powder neutron diffraction studies of oxide and...

26
Powder Neutron Diffraction studies of Oxide and Oxynitride Materials J. Paul Attfield Department of Chemistry and Centre for Science at Extreme Conditions (CSEC), University of Edinburgh

Upload: phamdat

Post on 03-Apr-2018

224 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Powder Neutron Diffraction studies of Oxide and …portal.nsrrc.org.tw/uao/Usermeeting/2012/speaker/presentations/II7.pdf · Powder Neutron Diffraction studies of Oxide and Oxynitride

Powder Neutron Diffraction studies of

Oxide and Oxynitride Materials

J. Paul Attfield

Department of Chemistry and

Centre for Science at Extreme Conditions (CSEC),

University of Edinburgh

Page 2: Powder Neutron Diffraction studies of Oxide and …portal.nsrrc.org.tw/uao/Usermeeting/2012/speaker/presentations/II7.pdf · Powder Neutron Diffraction studies of Oxide and Oxynitride

X-rays Neutrons

Photons, constant velocity c

E = hn = hc/l

Particles, variable velocity v

l = h/mv; E = mv2/2

l = 1 Å; E ≈ 10 keV

core electron ionisation

l = 1 Å; E ≈ 100 meV

rotational, vibrational excitations

Charge>>Magnetic>Nuclear scattering

measure electron density

Nuclear ≈ Magnetic >> Charge

measure nuclear and magnetic densities

All elements accessible

but heavy >> light

Most elements scatter equally

a few incoherent (H) or absorbing (B, Gd)

sinl

Norm

ali

sed

Scat

teri

ng F

acto

r

b

fx

fm

Page 3: Powder Neutron Diffraction studies of Oxide and …portal.nsrrc.org.tw/uao/Usermeeting/2012/speaker/presentations/II7.pdf · Powder Neutron Diffraction studies of Oxide and Oxynitride

Powder Neutron Diffraction Reactor Source

e.g. Institut Laue Langevin (ILL),

Grenoble, France

Pulsed Source

e.g. ISIS spallation facility, Rutherford

Appleton Laboratory, UK

Good for angle-dispersive diffraction, cf x-

ray diffraction

Good for wavelength-dispersive Time-of-

Flight neutron diffraction ;

l = h/mv and l = 2dsin ht/mL = 2dsin

Detector

Sample

Monochromator

Monochromatic X-rays/Neutrons

'White ' X-rays/Neutrons

Fixed detector

2White neutron pulse

Proton Pulse

Target

Moderator

L1

L2

L = L1 + L2

1 d(Å ) 3

2.5 d(Å ) 4.5

High 2

detector

Low 2

detector

t1 t2 (same time window)

Fixed detector

2White neutron pulse

Proton Pulse

Target

Moderator

L1

L2

L = L1 + L2

Fixed detector

2White neutron pulse

Proton Pulse

Target

Moderator

L1

L2

L = L1 + L2

1 d(Å ) 31 d(Å ) 3

2.5 d(Å ) 4.5

High 2

detector

Low 2

detector

t1 t2 (same time window)

Page 4: Powder Neutron Diffraction studies of Oxide and …portal.nsrrc.org.tw/uao/Usermeeting/2012/speaker/presentations/II7.pdf · Powder Neutron Diffraction studies of Oxide and Oxynitride

Outline – examples of

energy/electronic materials

Q-range

Neutron flux/

Sample size

2. MnTiO3

and MnVO3

Contrast

4. Oxynitrides

Analysis

software

Competitive/complementary

methods; neutron + X-rays

1. Fe3O4

Sample

environments

3. BiNiO3

Powder

Neutron

Diffraction

Page 5: Powder Neutron Diffraction studies of Oxide and …portal.nsrrc.org.tw/uao/Usermeeting/2012/speaker/presentations/II7.pdf · Powder Neutron Diffraction studies of Oxide and Oxynitride

1. The Verwey structure of magnetite

(Fe3O4) – a brief history

• 1939 - Fe3+[Fe2+Fe3+]O4 charge ordering at 125 K

transition proposed by Verwey.

• 1975 - monoclinic 2a x 2a x 2a Cc supercell

with 16 independent B-sites (Iizumi & Shirane).

• 1982 - Pmca subcell neutron refinement from

partially detwinned single crystal (Iizumi et al)

CO not seen.

