poster grace print

1
Cytotoxic Effects of Electronic Cigare3es on 16HBE Human Bronchial Epithelial Cells In Vitro INTRODUCTION Promoted as a means of reducing smoking, Electronic cigare5es (ECs) have been the subject of much interest contribu=ng to its open considera=on as a safer smoking alterna=ve. Recently approved by the Britain’s medicine regulator for this purpose, sales are expected to grow significantly in the next few years, where prescrip=on through the NHS could become readily available 1 . However, healthcare prac==oners, remain uncertain of the safety and efficacy of electronic cigare5es as a consequence of limited evidence, inconsistencies in results, methodologies and absence of longterm con=nuous studies. Besides chemical evalua=ons 2 , limited studies have performed in vitro on the airway epithelial; therefore no definite conclusions can be drawn on the poten=al cytotoxic effects and safety of ECs. Thus, in order to compare cellular reac=ons induced of E.liquid and it’s aerosol, the current project aimed to implement a realis=c simula=on of E.C use. We developed an in vitro cytotoxicity model, analyzing a high nico=nic content (18mg/ml) ice mint flavor, Bri=sh eliquid, in order to evaluate the cytotoxic poten=al, with and without pH adjustments, in addi=on to cellular levels of poten=al proinflammatory cytokine release IL6 and TER of airway epithelial cells 16HBE. RESULTS Figure 1: DisrupGon of 16HBE cell lines following exposure to different treatments, (Vape and E.liquid at 1.25% v/v and a control) for different exposure duraGons (4 and 26 hours). 16HBE cells on inserts were challenged apically with E.C and Vape at 1.25 % v/v concentra?ons. An untreated control was also analyzed. TER (Ω cm 2 ) was measured before cell treatment (t=0) and at 4h and 26h respec?vely. Data calculated as a % mean change from pretreatment reading ±SD, 4 replicates, 3 repeats. *represents significant difference in measured TER with respect to the control group; p< 0.05; 2 way ANOVA Tukey. Figure 2: Change in expression release of IL6 by 16HBE in response to 24 hour exposure to “Vape” and E.liquid (0.306% 5% v/v) or posiGve control. Il6 release was assed using Human Il6 Elisa set. Absorbance was measured at 450nm, represented as mean values to respec?ve treatments ±SD of 4 replicates. IL6 expression was significantly different for vape and E.liquid (p<0.001); and E.liquid from control (p<0.05), remarkably at 5% v/v for E.liquid (p<0.05) represented by *; Kruskalwallis and post hoc MannWhitney. Figure 3: Cytotoxic screening following exposure of a) “Vape” and E.liquid on 16HBE, b) pH treatment and their respecGve controls a) Cytotoxicity, measured from LDH ac?vity of 16HBE aber 24 hours of exposure to treatments at 0.3065% v/v concentra?ons. Data is presented as mean values ±SD of 10 replicates for each treatment, 18 controls. b) Cytotoxic assessed from LDH ac?vity post 24 hour exposure to pH treatment adjusted to 7.3 from 8.23 (Vape) 8.53 (E.liquid) revealing strong alkaline proper=es, physiologically incompa=ble with cellular environment and func=on. . Experiments were conducted in 4 replicates; error ±SD (Standard Devia?on). 13815280/MENDES Disrup.on of Epithelial Barrier Func.on a) b) CONCLUSIONS Cellular events occurring post treatment of E.liquid and Vape include increase in cytotoxicity and =ght junc=on degrada=on in a dose/=me rela=onship respec=vely (Figure 1 and 3) The release of IL6 is independent of dose, and further suppressed at 5%, presumably due to mass cell death. (Figure 2) Cellular cytotoxicity is found to be sta=s=cally higher in E.liquid compared to Vape, where 4 readings out of 10 were above moderate range cytotoxicity (70%) according to ISO 109935 protocol. 