potential land use competition from first-generation ... · the global production of biofuels has...

32
Potential land use competition from first-generation biofuel expansion in developing countries OCCASIONAL PAPER George C. Schoneveld

Upload: others

Post on 01-Jun-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Potential land use competition from first-generation ... · The global production of biofuels has almost tripled since 2005, driven largely by a combination of concerns, especially

Potential land use competition from first-generation biofuel expansion in developing countries

O C C A S I O N A L P A P E R

George C. Schoneveld

Page 2: Potential land use competition from first-generation ... · The global production of biofuels has almost tripled since 2005, driven largely by a combination of concerns, especially
Page 3: Potential land use competition from first-generation ... · The global production of biofuels has almost tripled since 2005, driven largely by a combination of concerns, especially

OccasiOnal paper 58

Potential land use competition from first-generation

biofuel expansion in developing countries

George C. Schoneveld

Page 4: Potential land use competition from first-generation ... · The global production of biofuels has almost tripled since 2005, driven largely by a combination of concerns, especially

Occasional Paper 58

© 2010 Center for International Forestry Research All rights reserved

ISBN 978-602-8693-31-8

Schoneveld, G.C. 2010 Potential land use competition from first-generation biofuel expansion in developing countries. Occasional paper 58. CIFOR, Bogor, Indonesia.

Cover photo: Large-scale jatropha plantations in Ghana © George C. Schoneveld/CIFOR

This publication was produced with the financial assistance of the European Union, under the project, ‘Bioenergy, sustainability and trade-offs: Can we avoid deforestation while promoting bioenergy?’ European Community Contribution Agreement EuropeAid/ENV/2007/143936/TPS.

The project aims to contribute to sustainable bioenergy development that benefits local people in developing countries, minimises negative impacts on local environments and rural livelihoods, and contributes to global climate change mitigation. The project will achieve this by producing and communicating policy relevant analyses that can inform government, corporate and civil society decision making related to bioenergy development and its effects on forests and livelihoods. The project is managed by CIFOR and implemented in collaboration with the Council on Scientific and Industrial Research, South Africa; Joanneum Research, Austria; the Universidad Autónoma de México; and the Stockholm Environment Institute, Sweden. The views expressed herein can in no way be taken to reflect the official opinion of the European Union.

CIFORJl. CIFOR, Situ GedeBogor Barat 16115Indonesia

T +62 (251) 8622-622F +62 (251) 8622-100E [email protected]

www.cifor.cgiar.org

Page 5: Potential land use competition from first-generation ... · The global production of biofuels has almost tripled since 2005, driven largely by a combination of concerns, especially

Contents

Key messages 1

1. Introduction 1

2. Enhancing energy security by incorporating biofuels into the energy mix 2

3. Developing country perspectives on biofuel development 4

4. Land suitable for biofuel feedstock production 5

5. Potential future threat to forested and agricultural land 6

5.1 Oil palm expansion in Asia 8

5.2 Soya expansion in South America 11

5.3 Jatropha expansion in Africa 12

5.4 Land requirements for biofuel blending in developing countries 13

6. Conclusion 17

Endnotes 19

References 20

Page 6: Potential land use competition from first-generation ... · The global production of biofuels has almost tripled since 2005, driven largely by a combination of concerns, especially

List of figures and tables

Figures

1. Area of suitable land not classified as forested or cultivated land for selected biofuel feedstocks 5

2. Competing uses for suitable land in Asia 7

3. Competing uses for suitable land in Africa 7

4. Competing uses for suitable land in South America 7

5. Competing land uses for suitable land worldwide 9

6. Average annual increase in area harvested of major feedstocks (2000–2008) 10

7. Percentage of suitable land not classified as forest or cultivated land (for selected feedstocks) required to substitute biodiesel and ethanol produced from key feedstocks for 10% of petroleum consumption in the transportation sector 16

Tables

1. Vulnerability of net oil-importing regions and countries to oil price shocks 2

2. Biofuel production in 2009 3

3. Scenarios for 10% petrodiesel substitution with biodiesel in the transportation sector for selected countries 14

4. Scenarios for 10% gasoline substitution with ethanol in the transportation sector for selected countries 15

Page 7: Potential land use competition from first-generation ... · The global production of biofuels has almost tripled since 2005, driven largely by a combination of concerns, especially

Key messages

• Developingcountrieshaveacompetitiveadvantageforcultivatingbiofuelfeedstock:75–95%oftotalavailableandagro-ecologicallysuitablelandislocatedindevelopingcountries.

• InAsia,almostallsuitablelandisclassifiedasagriculturalorforested,creatingseverelandusecompetition.SouthAmericaandAfricahavethelargestareasofsuitablelandavailableforbiofuelfeedstockproduction,butmostisundercompetinguses.

• Therisksofdeforestationandconversionofagriculturallandarehighiflarge-scalebiofueldevelopmentisnoteffectivelyregulated.Thiscouldleadtolossofvitalecosystemservicesandunderminefoodsecurityandruraldevelopment.

• Globally,thethreatoflandusecompetitionisespeciallysevereforoilpalmandsugarcanecultivation.• Internationaldemandforfoodandfeeduseofbiofuelfeedstock—ratherthanbiofuels—hascontributed

mostsignificantlytoadverseimpactsoflandusechange.ThisisespeciallythecaseforoilpalmexpansioninSoutheastAsiaandsoyaexpansioninSouthAmerica.

• Externaldemandforbiofuelsinindustrialisedcountrieswilllikelybeakeydriverofbiofuelexpansionduringthe2010s.Thiscouldincitedirectlandusechangeindevelopingcountriesthatcapitaliseonnewtradeopportunities;however,areasoflandrequiredtoservicethesemarketsarerelativelysmall(6–7 millionha).

• Inmostdevelopingcountries,biofuelblendingtargetscanbemetusingharvestsfromonemediumtolarge plantation.

• Inmostdevelopingcountries,highdependencyonimportedfossilfuelscreatessignificantmacro-economicinstability.Anenergysecurityagendashouldthereforebeprioritised,beforeactivelytargetingexportmarketswithdomesticallyproducedbiofuels.Thisisespeciallyrelevantwhereonlysmallareasoflandarebothsuitableandgenuinelyavailable.

1. IntroductionTheglobalproductionofbiofuelshasalmosttripledsince2005,drivenlargelybyacombinationofconcerns,especiallyinindustrialisedcountries,aboutoverdependencyonimportedfossilfuelproductsandtheimpactsofclimatechange.Formanydevelopingcountries,thistrendiscreatingnewopportunities.Itisarguedthatdevelopingcountriescouldbesignificantlymorecompetitiveinproducingbiofuelsthanindustrialisedcountries,duetorelativelylowcostsofproductionandtheavailabilityofcheapagro-ecologicallysuitablelandforthecultivationofbiofuelfeedstocks.Althoughthistrendcouldprovidedevelopingcountrieswithmuch-neededinternationaltradeandinvestment,itdoesposeanumberofchallenges.Thispaperfocusesonakeychallenge:thepotentialthreatthatbiofuelfeedstockexpansionposestosustainablelanduseindevelopingcountries.Thepaperaimstoillustratethenature,extentandimpactoflandusecompetitionassociatedwiththeexpansionofbiofuelfeedstockcultivation,especiallyas

suchexpansioncouldpotentiallycontributetodeforestationandconversionofagriculturalland.

Thenext2sectionsdiscussthetrendsandprospectsforbiofueldevelopment,andthepotentialdevelopmentimplicationsthesemayhavefordevelopingcountryeconomies.Thesubsequentsectionassessesthechallengessectordevelopmentmayraisewhenconvertingexistinglandusestobiofuelfeedstockcultivation.Itdrawsonexistinglanduseandcropsuitabilitydatatoillustratewhattypesoflandusecompetitioncouldbeanticipatedindifferentregions.Itthenexploresthepotentialpathwaysforandimplicationsoflandconversiontobiofuelfeedstockcultivationbyreviewinghistoricalevidencefromthedifferenteco-regions.Finally,thispaperanalysesthelikelyextentofthesethreatsbyassessingthepotentialmagnitudeofdemandforlandresourcesinasituationwherecountriesdecidetocommittodevelopingadomesticbiofuelindustry.

Page 8: Potential land use competition from first-generation ... · The global production of biofuels has almost tripled since 2005, driven largely by a combination of concerns, especially

2 | George c. schoneveld

Table 1. Vulnerability of net oil-importing regions and countries to oil price shocksa

Net import/GDP (%) Change from 2004 to 2008 (%)2004 2008

Region or countryAfrica 2.2 4.9 124.7Asia 2.2 4.0 79.7Latin America 1.6 1.5 –2.4Europe 1.2 2.2 82.1USA 1.4 2.6 78.7By income group in US$< $1000 per capita 3.3 5.9 78.3

$1000–3000 per capita 2.1 3.1 48.6$3000–10 000 per capita 1.9 2.3 22.8

> $10 000 per capita 1.4 2.6 81.4All net oil-importing countries 1.6 2.8 76.5

Source: Derived from EIA (2010), World Bank (2010)

a. Vulnerability is calculated by multiplying the annual supply deficit (EIA 2010) by the average Brent oil spot price, and dividing by the GDP (at current US$ value) for the given year (World Bank 2010).

2. Enhancing energy security by incorporating biofuels into the energy mix

Fossilfuels(includingcrudeoil,petroleumproducts,naturalgasandelectricitygeneratedfromthesesources)arethemostimportantglobalsourceofenergy,accountingforapproximately62%oftotalenergyconsumptionin2006(IEA2010).Theproductionofoil,however,isheavilyconcentratedinafewcountries—only41countriesmeettheiroilconsumptionthroughproduction.In2008,10ofthosecountrieswereresponsiblefor52%oftotalcrudeoilproduction(BP2009).Thenetoil-importingcountries,ontheotherhand,met67%oftheiroilneedsthroughimports.Africainparticularishighlydependentonimportedoil,with36outof54countriesimporting100%oftheiroilrequirementsin2008.DependencyonimportedoilisalsoacuteinCentralAmerica,withonlyonecountrybeinganetoilexporter(calculatedfromEIA2010).

Thishighdegreeofdependencyonforeignenergysourcescanhavehigheconomiccosts.Therelativeeconomiccostsofdependencyonimportedoilfordifferentregionshavebeencalculatedfor2 pointsintime,overwhichoilpricesroseby142%,froma

2004averageofUS$38.30perbarreltoanaverageofUS$92.80perbarrelin2008(Table1).By2008,thevalueofnetoilimportshadincreasedbyalmostUS$860billionover2004levelsfornetoil-importingcountries.InSouthAsiaandsub-SaharanAfrica,theoilpricerisewasequivalenttoalossofGDPof2.6%and2.8%,respectively—considerablymorethantheglobalaverageof1.2%.Thisillustratesthemacroeconomicimplicationsformanypooroil-importingcountriesasoilpricesrise.Heavyrelianceonimportedoilsignificantlyincreasesvulnerabilitytooilpricefluctuations.Thiscanhaveseveralconsequences,suchasareductioninforeignexchangereserves,decreaseinoutputorincreaseinexternaldebt.