• 2001 - Pmca subcell refinement used high

resolution powder neutron (HRPD@ISIS) and X-

ray (BM16@ESRF) data (Wright et al, 2001)

CO over 4 averaged sites.

• 2012 - full Cc structure from synchrotron

microcrystal (40 μm grain, 2 twin domains)

CO, OO, trimeron order

Mark Senn, Jon Wright & JPA, Nature (2012)

10

102

103

104

105

2.0 2.5 3.0 3.5 4.0

90

K I

nte

nsi

ty (

Co

un

ts)

d-spacing (?

*

**

-20

-10

0

10

20

Dif

f/e

sd

10

102

103

104

105

1.0 1.2 1.4 1.6 1.8 2.0

90

K I

nte

nsi

ty (

Co

un

ts)

d-spacing (?

***

*

-20

-10

0

10

20

Dif

f/e

sd

10

102

103

104

105

0.5 0.6 0.7 0.8 0.9 1.0

90

K I

nte

nsi

ty (

Co

un

ts)

d-spacing (?

-20

-10

0

10

20

Dif

f/e

sd

10-2

10-1

100

101

102

2.0 2.5 3.0 3.5 4.0

Inte

nsi

ty (

arb

.un

its)

d-spacing (?

*

*

-40

-20

0

20

Dif

f/e

sd

10-2

10-1

100

101

102

1.0 1.2 1.4 1.6 1.8 2.0

Inte

nsi

ty (

arb

.un

its)

d-spacing (?

***

-20

-10

0

10

20

Dif

f/e

sd

10-2

10-1

100

101

102

0.5 0.6 0.7 0.8 0.9 1

Inte

nsi

ty (

arb

.un

its)

d-spacing (?

-20

-10

0

10

20

Dif

f/e

sd

AB2O4 spinel

structure

130 K

90 K

Page 6: Powder Neutron Diffraction studies of Oxide and …portal.nsrrc.org.tw/uao/Usermeeting/2012/speaker/presentations/II7.pdf · Powder Neutron Diffraction studies of Oxide and Oxynitride

High P-T large volume synthesis

Page 7: Powder Neutron Diffraction studies of Oxide and …portal.nsrrc.org.tw/uao/Usermeeting/2012/speaker/presentations/II7.pdf · Powder Neutron Diffraction studies of Oxide and Oxynitride

High Pressure Materials SrCrO3

Orbitally driven phase separation

Ortega San Martin et al, PRL 2007

PbRuO3 Symmetry-reversing orbital transition

Kimber et al, PRL 2009

RFeAs(O,F)

New arsenide superconductors

Bos et al, Chem. Comm. 2008

MnVO3 Helimagnetic A site spin order

Markkula et al, PRB 2011

Also UK-Japan (EPSRC/JST)

collaboration with Kyoto/TIT/ISSP

Page 8: Powder Neutron Diffraction studies of Oxide and …portal.nsrrc.org.tw/uao/Usermeeting/2012/speaker/presentations/II7.pdf · Powder Neutron Diffraction studies of Oxide and Oxynitride

2. MnTiO3 High pressure (8 GPa, 1000 °C) LiNbO3-type R3c polymorph

Spin order at Tc = 28 K – is it consistent with multiferroicity?

Neutron study of 70 mg sample on D20@ILL:

Antiferromagnetic order in xy-plane observed

Weak ferromagnetic component is symmetry allowed

Perpendicular coupling and switching of M(b) with P(c)

predicted (Fennie et al, PRL 2008)

Angel Arévalo-López and JPA, in preparation

Page 9: Powder Neutron Diffraction studies of Oxide and …portal.nsrrc.org.tw/uao/Usermeeting/2012/speaker/presentations/II7.pdf · Powder Neutron Diffraction studies of Oxide and Oxynitride

MnVO3 A2+VO3 perovskites of 3d1 V4+ :

• A = Ca and Sr, and Cd(HP) - good metals.

• A = Pb(HP) - antiferromagnetic, ferroelectric insulator - cf PbTiO3.

• A = Mn(HP) (Y. Syono et al, J. Phys. Chem. Solids (1971)). Mn2+ is smaller

and has S = 5/2 3d5 Mn2+ moments. Physical properties unclear.

• Synthesis: Mn2V2O7 precursor reduced to MnVO3

perovskite at 1100 ºC under 8 GPa pressure for 30 min.

• SXRD (ID31@ESRF): orthorhombic Pnma perovskite

tilted superstructure 4-300 K, no structural transitions.