3 There is a significant effect of pH contribu=ng towards the cytotoxicity of our cell model. These finding are in agreement to several studies, however pH unrecognized issue must be further exploited in order to determine the poten=al health consequences in a longterm E. cigare5e use. The study proves that E.liquid and vape have a poten=al to alter the Airway Epithelial morphology, func=on and cell viability, even at low exposure strengths, which are possibly observed concentra=ons of vapor absorbed into the lungs. MATERIALS AND METHODS Materials: Ice Mint flavor with full strength nico=ne levels 18mg, and a VG/PG ra=o of 65:35 (Liqualites,Bolton,UK) was opted for this experiment. For the produc=on of extracts, a commercially available 160W temperature control device (SMOK x box cube II, SMOK Tech, Shenzhen, China) was used, consis=ng of lithium ba5ery, a triple coil Ni200 alloy, TFV4 atomizer. (SMOK Tech) Known exact % concentra=on of E.liquid vape condensate used. Cell culture and Treatment preparaGon: 16HBE cells were cultured with MEM supplemented with 10% FBS (PAA Laboratories) . Stock solu=ons for E.liquid and Vape were prepared, from which serial dilu=ons were conducted. (5%0.036 %v/v). For cytotoxicity and cytokine experiments, cell were seeded in 96 and 48 well plates respec=vely in 100μL MEM +10% FBS. For transepithelium resistance, cells were seeded into 12 transwell inserts (Corning Incorporated, NY,USA) with DMEM , Hams F12 mix (1:1) (GE HealthcarePAA Laboratories, Austria). pH stocks were adjusted to pH 7.3 from 8.23 (Vape) 8.53 (E.liquid). Transepithelial resistance (TER): Prior seeding 16HBE cells into the 12 transwell inserts, 200μl of collagen was added onto each insert coa=ng (Pure col). 16HBE cells, were then seeded into the apical chamber at a seeding density of 4.3 x 10 5 cells/well in 500μl of appropriate cell culture medium and further 1500μl of cell culture medium was added to basolateral chamber. Aner 24 hours cells were subjected to airliquid interface, and used on the 7 th day following seeding where TER measurements were conducted using Epithelial Tissue Voltohmeter (EVOM) and handheld chops=cktype electrode prior exposure of each variable (E.liquid, Vaped 1.25%v/v and control) and at 4 and 26 hours post treatment respec=vely. Cytokine IL6: Cells were seeded with a density of 1.5 x 10 4 cells/well and treated with Vape, E.lqiuid or posi=ve control (vanadyl sulphate) in appropriate media for 24 hours under standard condi=ons, aner which IL6 release was measured using a commercially available Human IL6 ELISA kit (BD OptEIA™, Biosciences Pharmingen ,USA). LDH Cytotoxicity assay: Cells were seeded with a density of 1.0 x 10 4 cells/well in 96well microplates ,in appropriate media overnight. Medium was subs=tuted by treatments or len untreated (control) for 24 hours and successively, evaluated using a Pierce LDH Cytotoxicity Assay Kit. (Thermo Scien=fic, Rockford, USA) The E.C was ac=vated for 22.5 sec. every 30 secs. for a period of 1 hour. Successively the extracts from the two collec=ons flasks were combined together. Cytotoxicity is pH dependent a) 2 way Anova; Kukey Post Hoc b) Kruskalwallis, and MannWhitney post hoc. *Represents the significant difference in cytotoxicity with respect to control treatments p<0.05. Represents the significant difference between cytotoxicity with respect to Treatment concentra?on 5 %v/v. p<0.05 Represents significant difference between cytotoxicity of E.liquid and Vape p<0.05. References 1 Nico=ne without smoke Tobacco harm reduc=on A report by the Tobacco Advisory Group of the Royal College of Physicians (April 2016) h5ps://www.rcplondon.ac.uk/file/3563/ download?token=uV0R0Twz (accessed 05.05.16) 2 Famele, M., C. Ferran=, C. Abenavoli, et al. 'The Chemical Components of Electronic Cigare5e Cartridges and Refill Fluids: Review of Analy=cal Methods', Nico?ne & Tobacco Research, vol. 17/no. 3, (2015), pp. 271279. 3ISO 10993:5 Standard. Biological Evalua=on of Medical Devices —Part 5: Tests for in vitro Cytotoxicity, 2009. Available online: h5p://www.iso.org/iso/home/store/catalogue_tc/ catalogue_detail.htm?csnumber=36406 (accessed on 14 March 2016). *