Thepoorestcountriesintheworldareespeciallyvulnerabletooilpriceshocks,withasignificantinversecorrelationbetweenrelativeeconomiccostsofoilimportsandGDPpercapita(P <0.01)(author’scalculations).CountrieswithGDPpercapitabelowUS$1000experiencethehighestratesofdependency(Table1).Furthermore,themoredependentacountryisonimportedoil,thehigheritsexternaldebtposition(P <0.01)(author’scalculations),illustratingtherelativelylowcapacityofpoorcountriestocopewithandrespondtooilpricesshocks.Thus,diversifyingenergysources

Page 9: Potential land use competition from first-generation ... · The global production of biofuels has almost tripled since 2005, driven largely by a combination of concerns, especially

potential land use competition from first-generation biofuel expansion in developing countries | 3

anddevelopingalternativesourcesdomesticallyarecriticallyimportant,especiallyforleastdevelopedcountrieswheretherelativecostsofoildependencyandtheopportunitycostsoffederalfunds(consideringhighpovertyrates)areespeciallyhigh.

Manycountrieshavepromotedbiofuelsasasubstituteforoilconsumption,andhenceasasuitablealternativetomanyfossilfuelproducts.Biofuelscangenerallybeblendedbyupto10%withpetroleumproductswithoutenginemodification.Thetechnologiesforflexfuelvehicleshavebeensufficientlydevelopedtoenableadoptionofevenhigherblendingratios.Althoughthetransportationsectorhastypicallybeenthetargetofbiofuelincorporation,biofuelscanalsobeusedtogenerateelectricityandforhouseholduse(e.g.forcookingandlighting).

AlthoughBrazilandtheUSAhavepromotedtheproductionofbiofuelssincetheoilcrisisofthe1970sandearly1980s,itisonlysincetherecentoilcrisisandwithincreasinginterestinclimatechangemitigationthatrenewableenergyingeneralandbiofuelsinparticularhavebecomeanimportantglobalpolicyconcern.Despitethisinterestinthesector,productiontodateislimited.In2009,approximately95billionLofbiofuelswasproduced,81%ofwhichwasbioethanoland19%biodiesel(Table2).Thisequatesto53.3milliontonnesofoilequivalent(toe)1—notmorethan0.4%oftheworld’stotalprimaryenergysupply.Moreover,productionisstilldominatedbyBrazilandtheUSA,collectivelyaccountingfor75%of

Table 2. Biofuel production in 2009

RegionFuel ethanol Biodiesel Total biofuels

(’000 litresa) (’000 litres) (’000 litres)

Middle East 0 0 0Africa 24 373 5 165 29 537Eurasia 75 439 220 515 295 955Asia and Oceania 3 188 362 2 235 568 5 423 930Europe 3 599 624 10 016 621 13 616 245Central and South America 27 648 180 3 361 789 31 009 969North America 42 489 427 2 044 556 44 533 983World total 77 025 405 17 884 214 94 909 619

Source: EIA (2010)a. Converted from gallons per day

globalproduction.AlthoughAfricainparticularisgrapplingwithhighenergyinsecurity,itsproductionofbiofuelsisnegligible.

Theproductionvolumeofbiofuelsis,however,expectedtoincreasedramaticallyduringthe2010s.Forexample,inthe2009InternationalEnergyOutlookreport(EIA2009),itisforecastthatunderthereferencescenario(assumingmoderateoilprices)annualbiofuelproductionwillreach226billionLby2020.TheOECD-FAO(2010)estimatethatby2019annualproductionwillhaveincreasedtoapproximately200billionLperyear;intheirreferencescenario,itisassumedthatlargeemergingmarkets,suchasIndia,ChinaandBrazil,willbeabletomeetmostoftheirdemandthroughdomesticproduction.TheEuropeanUnion(EU- 27)andtheUSA,ontheotherhand,areprojectedtobecomethelargestbiofuel-importingmarkets,asdomesticproductionwillnotbesufficienttomeetdemand.TheOECD-FAOreportprojectsthat,by2019,theUSAwillneedtoimportmorethan10.8billionLofbiofuels(approximately15.1%oftotaldomesticproduction)andtheEUalmost7.1billionL(18.4%oftotaldomesticproduction).AlthoughFAPRI(2010)assumessimilarmarketconfigurations,itprojectsmoremodestimportvolumesbytheUSAandEU,withprojectedannualnetimportsamountingto9.8billionLand4.6billionL,respectively,by2019.2However,thetworeportssharetheassumptionthatovertheprojectionperiodbiofuelconsumptionwillbedrivenlargelybypolicymandatesratherthanbymarkets(thuslimitingthecorrelationbetweenoil

Page 10: Potential land use competition from first-generation ... · The global production of biofuels has almost tripled since 2005, driven largely by a combination of concerns, especially

4 | George c. schoneveld

pricesandbiofuelprices).Thisassumptionappearstobewidelyshared(KojimaandJohnson2005;FAOet al. 2008;PetersandThielmann2008;USDAFAS2009a;DEFRA2010),asbiofuelsareunlikelytobeabletocompetewithfossilfuelsinmostcountriesatcurrentandprojectedoilpriceswithoutsomeformofgovernmentsupport.

3. Developing country perspectives on biofuel development

InthemoreindustrialisedOECDcountriesinparticular,3increasingtheincorporationofbiofuelsintothedomesticenergymatrixhasbecomeanimportantpolicyobjective.MostOECDcountrieshavethusadoptedpoliciesandstrategiestoincentivisethedomesticconsumptionandproductionofbiofuelsthrough,forinstance,themandatoryincorporationofbiofuels(typicallycomplementedbysectoralsubsidies,pricingcontrolsand/ortaxcredits/exemptions).Whereasthepursuitofenergysovereigntyisoftenaprincipaldriverofgovernmentinterventioninthesector,manyother(attimesdivergent)objectivesareshapingthepolicydiscourse.Theseobjectivesincludeclimatechangemitigation,agriculturalandruraldevelopmentandinternationaltrade.TheEUinparticularisstronglycommittedtobiofuelsfromaclimatechangemitigationagenda(asisevidentfromtheEURenewableEnergyDirective),andtheUSAfromanenergysecurityagenda;developingcountriesare(inadditiontoreducingdependenceonimportedoil)increasinglyembracingtheeconomicopportunitiesthatnewinvestmentsandtheopportunityofservicingnewexportmarketscouldcreate(FAO-GBEP2007).

AlthoughalmostalltheOECDcountrieshaveformulatedbiofuelpolicies,oratleastimposedbiofuelincorporationtargets,onlyasmallproportionofnon-OECDcountrieshavemadeanyregulatoryprovisionforbiofueldevelopment(seeREN212009foranoverview).ThelargestbiofuelmarketsoutsidetheOECDaretypicallythosewithstronggovernmentcommitmentandsupportfordevelopingdomesticbiofuelmarkets,oftengroundedintheobjectiveofenhancingenergysecurity.ThesecountriesincludeBrazil,Colombia,Argentina,India,China,Mozambique

andThailand,someofwhichhavedevelopedbiofuelmarketsthatarenotonlymeetingdomesticdemandbutarealsoservicingexportmarkets.Althoughgovernmentincentiveshavebeeninstrumentalindrivingsectordevelopmentinthesecountries,thereisanincreasingnumberofcountrieswherethesectorisdevelopingwithoutanyspecificgovernmentintervention.Forexample,some—particularlyAfricancountriessuchasGhana,Madagascar,ZambiaandTanzania—haveexperiencedasurgeinbiofuel-relatedinvestmentswithoutanyspecificpoliciesorgovernmentstrategiestopropelsectordevelopment.Inthesecases,therenewedglobalinterestinbiofuelshasattractedprivate,oftenforeign,companiesseekingtocapitaliseonnewmarketopportunitiesbygainingaccesstotherelativelycheapandabundantagro-ecologicallysuitablelandsthatarepotentiallyavailableinthesecountries.

Keystakeholdersinnumerousdevelopingcountriesarethusincreasinglystartingtorecognisetheeconomicopportunitiesthatthisbiofueltrendcouldcreate,andthepotentialcompetitiveadvantageinstrategicresourcesthattheycouldexploit.Inparticular,itisperceivedasanopportunitytobringinmuch-neededforeignexchangeearningsandforeigninvestment,whichinturncouldfurthercontributetoruraldevelopmentthroughtheupgradingoftheagriculturesectoringeneralandengenderingpotentiallyvaluableoccupationalshifts.Thiscomesatatimewhenmostgovernmentsindevelopingcountriesareprogressivelybecomingmoreliberalandaccommodatingtowardsforeigndirectinvestment(FDI),aspartofbroaderdevelopmentstrategies.Accordingly,manygovernmentshavesoughttoenhancetheirattractivenessasanFDIdestinationbyenactinginvestmentpoliciesthatprovideforahostofincentivestoprospectiveinvestors,forinstanceintheformoftaxanddutyexemptions,freedomofinternationalcapitalflowsandinvestorsupportservices.AlthoughsuchincentivescreateanenvironmentconducivetoFDI,fewofthesecountrieshaveenactedpoliciestopromotethedomesticincorporationofbiofuelsorothermeanstoregulatesectordevelopment(e.g.sustainabilitystandards),whichinturncouldhavenegativeimplicationsforsustainablelanduse.

Page 11: Potential land use competition from first-generation ... · The global production of biofuels has almost tripled since 2005, driven largely by a combination of concerns, especially

potential land use competition from first-generation biofuel expansion in developing countries | 5

Inthefuture,asmoredevelopingcountriesareexpectedtoestablishdedicatedbiofuelpoliciesandstrategies,stronglydualisticobjectiveswilllikelybepursued,ashasbeenapparentfromongoingdialogues.Ontheonehand,therearestrongincentivestopromotedomesticuptakeofbiofuelproducts(toenhanceenergysecurity),whereasontheotherhand,thereisastrongdesiretoembracetradeandinvestmentopportunities.Thereisarisk,however,thattheseobjectivesmightconflictasaderegulatedenvironmentforforeigninvestmentunderminesthereductionofenergydependency.Thiswouldparticularlybethecasewhenforeignbiofuelcompaniesarenotrequiredorincentivisedtoservicedomesticmarkets,andinsteadareunrestrictedinsellingopportunisticallyand/orenteringintoforeignoff-takeagreements.

4. Land suitable for biofuel feedstock production

Thegrowingdemandforbiofuelsworldwideraisesthechallengeofsourcinglargeareasoflandfortheproductionoffeedstock.Thisisespeciallythecasewheredevelopingcountriesareseekingtoexploittradeandinvestmentopportunitiesthatmayplaceconsiderablymorepressureonfinitelandresourcesthanifenergysecuritywerethesolepolicyobjective.