• Susceptibility (cf Syono et al):TN = 50 K; Curie-Weiss

moment of 5.80 μB, ( cf 5.91 μB for S = 5/2 Mn2+) = -154

K; partly frustrated antiferromagnet (||/TN ≈ 3).

• HP conductivity: metallic up to 67 kbar, small (Lorentz

force) magnetoresistance

localized Mn2+ 3d5 and itinerant B-site V4+ 3d1 electrons

Page 10: Powder Neutron Diffraction studies of Oxide and …portal.nsrrc.org.tw/uao/Usermeeting/2012/speaker/presentations/II7.pdf · Powder Neutron Diffraction studies of Oxide and Oxynitride

MnVO3 Neutron Studies:

• PND (k 0 0) spin order (cf TbMnO3, but rare in metallic perovskites), D3(mz) and

D4(my) vectors two solutions:

– D3(mz) ± iD4(my) helical (non-polar point group 222, so not ferroelectric) 3.5 μB

– D3(mz) ± D4(my) SDW 4.9 μB

• Either/both of two exchange mechanisms possible:

– Superexchange (inequivalent Mn-O-Mn)

– RKKY (Ruderman-Kittel-Kasuya-Yosida)

Mn – V3d - Mn

Unusual system with localised and itinerant 3d channels

- interesting ambiguities

D20@ILL 1.7K

LDA band structure

with (000) spin order.

(kx 0 0) Fermi vectors

have kx = 0.15(↑) and

0.45(↓) .

Clemens Ritter Hua Wu

Page 11: Powder Neutron Diffraction studies of Oxide and …portal.nsrrc.org.tw/uao/Usermeeting/2012/speaker/presentations/II7.pdf · Powder Neutron Diffraction studies of Oxide and Oxynitride

3. BiNiO3

• Made at 60 kbar, 1000 °C by Azuma et al, Kyoto, 2001

• Unexpectedly distorted structure, not ferroelectric

• High pressure neutron diffraction study (Paris-Edinburgh

cell) at ISIS.

(M. Azuma, Y. Shimakawa, M. Takano;

Kyoto; EPSRC-JST project)

Bi3+0.5Bi5+

0.5Ni2+O3

P-1 Bi3+Ni3+O3

Pnma

JACS, 2007

Page 12: Powder Neutron Diffraction studies of Oxide and …portal.nsrrc.org.tw/uao/Usermeeting/2012/speaker/presentations/II7.pdf · Powder Neutron Diffraction studies of Oxide and Oxynitride

BiNiO3 and CNTE Large DV ≈ -3% at intervalence/M-I transition:

• 5% La substitution stabilises transition to ambient P,T

Useful NTE (Negative Thermal Expansion) materials for zero or

controlled expansion composites have smooth contraction over a

wide temperature range. Two types:

• Framework types such as ZrW2O8 and Cd(CN)2 contract over

very wide ranges, typical magnitude:

DL/L ≈ -1% over DT ≈ 1000 K aL = DL/(L.DT) = -10 x 10-6 K-1

e.g. ZrW2O8 has aL = -7 x 10-6 K over 0.3-1050 K.

• Electronic/magnetic transitions strongly coupled to the lattice;

e.g. previous record dilatometric aL = -25 10-6 K-1 for

(Mn0.96Fe0.04)3(Zn0.5Ge0.5)N anti-perovskite at 316-386 K. (Miller

et al, APL, 2005).

Colossal NTE (CNTE) paradigm; broaden

DL/L ≈ -1% transition to DT ≈ 100 K aL = -100 x 10-6 K-1 .

Bi0.95La0.05NiO3 provides proof-of-concept;

Crystallography aL = -137 x 10-6 K-1 and DT =70 K

Dilatometry aL = -82 x 10-6 K-1 and DT =60 K

Azuma et al, Nature Comm, 2011.

