),

T ` ∀u ∀x [B(u, x)→ ∃z z ∈ x ],

T ` ∀u ∀x [B(u, x)→ ∀z ∈ x A(u, z)].

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 102: Power Kripke-Platek Set Theory, Ordinal Analysis and

The Uniform Weak Existence Property

T has the uniform weak existence property, uwEP, ifthe following holds: if

T ` ∀u ∃xA(u, x)

holds for a formula A(u, x) having at most the freevariables u, x , then there is a formula B(u, x) with exactlyu, x free, so that

T ` ∀u ∃!x B(u, x),

T ` ∀u ∀x [B(u, x)→ ∃z z ∈ x ],

T ` ∀u ∀x [B(u, x)→ ∀z ∈ x A(u, z)].

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 103: Power Kripke-Platek Set Theory, Ordinal Analysis and

Theorem The theories CZF−, CZF and CZF + Pow havethe uniform weak existence property.

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 104: Power Kripke-Platek Set Theory, Ordinal Analysis and

Theorem The theories CZF−, CZF and CZF + Pow havethe uniform weak existence property.

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 105: Power Kripke-Platek Set Theory, Ordinal Analysis and

Even better

• THEOREM IfCZF ` ∃x A(x)

then one can effectively construct a ΣE formula B(y) suchthat

CZF ` ∃!y B(y)

CZF ` ∀y [ B(y)→ ∃x x ∈ y ]

CZF ` ∀y [B(y)→ ∀x ∈ y A(x)]

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 106: Power Kripke-Platek Set Theory, Ordinal Analysis and

Even better

• THEOREM IfCZF ` ∃x A(x)

then one can effectively construct a ΣE formula B(y) suchthat

CZF ` ∃!y B(y)

CZF ` ∀y [ B(y)→ ∃x x ∈ y ]

CZF ` ∀y [B(y)→ ∀x ∈ y A(x)]

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 107: Power Kripke-Platek Set Theory, Ordinal Analysis and

Even better

• THEOREM IfCZF + Pow ` ∃x A(x)

then one can effectively construct a ΣP formula B(y) suchthat

CZF + Pow ` ∃!y B(y)

CZF + Pow ` ∀y [ B(y)→ ∃x x ∈ y ]

CZF + Pow ` ∀y [B(y)→ ∀x ∈ y A(x)]

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 108: Power Kripke-Platek Set Theory, Ordinal Analysis and

Even better

• THEOREM IfCZF + Pow ` ∃x A(x)

then one can effectively construct a ΣP formula B(y) suchthat

CZF + Pow ` ∃!y B(y)

CZF + Pow ` ∀y [ B(y)→ ∃x x ∈ y ]

CZF + Pow ` ∀y [B(y)→ ∀x ∈ y A(x)]

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 109: Power Kripke-Platek Set Theory, Ordinal Analysis and

Intuitionistic Power Kripke-Platek Set Theory and friends

IKP(P) is intuitionistic Power Kripke-Platek Set Theory.

We call a formula of L∈ ∆E0 if all its quantifiers are of theform Q x ∈ ba or Q x∈a where Q is ∀ or ∃.

IKP(E) is the intuitionistic theory with the axioms:Extensionality, Pairing, Union, Infinity, Exponentiation,∆E0 -Separation and ∆E0 -Collection.

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 110: Power Kripke-Platek Set Theory, Ordinal Analysis and

Intuitionistic Power Kripke-Platek Set Theory and friends

IKP(P) is intuitionistic Power Kripke-Platek Set Theory.

We call a formula of L∈ ∆E0 if all its quantifiers are of theform Q x ∈ ba or Q x∈a where Q is ∀ or ∃.

IKP(E) is the intuitionistic theory with the axioms:Extensionality, Pairing, Union, Infinity, Exponentiation,∆E0 -Separation and ∆E0 -Collection.

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 111: Power Kripke-Platek Set Theory, Ordinal Analysis and

Intuitionistic Power Kripke-Platek Set Theory and friends

IKP(P) is intuitionistic Power Kripke-Platek Set Theory.

We call a formula of L∈ ∆E0 if all its quantifiers are of theform Q x ∈ ba or Q x∈a where Q is ∀ or ∃.

IKP(E) is the intuitionistic theory with the axioms:Extensionality, Pairing, Union, Infinity, Exponentiation,∆E0 -Separation and ∆E0 -Collection.

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 112: Power Kripke-Platek Set Theory, Ordinal Analysis and

Intuitionistic Power Kripke-Platek Set Theory and friends

IKP(P) is intuitionistic Power Kripke-Platek Set Theory.

We call a formula of L∈ ∆E0 if all its quantifiers are of theform Q x ∈ ba or Q x∈a where Q is ∀ or ∃.