Landsuitabilityandavailabilityassessmentshavebeenwidelyusedasatoolfortargetingareasforbiofuelfeedstockproductionthatenableoptimalyieldswhilstminimisingthesocialandenvironmentalcostsoflandusechange.Suitabilityassessmentsprovideanindicationofwheredifferentbiofuelcropscanbecultivated,generallybasedsolelyonagronomicpotential(maximumobtainablecropandbiomassyieldsbasedonclimate,soilandterrainconditions).4Landavailability,ontheotherhand,goesbeyondagronomicconsiderationstootheraspectsoffeasibility,suchascompetinglandusesandlandcover.Inassessingthepotentialofdifferentworldregionsandlandscapesfortheexpansionofbiofuelfeedstockcultivationtomeetglobaldemand,itisthereforeimportanttoconsiderboththesedimensions(i.e.suitabilityandavailability).Theareas(byregion)thatmaybeconsideredtobebothsuitableandpotentiallyavailableareshowninFigure1;theseareidentifiedbysubtractingtheareaofsuitablelandclassifiedashavingcompetinguses(e.g.forestedandcultivatedland)fromthetotalareaofsuitableland(adaptedfromFischeret al.2009).Suitablelandnotclassifiedascultivatedorforestedistypicallygrassland,shrublandorsparsewoodland.5Asthesetypesoflandoftenprovidefewerenvironmentalservicesthanforestedlandsandareunderlessintenseanthropogenicusethancultivatedland,theconsequencesofland

Mill

ion

hect

ares

0

50

100

150

200

250

300

350

400

Sugarcane Maize Cassava Rape Soya Oil palm Jatropha

Africa

South America

Asia

Europe and Russia

North America

Central America

Figure 1. Area of suitable land not classified as forested or cultivated land for selected biofuel feedstocks

Source: Derived from Fischer et al. (2009)

Page 12: Potential land use competition from first-generation ... · The global production of biofuels has almost tripled since 2005, driven largely by a combination of concerns, especially

6 | George c. schoneveld

conversiontofeedstockcultivationwillinmanycasesbenotbeextensive.Ascanbeobserved,AfricaandSouthAmericahavesomeofthelargestareasintheworldconsideredbothsuitableandpotentiallyavailableforthecultivationofbiofuelfeedstock.Intermsofarea,maize,soybean,cassavaandjatrophacultivationofferthegreatestpromiseinbothAfricaandSouthAmerica.Intotal,approximately75–95%ofsuitableandpotentiallyavailableland(dependingonfeedstock)islocatedindevelopingcountries.

Formostfeedstocks,only20–30%ofsuitablelandcaninfactbeclassifiedaspotentiallyavailable,withmostsuitablelandclassifiedaseithercultivatedorforested.InAsia,lessthan10%ofsuitablelandisconsideredpotentiallyavailableformostfeedstocks,whilstinAfricaandSouthAmericapotentialavailabilityrangesfrom10%to50%ofsuitableland,dependingonthefeedstock.Inthecaseofsugarcaneandoilpalm,particularlylargeproportionsofsuitablelandarelocatedinforestedareas—approximately54%and79%ofsuitableland,respectively.Globally,thisequatesto575millionhaofthe1.06billionhaofareassuitableforsugarcaneand478millionhaofthe605millionhaofareassuitableforoilpalm.However,thenatureoflandusecompetitiondiffersgreatlybyregion(Figures2,3and4).WhereasinSouthAmericaandAfricathemostsignificantlandusecompetitioniswithforests,inAsiaitismostlycultivatedlandthatcompeteswithfeedstock-suitableareas.InAsia,forexample,formostfeedstocks,between65%and85%ofsuitablelandisclassifiedascultivatedland.Oilpalm,however,isanexception,withalmost46%ofsuitableareasclassifiedasforested.Whereasatotalareaof94millionhaissuitableforoilpalmcultivationinAsia,44millionhaisforestedand45millionhacultivated,leaving(theoretically)atmost5millionhawithoutcompetinguses.

AlthoughAfricaandSouthAmericapotentiallyhaverelativelylargeareasofsuitableandavailablelandwithcomparativelylowidentifiedlandusecompetition,thesemightnotbethemostconvenientoreconomicallyappropriatelandsforproducers.Forexample,companiescoulddisproportionatelyseekoutagriculturallandsastheseareoftenlocatedalongkeytransportationroutes,inthevicinityofimportantmarket

centresandinthemostfertileareas.Similarly,investorscouldseekoutforestedlandbecauseoflowpopulationdensitiesandhighagro-ecologicalsuitabilityandinordertogenerateasupplementaryincomefromthesaleofforestproducts.Thissuggeststhatintheabsenceofeffectivecontrolmechanisms,someproducersmightnonethelessbecompelledtoconvertforestsandagriculturallandsasopposedtotargetinglandthatisactuallyavailable.

5. Potential future threat to forested and agricultural land

Thesedataoncompetingusesofsuitablelandoffervaluableinsightsintotherelativeproductivityofthedifferentfeedstocksincultivatedandforestedareas.Thisinturnenablesustoassesstherelativeriskoflandusechangeintheabsenceofmechanismstoeffectivelyregulatelandconversiontobiofuelfeedstock.Unrestrainedlandusechangeforbiofuelfeedstockcouldleadtoalossofbiodiversityandforestcover,inturndetractingfromthepotentialcontributionofbiofuelstoimprovingthecarbonbalance.Furthermore,thedisplacementofagriculturecouldincreasefoodandincomeinsecurity,especiallyinAfrica,wheremostcountriesarenetfoodimportersandmostpeoplearenetfoodbuyers,andwheretherearesomeofthehighestratesofmalnutritionintheworld(AksoyandIsik-Dikmelik2008FAOet al.2008;FAO2009).Here,conversionofagriculturallandcouldpotentiallyhavedirehumanitarianimplications.

Fromthedatapresentedintheprecedingsection,wecangeneralisethattheoverallriskofconversionofagriculturallandisrelativelyhighinAsia,whereasinSouthAmericaandAfricaitisforeststhatareespeciallythreatenedbybiofuelexpansion.However,theseregionalgeneralisationsmasktheheterogeneousrealitieswithinregions.Forexample,asshowninFigure5,biofuelfeedstocksareparticularlyproductiveinthemaintropicalrainforestbiomesoftheCongoBasin(e.g.RepublicoftheCongo,DemocraticRepublicoftheCongoandCameroon),theAmazonBasin(e.g.Brazil,ColombiaandPeru)andSoutheastAsia(particularlyIndonesiaandPapuaNewGuinea),andinmiombowoodlands(e.g.Mozambique,TanzaniaandZambia).Similarly,inthecaseofagriculturalland,largeareasofSouthAsia,Indochina,theSahel,southeastBraziland

Page 13: Potential land use competition from first-generation ... · The global production of biofuels has almost tripled since 2005, driven largely by a combination of concerns, especially

potential land use competition from first-generation biofuel expansion in developing countries | 7

Sugarcane

Suita

ble

land

(%)

Maize Cassava Rape Soya Oil palm Jatropha

Forest

Cultivated

Other

0102030405060708090

100

Figure 2. Competing uses for suitable land in Asia

Source: Derived from Fischer et al. 2009

Sugarcane

Suita

ble

land

(%)

Maize Cassava Rape Soya Oil palm Jatropha

Forest

Cultivated

Other

0102030405060708090

100

Sugarcane

Suita

ble

land

(%)

Maize Cassava Rape Soya Oil palm Jatropha

Forest

Cultivated

Other

0102030405060708090

100

Figure 3. Competing uses for suitable land in Africa

Source: Derived from Fischer et al. 2009

Figure 4. Competing uses for suitable land in South America

Source: Derived from Fischer et al. 2009

northernArgentinaarealreadyoccupiedforagriculturalpurposes.Landthatispotentiallyavailableforbiofuelfeedstockcultivationisoftenhighlygeographicallydispersedandfragmented,illustratingthechallengeofseekingoutlargecontiguousareasofland(oftenpreferabletoenableeconomiesofscale)withoutincitinglandusecompetition.Moreover,inpractice,fewlandsthat

areclassifiedasavailablearetrulyavailable,astheyareoftenundercomplexandoverlappingsystemsoflanduseandrights(seeBox 1foramoredetaileddiscussion).Therefore,thetypeoflandavailabilityassessmentconductedhere,basedonbroadlanduseclassificationsthatoftendonotcapturelocalrealities,needstobecomplementedbydetailedon-the-groundanalysistodeterminetheactual

Page 14: Potential land use competition from first-generation ... · The global production of biofuels has almost tripled since 2005, driven largely by a combination of concerns, especially

8 | George c. schoneveld

degreeofpotentiallandusecompetition.Asalmostalllandisundersomeformofuse,andisthusrarelygenuinelyavailable,aclearerconsensusonwhattypeoflandwouldbemostappropriateforconversionismuchneeded.

Historicaldataonthegeographiesoffeedstockexpansioncanprovideusefulinsightsintowhereexpansionismostlikelytooccur.TheabsoluteaverageannualexpansionofareasharvestedforkeyfeedstocksinkeyregionsisshowninFigure6;somekeytrendsaretheexpansionofsoyaproductioninSouthAmerica,maizeinAsiaandtheAmericas,rapeinEuropeandoilpalminAsia.Whenwerelatethesetrendstothedistributionofsuitableandavailableland(Figure 1),potentialthreatsofadverselandusechangecanbeobserved,forexample,caseswherecurrentexpansionratesareunsustainableconsideringlandavailability.However,itisdifficulttoaccuratelyanticipatehowandwherefuturebiofuelfeedstockexpansioncoulddrivedeforestationandconversionofagricultural

landwithoutconsideringknownhistoricalprocessesandlocalrealities.Thefollowing3subsectionselaboratefurtheronsomeofthemostimportantongoingexpansiontrendsastheyrelatetolandusecompetition,byexaminingsomeofthemainbiofuelfeedstockswithinthedifferentregions.

5.1 Oil palm expansion in Asia

IndonesiaandMalaysiaaccountforapproximately46%and41%,respectively,ofthetotalproductionofpalmoilin2008(USDAFAS2009b).Duringtheperiod2000–2008,oilpalmwasharvestedonaveragefromanadditional500 000haoflandeveryyear,withIndonesiaaccountingfor65%andMalaysia18%ofthisannualincrease(basedonFAOSTATdata,FAO2010).In2009,7.9millionhaoflandhadbeenplantedwithoilpalminIndonesiafromatotalareaof9.7millionhalicencedtooilpalmestates(Simamora2010).InMalaysia,4.69millionhaoflandwasplantedwithoilpalmin2009(MPOB2010).Withmorethan80%ofIndonesia’sandMalaysia’spalmoil

Box 1. Is ‘available’ land really available?

Land classified as ‘available’ is typically considered to be ‘marginal’, ‘degraded’, ‘idle’, ‘abandoned,’ ‘unproductive’ or ‘unutilised’. This raises 2 concerns. The first is that the poor definition of concepts leaves them open to abuse by decision makers or companies pressured to identify suitable areas for development. The second concern is that these concepts are relative to one’s perspective. Lands that might be considered ‘marginal’, ‘degraded’ or ‘unproductive’ by one person or use might be considered productive for other purposes—such as the provision of fuelwood, non-timber forest products or grazing in secondary forests or shrubland. Land considered ‘idle’, ‘abandoned’ or ‘underutilised’ by government agencies accustomed to viewing landscapes in terms of their permanent features and documented ownership might be actively used by shifting agriculturalists and pastoralists (Cotula et al. 2008; Sugrue 2008), provide essential subsistence or ‘safety net’ functions to women and the poor (Rajagopal and Zilberman 2007; Rossi and Lambrou 2008) or be under complex customary systems of land use that are difficult to ‘read’ by outsiders. For instance, land that may be legally categorised as state or public land may be intensively used by groups not enjoying formal tenure rights to these lands. Especially in Africa, where no more than 10% of land is formally registered (Deininger 2003), the existence of formal property rights is not an appropriate variable for assessing land availability.