Bi0.95La0.05NiO3

Page 13: Powder Neutron Diffraction studies of Oxide and …portal.nsrrc.org.tw/uao/Usermeeting/2012/speaker/presentations/II7.pdf · Powder Neutron Diffraction studies of Oxide and Oxynitride

High pressure synthesis R2O3 + Zr2ON2 → 2RZrO2N

Inorg Chem 2009

Oxynitrides (M. Yang, with ICMAB, Barcelona and NTU, Taiwan)

Eu Perovskites CMR in EuNbO2N and EuWON2

JACS 2008,2010; APL 2009

S = ½ Pyrochlores

R2Mo2O7 (Mo4+) R2Mo2O5N2 (Mo5+)

Chem Mater 2010

White-LED phosphors Cation tuning of (M,Eu)Si5-xAlxN8-xOx

JACS 2012

-8 -6 -4 -2 0 2 4 6 8

0

20

40

60

80

100

15K

10K

5K

D

R/R

H=

0(%

)

H (T)

2K

-0.2 -0.1 0.0 0.1 0.2

-900

-600

-300

0

300

600

900

x = 0.25

x = 0.50

x = 0.75

x = 1.00

Δr (Å )

1/λ

x-

1/λ 0

(cm

-1) Ca

Sr

Ba

Page 14: Powder Neutron Diffraction studies of Oxide and …portal.nsrrc.org.tw/uao/Usermeeting/2012/speaker/presentations/II7.pdf · Powder Neutron Diffraction studies of Oxide and Oxynitride

Perovskite Oxynitrides

• AMO2N or AMON2 mostly of high valent d0 transition metals (A = Ca-Ba2+, R3+; M = Ti4+, Zr4+, Hf4+, Nb5+, Ta5+, Mo6+, W6+)

• Usually prepared by ammonolysis, e.g.

NH3, 950 oC

EuNbO4 EuNbO2N

• Useful properties mainly from large bandgaps (e.g. BaTaO2N photocatalysis, dielectrics; CaTaO2N-LaTaON2 red-yellow

pigments)

• O/N order in ABX3 perovskite lattice unclear ‘…The origin of the different ordering degrees therefore remains a

puzzling question.’ Ebbinghaus et al, Prog. Solid State Chem. (2009).

Page 15: Powder Neutron Diffraction studies of Oxide and …portal.nsrrc.org.tw/uao/Usermeeting/2012/speaker/presentations/II7.pdf · Powder Neutron Diffraction studies of Oxide and Oxynitride

Powder neutron diffraction study of SrMO2N (M = Nb,Ta)

i. ‘Cubic’ high temperature structure

Neutron diffraction (D2B@ILL, l = 1.5943 Å ) exploits

high scattering contrast; bO= 0.581, bN= 0.936 fm.

Appears cubic but SrMO(O0.5N0.5)2 anion

distribution has tetragonal P4/mmm symmetry

with very small distortion (c/a = 0.9993).

Robust anion order up to >1100 C (~synthesis

temperatures).

Atom x y z Uiso (Å2) O/N

occupancy

Sr 0.5 0.5 0.5 0.0170(5)

0.0130(5)

Nb

Ta

0 0 0 0.0082(4)

0.0052(4)

X1 0 0 0.5 0.0225(4)

0.0187(3)

0.99(4)/0.01

0.96(4)/0.04

X2 (x2) 0.5 0 0 0.0225

0.0187

0.54(3)/0.46

0.51(3)/0.49

Nb a = 4.0541(2) Å c = 4.0511(4) Å

Ta 4.0442(3) Å 4.0421(5) Å

SrNbO2N

500 600 700 800 900 1000 1100

0.96

0.98

1.00

1.02

1.04

1.06

1.08

1.10

1.12

O1

Site

Occup

an

cy

Temperature (C)

Page 16: Powder Neutron Diffraction studies of Oxide and …portal.nsrrc.org.tw/uao/Usermeeting/2012/speaker/presentations/II7.pdf · Powder Neutron Diffraction studies of Oxide and Oxynitride

• Apparent I4/mcm (ordered octahedral rotations) superstructure at 300 K.

Powder neutron diffraction study of SrMO2N (M = Nb,Ta)

ii. ‘Tetragonal’ room temperature structure

Page 17: Powder Neutron Diffraction studies of Oxide and …portal.nsrrc.org.tw/uao/Usermeeting/2012/speaker/presentations/II7.pdf · Powder Neutron Diffraction studies of Oxide and Oxynitride

ii. ‘I4/mcm’ rotational superstructure at RT √2 x √2 x 2 superstructure from frozen rotations

Inequivalent anion sites Y1 and Y2 (x2).

Two possible orientations for anion and

rotational order.