IKP(E) is the intuitionistic theory with the axioms:Extensionality, Pairing, Union, Infinity, Exponentiation,∆E0 -Separation and ∆E0 -Collection.

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 113: Power Kripke-Platek Set Theory, Ordinal Analysis and

Conservativity

THEOREMCZF is conservative over IKP(E) for ΣE sentences.

THEOREMCZF + Pow is conservative over IKP(P) for ΣP sentences.

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 114: Power Kripke-Platek Set Theory, Ordinal Analysis and

Conservativity

THEOREMCZF is conservative over IKP(E) for ΣE sentences.

THEOREMCZF + Pow is conservative over IKP(P) for ΣP sentences.

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 115: Power Kripke-Platek Set Theory, Ordinal Analysis and

Conservativity

THEOREMCZF is conservative over IKP(E) for ΣE sentences.

THEOREMCZF + Pow is conservative over IKP(P) for ΣP sentences.

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 116: Power Kripke-Platek Set Theory, Ordinal Analysis and

Existence property I

Theorem 1: IKP has the existence property for Σ1formulae.

Theorem 2: IKP(E) has the existence property for ΣE1formulae

Theorem 3: IKP(P) has the existence property for ΣP1formulae.

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 117: Power Kripke-Platek Set Theory, Ordinal Analysis and

Existence property I

Theorem 1: IKP has the existence property for Σ1formulae.

Theorem 2: IKP(E) has the existence property for ΣE1formulae

Theorem 3: IKP(P) has the existence property for ΣP1formulae.

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 118: Power Kripke-Platek Set Theory, Ordinal Analysis and

Existence property I

Theorem 1: IKP has the existence property for Σ1formulae.

Theorem 2: IKP(E) has the existence property for ΣE1formulae

Theorem 3: IKP(P) has the existence property for ΣP1formulae.

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 119: Power Kripke-Platek Set Theory, Ordinal Analysis and

Existence property I

Theorem 1: IKP has the existence property for Σ1formulae.

Theorem 2: IKP(E) has the existence property for ΣE1formulae

Theorem 3: IKP(P) has the existence property for ΣP1formulae.

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 120: Power Kripke-Platek Set Theory, Ordinal Analysis and

Existence property II

Theorem 1: CZF− has the existence property.

Theorem 2: CZF has the existence property.

Theorem 3: CZF + Pow has the existence property.

Theorem 4: ( A. Swan) CZF + Subset Collection does nothave the weak existence property.

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 121: Power Kripke-Platek Set Theory, Ordinal Analysis and

Existence property II

Theorem 1: CZF− has the existence property.

Theorem 2: CZF has the existence property.

Theorem 3: CZF + Pow has the existence property.

Theorem 4: ( A. Swan) CZF + Subset Collection does nothave the weak existence property.

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 122: Power Kripke-Platek Set Theory, Ordinal Analysis and

Existence property II

Theorem 1: CZF− has the existence property.

Theorem 2: CZF has the existence property.

Theorem 3: CZF + Pow has the existence property.

Theorem 4: ( A. Swan) CZF + Subset Collection does nothave the weak existence property.

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 123: Power Kripke-Platek Set Theory, Ordinal Analysis and

Existence property II

Theorem 1: CZF− has the existence property.

Theorem 2: CZF has the existence property.

Theorem 3: CZF + Pow has the existence property.

Theorem 4: ( A. Swan) CZF + Subset Collection does nothave the weak existence property.

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 124: Power Kripke-Platek Set Theory, Ordinal Analysis and

Existence property II

Theorem 1: CZF− has the existence property.

Theorem 2: CZF has the existence property.

Theorem 3: CZF + Pow has the existence property.

Theorem 4: ( A. Swan) CZF + Subset Collection does nothave the weak existence property.

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 125: Power Kripke-Platek Set Theory, Ordinal Analysis and

Finis operis

Muchas Gracias

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 126: Power Kripke-Platek Set Theory, Ordinal Analysis and

Finis operis

Muchas Gracias

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE

Page 127: Power Kripke-Platek Set Theory, Ordinal Analysis and

References

1 M . Rathjen: From the weak to the strong existenceproperty, Annals of Pure and Applied Logic 163 (2012)1400-1418.

2 M. Rathjen: Constructive Zermelo-Fraenkel Set Theory,Power Set, and the Calculus of Constructions. In:Epistemology versus Ontology: Essays on the Philosophyand Foundations of Mathematics in Honour of PerMartin-Löf, (Springer, Dordrecht, Heidelberg, 2012)313–349.

3 M. Rathjen: Relativized ordinal analysis: The case ofPower Kripke-Platek set theory. Annals of Pure andApplied Logic 165 (2014) 316339.

4 A.W. Swan: CZF does not have the existence property.Annals of Pure and Applied Logic 165 (2014) 1115–1147.

POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE POWER KP, ORDINAL ANALYSIS, GLOBAL CHOICE