The land uses described here are often not accurately captured in land use classifications either. For instance, the FAO classification system (FAO 2010), on which the ‘cultivated land’ classification used in the preceding section is based, does not consider land to be under agricultural use when it is left fallow for more than 5 years. However, in many systems of shifting cultivation, cropping cycles can be considerably longer. Consequently, land might be considered available whilst being an integral part of a farming system. Furthermore, land that formerly had anthropogenic land uses, but does not any longer, might be considered available despite long-term processes of natural regeneration taking place. Although the range of environmental services offered by this land might be negligible at a particular point in time, these may over time eventually exceed those offered by large-scale monoculture if left undisturbed. As one report puts it: ‘The evidence suggests that there really are very few genuinely “marginal” lands, or at least none that conform to the abandoned, empty and useless land of our imagination’ (Anonymous 2008, p. 1). Clearer definitions of concepts are therefore required ‘to avoid allocation of lands on which local user groups depend for livelihoods’ (Cotula et al. 2008, p. 3).

Page 15: Potential land use competition from first-generation ... · The global production of biofuels has almost tripled since 2005, driven largely by a combination of concerns, especially

potential land use competition from first-generation biofuel expansion in developing countries | 9

productiontypicallyexportedontheglobalmarket,itisespeciallythegrowingglobaldemandthatisdrivingexpansion.EmergingeconomiesIndiaandChinahaveinrecentyearsaccountedforthebulkofthisgrowth,collectivelyresponsibleformorethan60%ofdemandgrowthbetween2005and2008(calculatedfromUSDAFAS2009b).Asthelowest-costvegetableoil,palmoilisthemosttradedvegetableoilonthemarket,andthusalsothemosteconomicallyviablebiodieselfeedstock.However,oilpalmexpansionisdrivenprimarilybyinternationaldemandforitsfooduses,whichisestimatedat77%oftotalpalmoilconsumption(Sheilet al.2009).AccordingtoRupiliusandAhmad(2007),only5%ofpalmoilwastransformedintobiodieselin2007.TheUSDAFAS(2009a)reportssimilarfiguresfortheEU,

Figure 5. Competing land uses for suitable land worldwide

Sources: Crop suitability (IIASA 2002); land cover (ESA 2006); protected area (WDPA 2009)

Notes:

• Biofuel feedstocks included are maize, rape, sunflower, soya, sugarcane, sugar beet and oil palm.• Feedstocks were considered suitable for cultivation when moderate to very high yields are attainable (Suitability Index (SI) >

25) under high inputs and under both rain-fed and irrigated conditions. • Land considered ‘otherwise unavailable’ includes land with a protected status and artificial areas.

estimatingthatapproximately5%ofbiodieselproducedintheEUisderivedfrompalmoil,whichtranslatestoroughly6%oftotalEUpalmoilimports(basedonCOMTRADEdata,UN2010).Despiteitsrelativelylimitedapplicationtodateasafeedstockforbiodiesel,globaldemandforbiofuelfeedstockingeneralwillonlyservetofurtherstimulatedemandforpalmoil.Forexample,althoughIndonesiaproducedonlyabout91millionLofbiodieselin2009,itcurrentlyhasaproductioncapacityofmorethan4milliontonsofbiodieselperyear(vanGelderet al.inpress),enoughtoservicetheentireprojectedEUimportrequirementofbiodieselby2020.

Whilstbeinganimportantsourceofforeignexchangeearnings,theexpansionofoilpalmhas

Page 16: Potential land use competition from first-generation ... · The global production of biofuels has almost tripled since 2005, driven largely by a combination of concerns, especially

10 | George c. schoneveld

becomeoneoftheleadingdriversofdeforestationinSoutheastAsiainrecenttimes.InIndonesiainparticular,hometomorethan75%ofSoutheastAsia’sprimaryforests(FAO2006),oilpalmisdecimatingoneofthemostbiologicallydiverseterrestrialecosystemsintheworld.Intermsofgreenhousegasemissions,Fargioneet al. (2008)foundtheconversionofIndonesianrainforesttooilpalmplantationstohavesomeofthehighestcarbondebt6ofalltypesoflandconversionsforbiofuelfeedstock.Bytheircalculations,itwouldtake423 yearsand86yearstosequesterthecarbonemittedbythechangeoflandusefrompeatlandrainforestandtropicalrainforesttooilpalm, respectively.

KohandWilcove(2008)estimatethat55–59%and56%ofoilpalmexpansionbetween1990and2005occurredattheexpenseofforestsinMalaysiaandIndonesia,respectively.InthecaseofIndonesia,theIndonesianMinistryofForestry(citedinSheilet al.2009)estimatesthistobeashighas70%between1982and1999.InIndonesia,however,itisassumedthatmuchlargerareasofforestshavebeenclearedunderthepretextofoilpalmdevelopmentwithout

thereeverhavingbeenanyactualcultivation;thisisbecauseitiseasiertoobtainalicencetocultivateoilpalmthantoharvesttimber(Casson2003;Colchesteret al.2006).Furthermore,asoilpalmonlystartstobearfruitafterapproximately3 years,oilpalmproducersareincentivisedtospecificallytargetforestedareastooffsetthecostofplantationestablishmentandtherelativelylongtimetofullyrecovercosts(Fitzherbertet al.2008).Inaddition,therelativelyhighpopulationdensitiesinIndonesia’sruralareasmeanitislesscumbersomeforoilpalmcompaniesseekingtoacquirelargecontiguousareasoflandtoconvertforestland,aslandconflictsarethenlesslikelytomaterialise.Nevertheless,mostoilpalmcompaniesareinconflictwithcommunitiesthatholdcustomaryclaimstotheland.Landacquiredinthepasthasoftenbeenusedbyindigenouscommunitiesforswiddenagricultureandfortheharvestingof(non-timber)forestproducts;thisislandtowhichrightsareofteninsecure(Wakker2005;Martiet al.2008).

Expansionattheexpenseofforestswilllikelypersist,particularlyinIndonesia.Forexample,thereareplanstoconvert8.09millionhatooil

Sugarcane

Mill

ion

hect

ares

per

yea

r

Maize Cassava Rape Soya Oil palm0.0

-0.5

0.5

1.0

1.5

2.0

2.5

Africa

South America

Asia

Europe and Russia

North America

Central America

Figure 6. Average annual increase in area harvested of major feedstocks (2000–2008)Source: Derived from FAO 2010

Note: Jatropha is not included as no official data on its cultivation are maintained.

Page 17: Potential land use competition from first-generation ... · The global production of biofuels has almost tripled since 2005, driven largely by a combination of concerns, especially

potential land use competition from first-generation biofuel expansion in developing countries | 11

palminKalimantan(IndonesianBorneo)alone,ofwhich3.72millionhaisclassifiedasforest(Venteret al.2009).In2006,Colchesteret al.(2006)observedthatacrossIndonesialocalgovernmentshadplanstoexpandtheareaunderoilpalmbyanadditional19.8millionha.Thistargetsignificantlyexceedsthe5millionhaoflandidentifiedasbeingbothsuitableandpotentiallyavailableforoilpalmproductioninallofAsia(seeFigure1).AlthoughoilpalmexpansiontodatehascertainlybeenthemostintenseandthreateninginIndonesiaandMalaysia,numerousothercountriesarestartingtoactivelypromotetheoilpalmsector.Ofconcernisthatmostrecentexpansionsaretakingplaceinforest-richcountries—notablyinRepublicoftheCongo,DemocraticRepublicoftheCongo,Cameroon,Brazil,EcuadorandColombia.Forexample,intheRepublicoftheCongo,atleast3Europeanenergycompaniesaredevelopinglarge-scaleoilpalmplantationsforthepurposeofproducingbiodiesel.IntheDemocraticRepublicoftheCongo,aChinesecompanyhassignedaMemorandumofUnderstandingforthedevelopmentofupto1millionhaofoilpalminthedenselyforestednorthernregionsofthecountry(Mpoyi2010),althoughonly100 000hahasactuallybeenallocatedtodate(L.Putzelpersonalcommunication).Therefore,withincreasinginternationalrecognitionofoilpalm’sproductivityandfavourableprospectsonexportmarkets,thereisaconsiderablerisk,consideringoilpalm’ssuitabilityinforestedareas,thatitsexpansioncouldhavedireenvironmentalimplications.Arecentstudy,forinstance,hasshownthatoilpalmisoftenthemostprofitablelanduseoftropicalforest,moresothanothercropsorcarbonpaymentschemes(Butleret al.2009).

5.2 Soya expansion in South America

AnotherimportanttrendistheexpansionofsoyacultivationinSouthAmerica.Onaverage,anadditional2millionhaoflandinSouthAmerica,concentratedpredominantlyinsouthandcentral-westBrazilandnorthernArgentina,isbeingbroughtintoproductioneveryyear(Figure1).In2008,BrazilandArgentinahad21.3millionand16.4millionhaoflandundersoyacultivation,respectively—representing38.8%ofthetotalglobalareaundersoyacultivationand46.0%oftotalglobalsoyaproductionquantityinthat

period(basedonFAOSTATdata,FAO2010).Inrecentyears,othercountriesintheregion,suchasParaguay,BoliviaandUruguay,havealsosignificantlyincreasedtheirproductioncapacity,althoughatsignificantlylowerlevelsthanthoseofArgentinaandBrazil.ThegrowthofthesoyasectorinSouthAmericaisdrivenprimarilybyinternationaldemand.Thisislargelyforsoybeanoil(foruseinthefoodsector)andsoybeanmeal(forusemainlyasanimalfeedprotein,havinghighernutritionalvaluethanmostotherorganicsubstitutes).TheimportsofsoybeanproductsbytheEUandChinarepresentedmorethan50%ofthetotalglobaltradevolumein2008,withBrazilandArgentinaaccountingfor58%ofthetotalglobalexportvolumeofsoybeanproducts(basedonUSDAFAS2009b;COMTRADEdata,UN2010).7,8WhereasBrazilexportsmostofitssoybeaninunprocessedseedform,Argentinaprocessesmorethan80%ofsoybeanseedsdomesticallyintomealandoil,ofwhichultimately97%and76%,respectively,areexported(ibid).

Althoughsoybeanoilisstillprimarilyusedforfoodpurposes,ArgentinaandBrazilareincreasinglyusingitasafeedstockforproducingbiodiesel.Currently,almostallbiodieselinbothcountriesisderivedfromsoybeanoil.InBrazil,forexample,theoilfromapproximately16%oftotalsoybeanharvestedisusedforenergypurposes—almostalluseddomestically(vanGelderet al.2008).InArgentina,theoilfromapproximately3.5%oftotalsoybeanharvestedin2008wasusedtoproducebiodiesel—mostofwhich,incontrasttoBrazil,isexported(author’scalculationbasedondatafromvanGelderet al.2008andUSDAFAS2009a).Almost15%ofbiodieselproducedintheEUin2008wasderivedfromsoybeanoil,presumablyaboutathirdofwhichwasimportedfromArgentinaandBrazil(onthebasisoftheproportionofnetimportstototalconsumption)(calculatedfromUSDAFAS2009a;2009b).