Upload: graca-mendes

Post on 21-Jan-2018

18 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: poster grace print

Cytotoxic  Effects  of  Electronic  Cigare3es  on  16HBE  Human  Bronchial  Epithelial  Cells  In  Vitro  

INTRODUCTION  Promoted  as  a  means  of  reducing  smoking,  Electronic  cigare5es  (ECs)  have  been  the  subject  of  much  interest  contribu=ng  to  its  open  considera=on  as  a  safer  smoking  alterna=ve.  Recently  approved  by  the  Britain’s  medicine  regulator  for  this  purpose,  sales  are  expected  to  grow  significantly  in  the  next  few  years,  where  prescrip=on  through  the  NHS  could  become  readily  available1.  However,  healthcare  prac==oners,  remain  uncertain  of  the  safety  and  efficacy  of  electronic  cigare5es  as  a  consequence  of   limited  evidence,   inconsistencies  in  results,  methodologies  and  absence  of   long-­‐term  con=nuous  studies.  Besides  chemical  evalua=ons2,   limited  studies  have  performed   in  vitro  on  the  airway  epithelial;  therefore  no  definite  conclusions  can  be  drawn  on  the  poten=al  cytotoxic  effects  and  safety  of  ECs.  Thus,   in  order  to  compare  cellular  reac=ons   induced  of  E.liquid  and  it’s  aerosol,  the  current  project  aimed  to   implement  a  realis=c  simula=on  of  E.C  use.    We  developed  an  in  vitro  cytotoxicity  model,  analyzing  a  high  nico=nic  content  (18mg/ml)  ice  mint  flavor,  Bri=sh  e-­‐liquid,  in  order  to  evaluate  the  cytotoxic  poten=al,  with  and  without  pH  adjustments,  in  addi=on  to  cellular  levels  of  poten=al  pro-­‐inflammatory  cytokine  release  IL-­‐6  and  TER  of    airway  epithelial  cells  16HBE.    

RESULTS  

       Figure   1:   DisrupGon   of   16HBE   cell   lines   following   exposure   to  different   treatments,   (Vape   and   E.liquid   at   1.25%   v/v   and   a  control)  for  different  exposure  duraGons  (4  and  26  hours).      16HBE  cells  on  inserts  were  challenged  apically  with  E.C  and  Vape  at   1.25   %   v/v   concentra?ons.   An   untreated   control   was   also  analyzed.  TER  (Ω  cm2)  was  measured  before  cell  treatment  (t=0)  and   at   4h   and   26h   respec?vely.   Data   calculated   as   a   %   mean  change   from  pre-­‐treatment   reading  ±SD,  4   replicates,  3   repeats.  *represents  significant  difference  in  measured  TER  with  respect  to  the  control  group;  p<  0.05;  2  way  ANOVA  Tukey.  

       Figure   2:   Change   in   expression   release   of   IL-­‐6   by   16HBE   in  response  to  24  hour  exposure  to  “Vape”  and  E.liquid    (0.306%-­‐  5%  v/v)  or  posiGve  control.     Il-­‐6   release   was   assed   using   Human   Il-­‐6   Elisa   set.   Absorbance  was   measured   at   450nm,   represented   as   mean   values   to  respec?ve   treatments   ±SD   of   4   replicates.   IL-­‐6   expression   was  significantly  different  for  vape  and  E.liquid  (p<0.001);  and  E.liquid  from  control  (p<0.05),  remarkably  at  5%  v/v  for  E.liquid  (p<0.05)  represented  by  *;  Kruskal-­‐wallis  and  post  hoc  Mann-­‐Whitney.  

Figure   3:   Cytotoxic   screening   following   exposure   of   a)   “Vape”   and   E.liquid   on   16HBE,   b)   pH   treatment   and   their   respecGve  controls    a)  Cytotoxicity,  measured  from  LDH  ac?vity  of  16HBE  aber  24  hours  of  exposure  to  treatments  at  0.306-­‐5%  v/v  concentra?ons.  

Data  is  presented  as  mean  values  ±SD  of  10  replicates  for  each  treatment,  18  controls.  b)   Cytotoxic  assessed  from  LDH  ac?vity  post  24  hour  exposure  to  pH  treatment    adjusted  to  7.3  from  8.23  (Vape)  8.53  (E.liquid)  

revealing  strong  alkaline  proper=es,  physiologically  incompa=ble  with  cellular  environment  and  func=on.  .  Experiments  were  conducted  in  4  replicates;  error  ±SD  (Standard  Devia?on).  