Anion order directs rotational order

Lowers symmetry I4/mcm I112/m (≡ C2/m)

Predict loss of c-glide (observed by ED, Judith

Oro - ICMAB)

can

crot

can

Predicted

O/N

Y1 1/0 0.5/0.5

Y2 (x2) 0.5/0.5 0.75/0.25

Refined

(SrTaO2N)

Y1 0.48(4)/0.52

Y2 (x2) 0.76/0.24

Same distribution in refinements of SrTaO2N

(Clarke et al, Chem Mat, 2002) and Pnma

CaTaO2N (Gunther et al ZAAC, 2000).

[100]

b*

c*

[010]

c*

a*

SrNbO2N

Page 18: Powder Neutron Diffraction studies of Oxide and …portal.nsrrc.org.tw/uao/Usermeeting/2012/speaker/presentations/II7.pdf · Powder Neutron Diffraction studies of Oxide and Oxynitride

What favours the SrMO(O0.5N0.5)2 anion distribution?

• difficult to rationalize from O2-/N3- electrostatic

repulsions.

• M-O/N covalency provides consistent model:

Structural Principles for Oxynitride Perovskites

Model for SrMO2N local structure

M(dp)-X(pp) covalency favours cis- (90º) configuration

in d0 complexes, e.g. L4MoX22+ (X2- = O, NR), MoF3O3

3-.

well-defined local structure of cis-MN2O4 octahedra

disordered -M-N- cis-chains (cf organic polymers)

chains segregate into layers (also CaTaO2N, EuTaO2N;

NdV4+O2N (3d1); not BaTaO2N)

X L

X

L L

L

F F

F

O O

O

M. Yang et al, Nature Chem, 2011

= M – N – M = M – O – M

Page 19: Powder Neutron Diffraction studies of Oxide and …portal.nsrrc.org.tw/uao/Usermeeting/2012/speaker/presentations/II7.pdf · Powder Neutron Diffraction studies of Oxide and Oxynitride

• Increasing polymerisation of M-N-M units in MO3 matrix; for x = 0 1.5;

monomers oligomers chains crosslinked chains

• Symmetric polymerisation of M-O-M units in MN3 matrix for x = 3 1.5

evidence:

Structural Principles for AMO3-xNx Perovskites

O/N occs. SrTaO2N

LaNbON2

Pnma

Y1 0.48(4)/0.52

0.44(3)/0.56

Y2 (x2) 0.76/0.24 0.28/0.72

[010]

c*

a*

c*

b*

[100] EuWON2

All O/N local

coordinations

acentric

enhanced

dielectric

susceptibility and

optical transitions

Logvinovich et al, ZAAC 2010

Page 20: Powder Neutron Diffraction studies of Oxide and …portal.nsrrc.org.tw/uao/Usermeeting/2012/speaker/presentations/II7.pdf · Powder Neutron Diffraction studies of Oxide and Oxynitride

SrMO2N – anion order or disorder?

= M – N – M = M – O – M

• Pauling (1935) estimates of configurational entropy:

S =R.lnZ; Z = w/22 w = number of local configurations

• Water (and spin) ices; n = 6 configurations per H2O molecule

Z = 1.5 S = 0.4R (zero-point entropy)

• SrMO2N (cis-square ice); n = 4 per MO2N2

Z = 1 S = 0 (ordered state??)

O

H

H O

H

H

O

H

H O

H

H

O H H O

H

H

‘Ice rules’ order in perovskite planes

(M-N x2, M-O x2 cf O-H x2, O…H x2)

Page 21: Powder Neutron Diffraction studies of Oxide and …portal.nsrrc.org.tw/uao/Usermeeting/2012/speaker/presentations/II7.pdf · Powder Neutron Diffraction studies of Oxide and Oxynitride

Oxynitride Perovskite Entropies

Pauling ice rules configurational entropy for AMO3-zNz;

S ≈ NkBln[wffn/2(1-f)(1-f)n/2] ;

w = local configs, f = 2z/n where n = 4 (2D) or n = 6 (3D)

S = 0 for specific cases (e.g. SrTaO2N) despite structural

disorder - why?

Bonding rules- alternating M-N-M and M-O-M bridges along all rows.

only two possible sequences per row.

LLL lattice has configurations: W = 22L2

S = 2N2/3kBln2 S/N 0 as N ∞ (Pauling limit)

Entropy is ‘sub-extensive’, depends on particle size:

S≈ 10-7R as one mole single crystal

S≈ 0.1R per mole 40 nm nanoparticles (N≈ 106)

SrMO2N has ultra-highly correlated anion order

(cis-square ice, no spin analogues)

– crystallographically disordered on atomic scale

but with no macroscopic configurational entropy.