Historically,soyahasbeengrowninthetropicalsavannahareasofSouthAmerica;however,technologicaladvancesandimprovedinfrastructurehavefacilitatedtheadvancementofsoyacultivationintotheAmazonianforestfrontier,particularlyinBrazil(KaimowitzandSmith2001;Nepstadet al.2006).Mortonet al.(2006)estimatethatcropland

Page 18: Potential land use competition from first-generation ... · The global production of biofuels has almost tripled since 2005, driven largely by a combination of concerns, especially

12 | George c. schoneveld

expansion,mostlyattributedtosoya,contributedto17%oftotaldeforestationintheBrazilianstateofMatoGrossoduringtheperiod2001–2004.However,withtheadoptionoftheSoyMoratoriumin2006,itisexpectedthatthecontributionofsoyaexpansiontodirectdeforestationwillbereducedsignificantlyinBrazil.9

AsimulationstudyconductedbyLapolaet al.(2010)projectsthatforBraziltomeetits2020biodieselconsumptiontarget,anadditional10.8millionhaoflandwouldberequiredforsoyacultivation.Theyexpectthatthisexpansionwillleadtothedirectconversionof380 000haofforestandtheindirectconversionof7millionhaofforestasaresultofdisplacedcattleranching.Itisthereforetheindirect,ratherthandirect,effectofsoyaexpansionondeforestationthatisconsideredmostsignificant.Itisarguedthattheexpansionofagribusiness,particularlysoyainMatoGrosso,willpushcattleranching—responsiblefor70–80%ofdeforestationintheAmazoninBrazil—furtherintotheforestfrontier(Margulis2004;Fearnside2005;Pikettyet al.2005;Greenpeace-Brazil2009).Itiscommonlyheldthatcattleranchersselltheirlandtosoybeanproducersataprofit,aslandpricesriseduetotheinfluxofsoybeanproducers;theranchersthenreestablishinforestedareaswherelandpricesarelower(Nepstadet al.2006;Fearnside2008;Baronaet al.2010).Astheeconomicreturnsfromlandforuseascattleranchingaresignificantlylowerthanthosefromsoybeanproduction,soyaexpansiontendstopushcattleranchingintocheaperlands,whichareoftenforested(Margulis2004;Walkeret al.2009).Furthermore,theadvancementofsoyaintotheforestfrontierstimulatesinfrastructuredevelopments,whichconsequentlyfurthercontributetoindirectdeforestationasareasdifficultandexpensivetoaccessbecomeincreasinglyaccessibletoothereconomicagents(especiallyfromthetimbersector)(Andersonet al.2002;Fearnside2008).

Onthebasisofthisthesis,itcouldbepositedthattheadoptionoftheSoyMoratoriumcouldleadtogreaterdisplacementofpasturelandasdirectconversionofforestedlandtosoyabecomeslessdesirable.Thusthegainsfromavoideddirectdeforestationmaybeoffsetbythelossesofincreasedindirectdeforestation(through

bothdisplacedpasturelandandinfrastructuredevelopments).However,althoughtheinteractionbetweensoybeanproductionandcattleranchingiswellestablishedamongstresearchers,fewhaveprovidedconclusiveempiricalevidenceonthecausalrelationship.Forexample,onecouldarguethattheexpansionofcattleranchingintotheAmazonianrainforestwouldhaveoccurredtosomeextentevenwithouttheexpansionofsoybeanproduction.Ascattleranchersarelesslikelytoinvestinsoilrehabilitation(duetorelativelyloweconomicreturnsfromland)(Pacheco2005),pasturedegradationandreducedstockingrateswillfurtherdrivetheirpursuitofnewlandanyway.

5.3 Jatropha expansion in Africa

InAfrica,rateofexpansionoftheareaharvestedofkeybiofuelfeedstockshasbeencomparativelysmallincomparisontooilpalmandsoybean.However,Africaisendowedwithsomeofthelargestareasoflandthatarebothsuitableandavailableforfurtherexpansion(Figure1).Despitethelackofastronghistoricallinkbetweendeforestationandexpansionofbiofuelfeedstock,newopportunitiespresentedbyincreasingglobaldemandforbiofuelscouldsignificantlyincreasepressureonagriculturalandforestedland.Inrecentyears,foreigninvestorsinparticularhaveacquiredsizeableareasoflandaroundAfricafortheexplicitpurposeofcultivatingfeedstocksthroughlarge-scaleplantations.WhereasinSouthAmericaandAsiamostlarge-scalebiofuelfeedstockproducerstargetpredominantlythefoodandfeedmarkets,withbiofuelsemergingasanopportunityformarketdiversification,inAfricamostrecentdevelopmentsinbiofuelfeedstockproductiontargetexclusivelytheenergyend-market.Althoughfewofthesedevelopmentshavepassedtheinceptionstage,andmanyhavereportedlybecomedormantasaresultoftherecentfinancialcrisisanddisappointingyields,theirhypotheticalexpansioncapacity(basedontheareasoflandtowhichtheyhaveaccess)isenormous.Forexample,since2005,areastotallingmorethan1.1millionhahavebeenaccessedbycommercialenterprisesforfeedstockcultivationinGhana,900000hainMadagascar,approximately640 000hainTanzania,600 000hainZambiaand500000hainMozambique(GTZ2009;SulleandNelson2009;Schoneveldet al.2010;Schutet al.2010;Germanet al.inpress).

Page 19: Potential land use competition from first-generation ... · The global production of biofuels has almost tripled since 2005, driven largely by a combination of concerns, especially

potential land use competition from first-generation biofuel expansion in developing countries | 13

Thevastmajorityoftheselarge-scaleinvestmentsareconcentratedonthecultivationofjatropha,withasmallernumberofoilpalm,sugarcaneandcassavaprojects.Insomecountries,notablytheWestAfricancountriesofSenegal,MaliandBurkinaFaso,jatrophaisalsobeingextensivelygrownbysmallholders,typicallythroughgovernment-ordonor-supportedpovertyalleviationandanti-desertificationprogrammes.Asthistypeofcultivationisoftenwellintegratedintoexistingfarmingsystems,thisrapidriseinlarge-scalejatrophamonocultureisthreateningtogeneratelandusecompetitioninmanyAfricancountries.Althoughjatrophaisoftenhailedforbeingabletogrowunderaridconditions,itsproductivityincreasesexponentiallywhencultivatedonfertilesoils,undermoderaterainfallconditionsandwithmoreintensemanagement(Achtenet al.2008;Neelakantan2008;IFAD-FAO2010).Inpractice,thisimpliesthatcommerciallyorientedenterpriseswilloftenseekoutlandswithoptimalconditions,whichinturnincreasestherisksoflandusecompetitionastheselandsaremorelikelytobemoredenselyvegetatedorpartofthefarmingsystem.AscanbeobservedfromFigure5,mostoftheaforementionedcountries(barMadagascar)haverelativelyhighproportionsofsuitablelandundercompetinguses.Consideringespeciallythatmanyoftheproposedplantationscovermorethan50 000haofcontiguousland,somedegreeoflandusecompetitionwillbeinevitable.Althoughconclusiveevidenceofadverselandusechangeislimited,anecdotalevidencesuggeststhatmanyoftheseinvestmentsaredisplacing,orarethreateningtodisplace,agriculturalandforestlanduses(seeforexamplesGordon-Macleanet al.2009;RibeiroandMatavel2009;Schoneveldet al.2010;Schutet al.2010).AsmostcustomarylandusersinAfricahaveweaktenurerights,thereisasubstantialriskofinvoluntarylossofaccesstolandandland-basedlivelihoodresources(e.g.forestproductsandwater)(Cotulaet al.2008).InGhana,forexample,householdswererequiredtorelinquishlandholdingsforthepurposeofplantationdevelopmentatallofthe9jatrophaplantationsassessed(Schoneveldet al.2010).Atmostplantations,directlyaffectedhouseholdswerenotconsultedbytheprojectdeveloper,nordidtheyformallyagreetotransfertheirlandorreceiveanyformofredress.ThelawinGhanaessentiallyallows

traditionalauthoritiestoreallocatecommunitylandattheirdiscretion,oftenwithoutanyformaldownwardaccountabilitytocommunitymembers,whoenjoynoformalrightstothelandtheyuse.SimilarprocesseshavebeenobservedinZambia.Forinstance,onecompanyobtainedmorethan400 000haofcustomaryland(usedpredominantlyforcharcoalburningandswiddenagriculture)from4 chiefdoms,withouttherebeinganyspecificrestitutionfordirectlyaffectedhouseholds(Germanet al.inpress).Gordon-Macleanet al.(2009)reportthat,inTanzania,5outofthe7recentbiofuelfeedstockplantationsassessedintheirresearchcompriseforestedlandofhighconservationvalue.Thus,althoughsufficientlandisintheory‘available’acrossAfrica,inpracticethoselandsthataretargetedforplantationagriculturewilltendtohavevariousconflictingex antelanduses.Aslongasadministrativelandallocationscontinuetobebasedonopaquetransactions,thelong-termfutureofbiofuelplantationswillbemarkedbyconflictswithneighbouringagriculture-andforest-dependent communities.

5.4 Land requirements for biofuel blending in developing countries

Inhighlightingsomeofthepotentialthreats,theabovediscussionhaspaintedarelativelybleakpictureofthepotentiallanduseimplicationsofbiofuelfeedstockexpansion.Historically,asillustratedbytheaboveexamplesofsoyaexpansioninSouthAmericaandoilpalmexpansioninSoutheastAsia,thefoodandfeedsectorshavepredominantlybeenthekeydrivingforcesbehindexpansions.Withtheexceptionofasmall,albeitincreasing,numberofcases,itwouldbeinaccuratetoascribethesetrendstothebiofuelsectorper se.Therefore,itisrelevantatthispointtoassessthepotentialfuturedemandonlandshoulddevelopingcountriesseektoimplementmandatoryblendingregulationsand/orpursuebiofuelfeedstockproductionfromatradeperspective.

Thissectioncalculatestheextentoflandthatwouldberequiredinasituationwheredevelopingcountriesimposethemandatoryblendingoffirst-generationbiofuels.Theamountsofkeydomesticallyproducedbiodieselfeedstockthatwouldberequiredinselectedcountriesshouldbiodieselsubstitutefor10%ofpetrodiesel

Page 20: Potential land use competition from first-generation ... · The global production of biofuels has almost tripled since 2005, driven largely by a combination of concerns, especially

14 | George c. schoneveld

consumedbythetransportationsectorareshowninTable3.Itcanbeobservedthat,especiallyforpalmoil-producingcountries,presentproductioncapacityissufficienttomeetsuchblendingtargets.However,inmanycountries,thediversionoffeedstocktothedomesticproductionofbiofuelswouldleadtodomesticshortagesoffeedstockforuseasfood.Consequently,feedstockwouldinmanycasesneedtobeimportedagain,therebypotentiallyoffsettinganygainsfromblendingtothetradebalance,andpotentiallydrivingupdomestic

feedstockprices.Thiswouldcertainlybethecaseformanyproducercountries;theexceptionsareMalaysia,Indonesia,Paraguay,BoliviaandArgentina,asinthesecountriesthedomesticproductionsurplus(basedonnetexportvolume)islargerthanthepotentialfeedstockdemandina10%biodiesel-blendingscenario.Moreover,forsomecountries,feedstockcultivationisanimportantforeignexchangeearner.Thus,topreventconflictwithotherend-usesandmarkets,anincreaseintheimportationoffeedstock(products)and/oralossin

Table 3. Scenarios for 10% petrodiesel substitution with biodiesel in the transportation sector for selected countries

Country Additional biodiesel required (million L)a

Proportion of total feedstock harvest required to meet biodiesel targetb

(%)

Area required (ha) for dedicated plantationsc

Biodiesel derived from oil palm

Malaysia* 592.7 3.7 148 092

Indonesia* 1 097.9 6.4 269 722

Cameroon 37.0 13.2 9 238

Nigeria 108.8 6.4 27 196

Côte d’Ivoire 37.0 15.4 9 238

Colombia* 389.6 60.9 97 402

Ecuador 284.7 67.8 71 182

Biodiesel derived from soybean

Paraguay* 106.7 8.6 237 715

Bolivia 85.7 29.8 190 452

Argentina* 868.6 10.4 1 926 360

Zimbabwe 29.3 155.0 65 117

China* 7 944.4 284.0 17 654 221

India* 3 360.2 207.0 7 491 610

Source: Derived from EIA (2010), FAO (2010), IEA (2010)

a. Biodiesel requirement calculated from IEA (2010) data on petrodiesel consumption in the transportation sector for the year 2007. Differences in densities and calorific values are considered in the calculation. The volume of biodiesel already consumed in relevant countries has been accounted for using EIA (2010) data for the year 2008, assuming that all biodiesel consumed is used by the transportation sector. These countries are marked with an asterisk (*).

b. Unprocessed harvest figures are from FAO (2010). The calculation assumes oil palm has an oil extraction rate of 20% and soybean an oil extraction rate of 18%.

c. Area required assumes that 1 ha will on average yield 4000 L of biodiesel from oil palm and 450 L from soybean. However, yields can vary between operators and countries, depending on level of management and agronomic conditions, amongst other factors.

Note: Countries selected have a relatively well-developed domestic feedstock sector and a low level of biodiesel in their energy mix.

Page 21: Potential land use competition from first-generation ... · The global production of biofuels has almost tripled since 2005, driven largely by a combination of concerns, especially

potential land use competition from first-generation biofuel expansion in developing countries | 15

foreignexchangeearningswouldbeinevitableineverycountry,inasituationwhereyieldsremainconstant.Therefore,anexpansionintheareaharvestedwouldlikelybethepreferredcourseofactionformostcountries.Thefar-rightcolumninTable3showstheadditionalamountoflandrequiredshoulddiversionofcurrentlyproducedfeedstocktobiofuelsbeavoided.Asisevident,inmostdevelopingcountries,asinglelargeoilpalmplantationcouldmeetallofthedomesticbiodieseldemand.However,significantlylargerareasoflandwouldberequiredforsoyaduetoitsrelativelylowoilyieldperha(approximately450L,comparedwithmorethan4000Lforoilpalm).

Inthecaseofethanolproducedfromsugarcane,thisconflictbetweenend-usesandtheeffectsonthetradebalancemaynotbeasintense.Althoughethanolcanbeproduceddirectlyfromthecanejuiceobtainedfromthefirstcrushing,itcanalsobeproducedfrommolasses,aby-productfromsugarproduction.Thefinalmolasses(calledC-orblackstrapmolasses)typicallyhaslimited

economicvalueandisoftenusedascattlefeedsupplementoraflavouringagent,orissometimesdisposedoff(GopalandKammen2009).Sincethesemolassescanbeusedtogeneratemuchgreatereconomicgainsbymakingethanol,manysugarproducersarestartingtodevelopintegratedsugarandethanolfactories.Theproportionsofsugarcanerequiredviathedifferentproductionroutestoproduceethanolinkeysugarcane-producingcountriesareshowninTable4.Ascanbeobserved,2ofthesecountriescouldproducethenecessaryethanolfromexistingC-molasseswithoutitstronglyconflictingwithotherend-markets(e.g.foodandfeedsectors).Shouldhigher-qualitymolassesbeused(fromwhichsugarisstillsalvageable),mostcountrieswouldbeabletomeettheirethanolrequirements,althoughthiswouldsomewhatreducethequantityofsugarproduced.Eveninsituationswhereexistingsugarproducersdonotdiversifyintoethanolproduction,theethanolneedsofmostdevelopingcountriescan,aswithoilpalm,bemetbyasinglemediumtolargeplantation.

Table 4. Scenarios for 10% gasoline substitution with ethanol in the transportation sector for selected countries

Country Additional ethanol required (million L)

Proportion of harvest to meet ethanol target – cane juice routea

(%)

Proportion of harvest to meet ethanol target – A-molasses routea

(%)

Proportion of harvest to meet ethanol target – C-molasses routea

(%)

Area required (ha) for dedicated plantationsb

Argentina 731.6 36.6 105.5 304.8 164 317

Guatemala 159.6 9.4 27.1 78.3 35 834

Peru 151.6 24.6 70.8 204.7 30 315

Philippines* 476.2 26.9 77.3 223.2 107 062

Thailand* 783.2 14.2 50.6 118.4 156 639

Vietnam 544.8 50.6 145.9 421.5 122 355

Mozambique 18.1 11.0 31.8 92.0 4 058

Tanzania 41.4 26.1 75.4 217.8 9 293

Zambia 30.7 18.4 53.1 153.3 6 899

Source: Author, derived from EIA 2010, FAO 2010, IEA 2010

a. These calculations are made using sugarcane harvesting data from FAO (2010) and assuming that 75, 26 and 9 L can be produced per ton of sugarcane via the cane juice, A-molasses and C-molasses production routes, respectively.

b. Area required assumes that 5000 L of ethanol can be produced per ha under sugarcane cultivation.

Note: Countries selected have a relatively well-developed domestic sugarcane sector and a low level of ethanol in their energy mix.

Page 22: Potential land use competition from first-generation ... · The global production of biofuels has almost tripled since 2005, driven largely by a combination of concerns, especially

16 | George C. Schoneveld

Using regional data, calculations were made to determine the proportion of suitable and potentially available land that would be required to substitute 10% of petrodiesel and gasoline consumption in the transportation sector with biodiesel and ethanol produced from key feedstocks (Figures 7). From this it is apparent that in Africa, Central America and South America, sufficient suitable and available land is available for the cultivation of the feedstocks assessed. For most feedstocks, less than 10% of the suitable and available land would be required to meet domestic uptake targets. In Asia, on the other hand, large proportions of suitable and available land would be required and, in the case of soya and cassava, for example, more than is available (under a scenario where one feedstock is used). Since this analysis does not consider the projected long-term demand for fossil fuels, the required area under cultivation would need to increase by the rate of growth of oil demand (with all other assumptions remaining constant). Whilst this typically varies greatly between countries, regional estimates of

long-term annual growth are 1.2%, 1.2% and 2.8% for Africa, Central and South America and Asia, respectively (EIA 2009).

This analysis shows that in Asia the extensive incorporation of biofuels into the energy mix may not be suitable from a sustainable land use perspective; however, it also illustrates that in the other regions assessed, biofuel feedstock expansion need not necessarily lead to adverse land use competition. This implies that it could hypothetically be extremely feasible to have biofuel feedstock cultivated on genuinely available lands for the purpose of biofuels under the right combination of regulations and incentives. Furthermore, this also implies that all 3 regions have more than sufficient suitable resources available to produce additional biofuels for the main projected import markets of the EU and USA. For example, drawing on the figures from OECD-FAO (2010), their combined external demand by 2019 would require that, globally, approximately 2 million ha of

50

100

150

200

250

Prop

ortio

n of

pot

entia

lly a

vaila

ble

land

(%) 

Region

Soya (450 L/ha)

Jatropha (1000 L/ha)

Cassava (1700 L/ha)

Maize (2000 L/ha)

Oil palm (4000 L/ha)

Sugarcane (5000 L/ha)

0Africa South America Central America Asia

Figures 7. Percentage of suitable land not classified as forest or cultivated land (for selected feedstocks) required to substitute biodiesel and ethanol produced from key feedstocks for 10% of petroleum consumption in the transportation sector

Source: Derived from EIA 2010, FAO 2010, Fischer et al. 2009, IEA 2010b

a. Since Brazil has higher blending mandates than used in these scenarios, Brazil is excluded from the South America ethanol figures.

b. Biofuel requirements are calculated from IEA (2010) data on oil consumption in the transportation sector and account for differences in densities and calorific values for each type of biofuel. The volume of biofuel already consumed in relevant countries has been accounted for using EIA (2010) data, assuming that all biofuel consumed is used by the transportation sector. Land suitability data are taken from Fischer et al. 2009.

Page 23: Potential land use competition from first-generation ... · The global production of biofuels has almost tripled since 2005, driven largely by a combination of concerns, especially

potential land use competition from first-generation biofuel expansion in developing countries | 17

biodieselfeedstockand4.5millionhaofethanolfeedstockbebroughtundercultivationtoservicethesemarkets.10Consideringthatforsoya,jatropha,sugarcaneandoilpalm,approximately680,570,220and44millionhaofland,respectively,areconsideredtobepotentiallyavailableandsuitablearoundtheworld(almostallofwhichisindevelopingcountries),medium-termdemandfromnetbiofuel-importingindustrialisednationsdoesnotnecessarilyneedtohavestronglynegativeeffectsonsustainablelanduse.EspeciallyintheEU,where,throughtheRenewableEnergyDirectiveadoptedin2009,thenatureandnetcarboneffectoflandusechangeforthecultivationofbiofuelfeedstockneedtobeaccountedfor,theriskthattheirexternaldemandcontributestodeforestationindevelopingcountriesisconsiderablyreduced.Thus,althoughinternationalshiftsindemandforbiofuelswillcertainlycontributetolandusechange,asneweconomicopportunitiesaresought,othersectoraldrivers,suchasdemandfromlargeemergingmarketsforvegetableoilsforfood,forinstance,mayhaveaconsiderablymoredetrimentalimpactonland.Forexample,FAPRI(2010)projectsthatthenetexternaldemandforsoybeanandpalmoilinChinaandIndiaalonewillgrowbymorethan7billionLbetween2009and2019—predominantlyduetogrowinguseinfoodproducts,drivenbyincreasingpercapitaspendingpower.ThisisalmostdoublethevolumeofbiodieseltheEUandUSAwillneedtoimportby2019.

6. ConclusionThisanalysishasshownthatsufficientsuitablelandistheoreticallyavailableindevelopingcountriesforthecultivationofbiofuelfeedstock.Manydevelopingcountries,especiallyinSouthAmericaandAfrica,havethepotentialtouselocallyproducedbiofuelsforblendingonthedomesticmarket,whilstalsoservicinginternationaldemand.Notonlywouldthisincreasedomesticenergysecurity,butitwouldalsocontributetoeconomicdevelopmentbycapitalisingonemergingtradeandinvestmentopportunities.Despitethispotential,thehighproportionofsuitablelandthatisnotconsideredtobeavailableraisesconcernsaboutadverselandusechangeimpacts—inparticularconsideringthathistorically(e.g.foroilpalmandsoya)thishasalreadyproventobethecase.Inthe

absenceofnationalincentivesandregulationstominimiselandusecompetition,biofuelexpansioncouldexacerbatefoodinsecurity,ruralpovertyanddeforestationrates.

Sincemanydevelopingcountriesarestilltodevelopdedicatedbiofuelpoliciesorlackthecapacitytoeffectivelyregulatelarge-scaleland-basedinvestments,theprivatesectormaytargetlandspredominantlyfromtheperspectiveofgeneratingthehighestreturnoninvestment.Theselandsarelikelytohavethegreatestagronomicpotential,butalsoaremostlikelyalreadytobe,forthosesamereasons,undercultivationorofhighecologicalsignificance(especiallyinthecaseofoilpalmandsugarcane).Thus,inmanycountries,particularlywherebiofuelexpansioniscurrentlytakingplaceinaregulatoryvacuum,mechanismsneedtobedevelopedtoregulatethemanyfacetsofbiofuels.