‘Open order’ (based on closure of correlation

vector sets) – first atomistic example.

Phil Camp, A Fuertes, JPA, JACS 2012.

BaTaO2N

SrTaO2N LaNbON2

EuWO1.5N1.5

↓ ↓ ↓

Page 22: Powder Neutron Diffraction studies of Oxide and …portal.nsrrc.org.tw/uao/Usermeeting/2012/speaker/presentations/II7.pdf · Powder Neutron Diffraction studies of Oxide and Oxynitride

Perovskite O/N Summary

• SrMO2N etc. structures have well-defined local anion

order - disordered cis –M-N- chains in xy planes – an

‘open order’ with sub-extensive entropy.

• Anion order controls the rotation/tilt order axis of

octahedra – new aspect of perovskite tilting.

• Anion order is robust but the resultant lattice distortions

are very small so that high resolution neutron diffraction

is needed to determine such structures.

• A wealth of similar local structures is expected across

the range of AMO3-xNx perovskites

• Challenge to control chains and tune physical properties,

including magnetism, orbital order in d1 V4+.

Page 23: Powder Neutron Diffraction studies of Oxide and …portal.nsrrc.org.tw/uao/Usermeeting/2012/speaker/presentations/II7.pdf · Powder Neutron Diffraction studies of Oxide and Oxynitride

Local O/N tuning of WLED phosphors

Cation size tuning of (M,Eu)Si5-xAlxN8-xOx (M =

Ca,Sr,Ba) photoluminescence energy observed.

Structural mechanism;

1. Neutron diffraction (HRPD@ISIS) shows that O

substitute only for 2SiN (not 3SiN)

O’s coordinated to M/Eu

2. Size difference between Eu and host cation

controls local O-distribution

WT Chen, HS Sheu, RS Liu and JPA, JACS 2012

-0.2 -0.1 0.0 0.1 0.2

-900

-600

-300

0

300

600

900

x = 0.25

x = 0.50

x = 0.75

x = 1.00

Δr (Å )

1/λ

x-

1/λ 0

(cm

-1) Ca

Sr

Ba

400 450 500 550 600 650 700 750

Wavelength (nm)

x = 0.00

x = 0.25

x = 0.50

x = 0.75

x = 1.00

Rel

ati

ve

inte

nsi

ty (

a.u

.)

Ba

Sr

Ca

0.8 1.2 1.6 2.0 2.4

d

Observed

Calculated

Background

Inte

nsit

y (a

.u.)

Si4+/Al3+

O2-/N3-

N3-

M2+

(Å )

Ba Eu CaN O SiAlBaSi4AlN7O

Page 24: Powder Neutron Diffraction studies of Oxide and …portal.nsrrc.org.tw/uao/Usermeeting/2012/speaker/presentations/II7.pdf · Powder Neutron Diffraction studies of Oxide and Oxynitride

Powder neutron diffraction

• Precise location of light atoms; H(D)/Li ion conductors, metal

carbides, nitrides, oxides and fluorides.

• Distinguishing neighbouring elements ordered over different

structural sites, e.g. O/N.

• Use combined X-ray+neutron data for precise refinements e.g Fe3O4

• Magnetic order e.g. MnVO3.

• Multiple powder patterns are easily recorded as a function of

temperature (decomposition, phase transitions, reactions), pressure

or time (solid state kinetics experiments) e.g. BiNiO3.

Page 25: Powder Neutron Diffraction studies of Oxide and …portal.nsrrc.org.tw/uao/Usermeeting/2012/speaker/presentations/II7.pdf · Powder Neutron Diffraction studies of Oxide and Oxynitride

Thanks Wei-Tin Chen

Lucy Clark

Shigeto Hirai

Andrea Marcinkova

Mikael Markkula

George Penny

Marek Senn

Alex Sinclair

Congling Yin

Minghui Yang

Angel Arevalo-Lopez

Anna Kusmartseva

Jenny Rodgers

Amparo Fuertes, Judith Oro-Sole and

colleagues, ICMAB Barcelona

Jon Wright, ESRF

EPSRC

Leverhulme

STFC

Ministerio de Economía y Competitividad

Page 26: Powder Neutron Diffraction studies of Oxide and …portal.nsrrc.org.tw/uao/Usermeeting/2012/speaker/presentations/II7.pdf · Powder Neutron Diffraction studies of Oxide and Oxynitride