Foremost,thereisaneedformechanismstoensurethatproposedprojectstakeplaceonlandthatisgenuinelyavailable.Asdiscussedinthispaper,landthatmaybeconsideredtobepotentially‘available’mayprovideimportantecologicalservicesorbeintegraltolivelihoodsystems.Thisconcernraisesimportantmethodologicalquestionsregardinghowtoeffectivelyassesslandavailability.Ratherthanrelyingexclusivelyonremote-sensinganalysis,on-the-groundassessmentsarenecessarytocapturetheuniquesocial,economicandenvironmentalfunctionsofdifferentlandscapes,goingbeyondtheoverlysimplifiedlanduseclassificationsoftenadopted.Thisentailsneedssuchasthecapacitiesofcertifiedconsultanciestoconduct,andgovernmentstoevaluate,environmentalimpactassessmentsoftenrequiredforlarge-scalebiofueldevelopments.Itshouldalsoentailastronglyparticipativeandconsultativeimpactidentificationprocess,whichengagesallstakeholdergroups,particularlythosethatareoftensidelinedinthesecommunityparticipationinitiatives,suchaswomen,pastoralistsandethnicminoritygroups.Insodoing,duerecognitionshouldbegiventocomplexsystemsof(informalandoverlapping)localresourcerightstoensuretheseareeffectivelyprotectedinthecontextoflarge-scalelandusechange.Detailedmethodologicalguidelinescouldserveasimportantreferencematerialtodevelopingproceduresthatareappropriateand

Page 24: Potential land use competition from first-generation ... · The global production of biofuels has almost tripled since 2005, driven largely by a combination of concerns, especially

18 | George c. schoneveld

effectivewithingivencontexts.Furthermore,itiscriticalthatsocial,economicandenvironmentalsafeguardsareimposedtoregulatetheactivitiesofprojectdevelopersandprotecttherightsoflandusers;suchsafeguardscouldbedrivennotonlybynationallegislation,butalsobymarketforcessuchasvoluntarycertificationsystemsandmandatorysystemsofstandardssuchasthoseadoptedbytheEU.Ofparticularimportanceistheneedtoreducetheopacityandelitecaptureoflandtransactionsandenhancethesecurityofcustomarylandrights,particularlyinsub-SaharanAfrica.Attheveryleast,theadherencetotheprincipleoffree,priorandinformedconsentwouldservetocontributetomorePareto-optimaloutcomes,promulgatedforinstancethroughlandlawsorincorporatedinto(international)sustainability initiatives.

Detailedandcomprehensivelandsuitabilityandavailabilityassessmentsshouldalsobe

consideredpriortoformalisingsectorobjectivesandsupportingpolicies;forinstance,wherecapacityexists,thiscouldoccuraspartofStrategicEnvironmentalAssessments.Furthermore,asector-specificlanduseplanningoragro-ecologicalzoningexercisewouldhelpinidentifyingwhereandhowmuchlandcouldpotentiallybeavailableforbiofuelexpansionwithoutcreatingunduelandusecompetition.Thisinturnwouldcontributetodefiningpolicyobjectivesandsupporttheidentificationofspecificfeedstockstocreateminimallandusecompetition.Forinstance,itwouldprovidevaluableinsightsintowhetherandtowhatextenttradeandinvestmentopportunitiesshouldbeembraced.Inmostsituationswheresuitableandavailablelandsarerelativelyscarce,aninwardlyfocused,energysecurityagendawouldoftenbemostappropriate,consideringtheimplicationsofhighexternaldependencyonimportedfossilfuels.

Page 25: Potential land use competition from first-generation ... · The global production of biofuels has almost tripled since 2005, driven largely by a combination of concerns, especially

1 ThisisbasedonconversionfactorsadoptedfromUSDAFAS(2009a):1000litresofethanol=0.507toe;1000litresofbiodiesel=0.788toe.2 Neitherreportexplainshowimportedfeedstock(e.g.vegetableoils)isaccountedforintheprojections;thus,itremainsunclearwhetherfiguresonimportedbiofuelsincludeimportedfeedstockthatisprocessedwithintheEUorUSA.3 TheOECDincludesmostoftheEuropeanUnion,NorthAmerica,Japan,NewZealand,Australia,SouthKoreaandTurkey.4 The‘agro-ecologicalzonesmethodology’usedbyIIASA/FAO,forexample,usesastandardisedframeworkforthecharacterisationof‘climate,soilandterrainconditions’relevanttoagriculturalproduction.Cropmodellingandenvironmentalmatchingproceduresareusedtoidentifycrop-specificlimitationsofprevailingclimate,soilandterrainresources,underassumedlevelsofinputsandmanagementconditions.5 Landsclassifiedasforestsinthisanalysisareareasspanningmorethan0.5hawithtreestallerthan5metresandacanopycovermorethan10%.Sparsewoodlandsareareaswherecanopycoverrangesfrom5%to10%.Landclassifiedascultivatedislandunderrain-fedandirrigatedcrop production.

6 Carbondebtisthetimetakentosequesterormitigatetheamountofgreenhousegasemittedfromlandconversion(e.g.throughburning,decompositionorreleaseofsoilcarbon).7 In2001,theEUimposedabanontheuseofanimal-basedproteinsforfeedinglivestock.Thefeedshortagethiscreatedwasmetprimarilybysoybean-basedanimalfeed(Nepstadet al.2006).8 Thevolumeofsoybeanproductsisderivedbyaggregatingthevolumeofsoybeanseeds,soybeanmealandsoybeanoil.Theserepresent,respectively,57.6%,37.9%and6.5%ofthetotalglobaltradevolumein2008.9 TheprivatesectorassociationsABIOVEandANEC(whosemembersareresponsibleforapproximately90%ofthetradevolume)andcivilsocietyagreedtoceasethetradeofsoybeansproducedonlanddeforestedafter24July2006withintheAmazonBiomeofBrazil(LovatelliandAdario2009).10 Thisassumesthattoproduceeachbiofueltypeacombinationoffeedstockswillbeused,yieldingapproximately2000Lperhaforbiodieseland3000Lperhaforethanol.TheUSandEUcombinednetimportofbiodieselisprojectedat3.9billionlitresandofethanolat14.1billionlitres(OECD-FAO 2010).

Endnotes

Page 26: Potential land use competition from first-generation ... · The global production of biofuels has almost tripled since 2005, driven largely by a combination of concerns, especially

Achten,W.M.J.,Verchot,L.,Franken,Y.J.,Mathijs,E.,Singh,V.P.,Aerts,R.andMuys,B.2008Jatrophabiodieselproductionanduse.BiomassBioenergy32(12):1063–1084.

Aksoy,M.A.andIsik-Dikmelik,A.2008Arelowfoodpricespro-poor?Netfoodbuyersandsellersinlow-incomecountries.WorldBank,Washington,DC.

Anderson,L.E.C.,Granger,W.J.,Reis,E.J.,Weinhold,D.andWunder,S.2002ThedynamicsofdeforestationandeconomicgrowthintheBrazilianAmazon.CambridgeUniversityPress,Cambridge,UK.

Anonymous2008Agrofuelsandthemythofthemarginallands.TheGaiaFoundation,Biofuelwatch,theAfricanBiodiversityNetwork,SalvaLaSelva,WatchIndonesiaandEcoNexus,LondonandOxford,UK.8p.

Barona,E.,Ramankutty,N.,Hyman,G.andCoomes,O.T.2010TheroleofpastureandsoybeanindeforestationoftheBrazilianAmazon.EnvironmentalResearchLetters5:024002doi:10.1088/1748-9326/5/2/024002.

BritishPetroleum(BP)2009BPstatisticalreviewofworldenergy.BP,London.

Butler,R.A.,Koh,L.P.andGhazoul,J.2009REDDinthered:palmoilcouldunderminecarbonpaymentschemes.ConservationLetters2:67–73.

Casson.A.2003Oilpalm,soybeansandcriticalhabitatloss.WWFForestConservationInitiative,Hohlstrasse,Switzerland.

Colchester,M.,Jiwan,N.,Sirait,S.M.,Firdaus,A.Y.,Surambo,A.andPane,H.2006Promisedland:palmoilandlandacquisitioninIndonesia–implicationsforlocalcommunitiesandindigenouspeoples.ForestPeoplesProgramme,PerkumpulanSawitWatch,HuMAandtheWorldAgroforestryCentre,Moreton-in-Marsh,UK.

Cotula,L.,Dyer,N.andVermeulen,S.2008Fuelexclusion?Thebiofuelboomandthepoor’saccesstoland.InternationalInstituteforEnvironmentandDevelopment,London.

Deininger,K.2003Landpoliciesforgrowthandpovertyreduction.WorldBankResearchPolicyReport.WorldBank,Washington,DC.

DepartmentforEnvironment,FoodandRuralAffairs(DEFRA)2010The2007/2008agriculturalpricespikes:causesandconsequences.DEFRA,London.

EnergyInformationAdministration(EIA)2009Worldenergyoutlook2009.USDepartmentofEnergy,Washington,DC.

EnergyInformationAdministration(EIA)USenergyinformationadministrationdatabaseofinternationalenergystatistics.http://www.eia.doe.gov/international[8March2010].

EuropeanSpaceAgency(ESA)2006Globcover:GlobalLandCoverProject.ESA.

FoodandAgricultureOrganizationoftheUnitedNations(FAO)2006Globalforestresourceassessment2005:progresstowardssustainableforestmanagement.FAO,Rome.

References

Page 27: Potential land use competition from first-generation ... · The global production of biofuels has almost tripled since 2005, driven largely by a combination of concerns, especially

George c. schoneveld | 21

FoodandAgricultureOrganizationoftheUnitedNations(FAO)2009Thestateofagriculturalcommoditymarkets:highfoodpricesandthefoodcrisis–experiencesandlessonslearned.FAO,Rome.

FoodandAgricultureOrganizationoftheUnitedNations(FAO)FAOSTAT:agriculturalproductiondata.http://faostat.fao.org/site/567/default.aspx#ancor[10September2010].

FoodandAgricultureOrganizationoftheUnitedNations(FAO)andGlobalBioEnergyPartnership(GBEP)2007AreviewofthecurrentstateofbioenergydevelopmentinG8+5countries.FAO,GBEP,Rome.

FoodandAgricultureOrganizationoftheUnitedNations(FAO),InternationalFundforAgriculturalDevelopment(IFAD)andWorldFoodProgrammeoftheUnitedNations(WFP)2008Highfoodprices:impactsandrecommendationsforactions.PaperpreparedformeetingoftheChiefExecutiveBoardforCoordination.Bern,Switzerland,28–29April.

FoodandAgriculturePolicyResearchInstitute(FAPRI)2010USandworldagriculturaloutlook.FAPRI,Ames,Iowa,USA.

Fargione,J.,Hill,J.,Tilman,D.,Polasky,S.andHawthorn,P.2008Landclearingandthebiofuelcarbondebt.Science319:1235–1238.

Fearnside,P.M.2005DeforestationinBrazilianAmazonia:history,rates,andconsequences.ConservationBiology19(3):680–688.

Fearnside,P.M.2008TherolesandmovementsofactorsinthedeforestationofBrazilianAmazonia.EcologyandSociety13(1):34[online]URL:http://www.ecologyandsociety.org/vol13/iss1/art23/.

Fischer,G.,Hizsnyik,E.,Prieler,S.,Shah,M.andvanVelthuizen,H.2009Biofuelsandfoodsecurity:implicationsofanacceleratedbiofuelsproduction.SummaryoftheOFIDpreparedbyInternationalInstituteforAppliedSystemsAnalysis(IIASA).OFIDPamphletSeries.TheOPECFundforInternationalDevelopment,Vienna,Austria.

Fitzherbert,E.B.,Struebig,M.J.,Morel,A.,Danielsen,F.,Brühl,C.A.,Donald,P.F.andPhalan,B.2008Howwilloilpalmexpansion

affectbiodiversity?TrendsinEcologyandEvolution23:538–545.

German,L.,Schoneveld,G.C.andGumbo,D.Inpress.ThepotentialimpactofbioenergydevelopmentinZambia.CIFOR,Bogor,Indonesia.

GesellschaftfürTechnischeZusammenarbeit(GTZ)2009ForeigndirectinvestmentinlandinMadagascar.Division45-Agriculture,fisheriesandfood,GTZ,Eschborn.

Gopal,A.R.andKammen,D.M.2009Molassesforethanol:theeconomicandenvironmentalimpactsofanewpathwayforthelifecyclegreenhousegasanalysisofsugarcaneethanol.EnvironmentalResearchLetters4:044005.doi:10.1088/1748-9326/4/4/044005.

Gordon-Maclean,A.,Laizer,J.,Harrison,P.andShemdoe,R.2009Biofuelindustrystudy,Tanzania:anassessmentofthecurrentsituation.WorldWideFundforNatureTanzania,DaresSalaam,Tanzania.94p.

Greenpeace-Brazil2009Amazoncattlefootprint.Greenpeace-Brazil,SaoPaolo,Brazil.

InternationalEnergyAgency(IEA)Internationalenergystatistics.Statisticaldatabase.http://www.iea.org/stats/index.asp[8March2010].

InternationalFundforAgriculturalDevelopment(IFAD)andFoodandAgricultureOrganizationoftheUnitedNations(FAO)2010Jatropha:asmallholderenergycrop–thepotentialforpro-poorgrowth.FAO,Rome.

InternationalInstituteforAppliedSystemsAnalysis(IIASA)2002Globalagro-ecologicalassessmentinthe21stcentury.IIASA,Vienna,Austria.

IUCNandUNEP2009Theworlddatabaseonprotectedareas(WDPA).UNEP-WCMC.Cambridge,UK.

Kaimowitz,D.andSmith,J.2001SoybeantechnologyandthelossofnaturalvegetationinBrazilandBolivia.In:Angelsen,A.andKaimowitz,D.(eds.)Agriculturaltechnologiesandtropicaldeforestation,195–212.CIFORandCABIPublishing,NewYork.

Koh,L.P.andWilcove,D.S.2008Isoilpalmagriculturereallydestroyingtropicalbiodiversity?ConservationLetters1(2):60–64.

Kojima,M.andJohnson,T.2005Potentialforbiofuelsfortransportindevelopingcountries.

Page 28: Potential land use competition from first-generation ... · The global production of biofuels has almost tripled since 2005, driven largely by a combination of concerns, especially

22 | potential land use competition from first-generation biofuel expansion in developing countries

EnergySectorManagementAssistanceProgram,WorldBank,Washington,DC.

Lapola,D.M.,Schaldacha,R.,Alcamoa,J.,Bondeau,A.,Koch,J.,Koelking,C.andPriess,J.A.2010Indirectland-usechangescanovercomecarbonsavingsfrombiofuelsinBrazil.ProceedingsoftheNationalAcademyofSciences107:3388–3393.

Lovatelli,C.andAdario,P.2009Soymoratorium–thirdanniversary.PresentedatGTS.Brasilia,Brazil,18July.

MalaysianPalmOilBoard(MPOB)2010OverviewoftheMalaysianpalmoilindustry2009.MPOB,KualaLumpur,Malaysia.

Margulis,S.2004CausesofdeforestationoftheBrazilianAmazon.WorldBankWorkingPaperNo.22.WorldBank,Washington.D.C.

Marti,S.,Tarigan,A.andGriffiths,H.2008Losingground:thehumanrightsimpactsofoilpalmplantationexpansioninIndonesia.FriendsoftheEarth,London.

Morton,D.C.,DeFries,R.S.,Shimabukuro,Y.E.,Anderson,L.O.,Arai,E.,delBonEspirito-Santo,F.,Frietas,R.andMorisette,J.2006CroplandexpansionchangesdeforestationdynamicsinthesouthernBrazilianAmazon.ProceedingsoftheNationalAcademyofSciences103:14637–14641.

Mpoyi,A.2010Lesdimensionssocialesetenvironnementalesdeprojetsd’acquisitionagrandeechelledesdedroitsfonciersenRepubliqueDemocratiqueduCongo.PaperpresentedattheWorldBankAnnualConferenceonLandPolicyandAdministration.Washington,DC,26–27April.

Neelakantan,K.S.2008Jatrophacurcas.ForestCollegeandResearchInstitute,TamilNaduAgriculturalUniversity,Mettupalayam,India.

NepstadD.,Stickler,C.andAlmeida,O.2006GlobalizationoftheAmazonsoyandbeefindustries:opportunitiesforconservation.ConservationBiology20:1595–1603.

OrganisationforEconomicCo-operationandDevelopment(OECD)andFoodandAgricultureOrganizationoftheUnitedNations(FAO)2010OECD–FAOagriculturaloutlook2010–2019.OECD,Paris.

Pacheco,P.2005PopulistandcapitalistfrontiersintheAmazon:divergingdynamicsofagrarian

andland-usechange.Ph.D.Thesis.GraduateSchoolofGeography,ClarkUniversity,Massachusetts,USA.

Peters,J.andThielmann,S.2008Promotingbiofuels:implicationsfordevelopingcountries.RuhrEconomicPapers,38.Ruhr-UniversitatBochum,Bochum,Germany.18p.

PikettyM.G.,BastosdaVeigaJ.,TourrandJ.F.,NegreirosAlvesA.M.,Poccar-Chapuis,R.andThales,M.2005Lesdéterminantsdel’expansiondel’élevagebovinenAmazonieorientale:conséquencespourlespolitiquespubliques.CahierAgricultures14(1):90–95.

Rajagopal,D.andZilberman,D.2007Reviewofenvironmental,economic,andpolicyaspectsofbiofuels.PolicyResearchWorkingPaperNo.4341.WorldBank,Washington,DC.

RenewableEnergyPolicyNetworkforthe21stCentury(REN21)2009Renewablesglobalstatusreport:2009update.REN21Secretariat,Paris.

Ribeiro,D.andMatavel,N.2009Jatropha!Asocio-economicpitfallforMozambique.JustiçaAmbientalandUniãoNacionaldeCamponeses,(Maputo),Mozambique.51p.

Rossi,A.andLambrou,Y.2008Genderandequityissuesinliquidbiofuelsproduction:minimizingtherisksandmaximizingtheopportunities.FoodandAgricultureOrganizationoftheUnitedNations,Rome.

Rupilius,W.andAhmad,S.2007Palmoilandpalmkerneloilasrawmaterialsforbasicoleochemicalsandbiodiesel.EuropeanJournalofLipidScienceandTechnology109:433–439.

Schoneveld,G.C.,German,L.A.andNukator,E.2010Towardssustainablebiofueldevelopment:assessingtheeffectivenessoftheGhanaianlegalandinstitutionalframework.PaperpreparedforWorldBankAnnualConferenceonLandPolicyandAdministration.Washington,DC,26–27 April.

Schut,M.,Bos,S.,Machuama,L.andSlingerland,M.2010Workingtowardssustainability:learningexperiencesforsustainablebiofuelstrategiesinMozambique.WageningenUniversity,Wageningen,Netherlands.

Sheil,D.,Casson,A.,Meijaard,E.,vanNoordwijk,M.,Gaskell,J.,Sunderland-Groves,J.,Wertz,K.andKanninen,M.2009TheimpactsandopportunitiesofoilpalminsoutheastAsia:what

Page 29: Potential land use competition from first-generation ... · The global production of biofuels has almost tripled since 2005, driven largely by a combination of concerns, especially

George c. schoneveld | 23

doweknowandwhatdoweneedtoknow?OccasionalPaper51.CIFOR,Bogor,Indonesia.

Simamora,A.P.2010Govtdropsdesignatingplantationsasforests.TheJakartaPost,4April.

Sugrue,A.2008Bioenergyproductiononmarginalanddegradedland:thepotentialsocialimpacts.PaperpreparedfortheJointInternationalWorkshoponHighNatureValueCriteriaandPotentialforSustainableUseofDegradedLands.Paris,30June–1 July.

Sulle,E.andNelson,F.2009Biofuels,landaccessandrurallivelihoodsinTanzania.InternationalInstituteforEnvironmentandDevelopment,London.

UNCOMTRADEcommoditytradestatisticsdatabasehttp://comtrade.un.org/[20April2010].

UnitedStatesDepartmentofAgricultureForeignAgricultureServices(USDAFAS)2009aEU-27biofuelsannualreport.USDAFAS,TheHague,Netherlands.

UnitedStatesDepartmentofAgricultureForeignAgricultureServices(USDAFAS)2009bOilseeds:worldmarketandtrade,CircularSeriesFOP12-09.USDAFAS,Washington,DC.

vanGelder,J.W.,Bailis,R.andGerman,L.Inpress.Globalandregionaltrendsandscenariosin

bioenergytradeandinvestment:ananalysisofforest-richcountriesinAsia,LatinAmerica,andAfrica.CIFOR,Bogor,Indonesia.

vanGelder,J.W.,Kammeraat,K.andKroes,H.2008SoyconsumptionforfeedandfuelintheEuropeanUnion.AresearchpaperpreparedforMilieudefensie(FriendsoftheEarthNetherlands).Profundo,Castricum,Netherlands.22p.

Venter,O.,Meijaard,E.,Possingham,H.P.,Dennis,R.,Sheil,D.,Wich,S.andWilson,K.2009Confrontingthecarboncrisis–asafeguardfortropicalforestwildlife.ConservationLetters2:123–129.

Wakker,E.2005Greasypalms:thesocialandecologicalimpactsoflarge-scaleoilpalmplantationdevelopmentinSoutheastAsia.FriendsoftheEarth,London.

Walker,R.T.,Browder,J.O.,Arima,E.,Simmons,C.S.,Pereira,R.,Caldas,M.,Shirota,R.andZen,S.2009Ranchingandthenewglobalrange:Amazôniainthe21stcentury.Geoforum40(5):732–745.

WorldBank.Worlddevelopmentindicators.http://go.worldbank.org/6HAYAHG8H0[25February2010].

Page 30: Potential land use competition from first-generation ... · The global production of biofuels has almost tripled since 2005, driven largely by a combination of concerns, especially
Page 31: Potential land use competition from first-generation ... · The global production of biofuels has almost tripled since 2005, driven largely by a combination of concerns, especially
Page 32: Potential land use competition from first-generation ... · The global production of biofuels has almost tripled since 2005, driven largely by a combination of concerns, especially

CIFOR Occasional Papers contain research results that are significant to tropical forestry. The content is peer reviewed internally and externally.

www.cifor.cgiar.org www.ForestsClimateChange.org

Center for International Forestry Research CIFOR advances human wellbeing, environmental conservation and equity by conducting research to inform policies and practices that affect forests in developing countries. CIFOR is one of 15 centres within the Consultative Group on International Agricultural Research (CGIAR). CIFOR’s headquarters are in Bogor, Indonesia. It also has offices in Asia, Africa and South America.