13815280/MENDES  

Disrup.on  of  Epithelial  Barrier  Func.on    

a)   b)  

CONCLUSIONS    à   Cellular   events   occurring   post   treatment   of  

E.liquid   and   Vape   include   increase   in  cytotoxicity  and    =ght  junc=on  degrada=on  in  a  dose/=me  rela=onship  respec=vely  (Figure  1  and  3)  

 à  The   release   of   IL-­‐6   is   independent   of   dose,  

and   further   suppressed   at   5%,   presumably  due  to  mass  cell  death.  (Figure  2)  

 à  Cellular   cytotoxicity   is   found   to   be  

sta=s=cally     higher   in   E.liquid   compared   to  Vape,  where  4  readings  out  of  10  were  above  moderate  range  cytotoxicity  (70%)  according  to  -­‐ISO  10993-­‐5  protocol.3  

 à  There  is  a  significant  effect  of  pH  contribu=ng  

towards  the  cytotoxicity  of  our  cell  model.  

 

à  These   finding   are   in   agreement   to   several  studies,   however   pH   unrecognized   issue  must   be   further   exploited   in   order   to  d e t e rm i n e   t h e   p o t e n = a l   h e a l t h  consequences  in  a  long-­‐term  E.  cigare5e  use.  

   à  The  study  proves  that  E.liquid  and  vape  have  

a   poten=al   to   alter   the   Airway   Epithelial  morphology,   func=on  and  cell  viability,  even  at  low  exposure  strengths,  which  are  possibly  observed   concentra=ons   of   vapor   absorbed  into  the  lungs.    

MATERIALS  AND  METHODS  Materials:  Ice  Mint  flavor  with  full  strength  nico=ne  levels  18mg,  and  a  VG/PG  ra=o  of  65:35   (Liqualites,Bolton,UK)   was   opted   for   this   experiment.   For   the  produc=on  of  extracts,  a  commercially  available  160W  temperature  control  device   (SMOK   x   box   cube   II,   SMOK   Tech,   Shenzhen,   China)   was   used,  consis=ng  of  lithium  ba5ery,  a  triple  coil  Ni200  alloy,  TFV4  atomizer.  (SMOK  Tech)                                                                                  Known  exact  %  concentra=on  of  E.liquid  vape  condensate  used.    Cell  culture  and  Treatment  preparaGon:  16HBE   cells   were   cultured   with   MEM   supplemented   with   10%   FBS   (PAA  Laboratories)   .   Stock   solu=ons   for   E.liquid   and   Vape   were   prepared,   from  which  serial  dilu=ons  were  conducted.  (5%-­‐0.036  %v/v).    For  cytotoxicity  and  cytokine  experiments,  cell  were  seeded  in  96  and  48  well  plates  respec=vely  in  100μL  MEM  +10%  FBS.  For  transepithelium  resistance,  cells  were   seeded   into   12   transwell   inserts   (Corning   Incorporated,  NY,USA)  with  DMEM  ,  Hams  F-­‐12  mix  (1:1)  (GE  HealthcarePAA  Laboratories,  Austria).  pH  stocks  were  adjusted  to  pH    7.3  from  8.23  (Vape)  8.53  (E.liquid).    Transepithelial  resistance  (TER):  Prior  seeding  16HBE  cells  into  the  12    transwell  inserts,  200μl  of  collagen  was  added   onto   each   insert   coa=ng   (Pure   col).   16HBE   cells,   were   then   seeded  into  the  apical  chamber  at  a  seeding  density  of  4.3  x  105  cells/well  in  500μl  of    appropriate  cell   culture  medium  and   further  1500μl  of  cell   culture  medium  was  added  to  basolateral  chamber.    Aner  24  hours  cells  were  subjected   to  air-­‐liquid   interface,   and   used   on   the   7th   day   following   seeding   where   TER  measurements  were  conducted    using  Epithelial  Tissue  Voltohmeter  (EVOM)  and   hand-­‐held   chops=ck-­‐type   electrode   prior   exposure   of   each   variable  (E.liquid,  Vaped  1.25%v/v  and  control)  and  at  4  and  26  hours  post  treatment  respec=vely.      Cytokine  IL-­‐6:  Cells  were   seeded  with   a   density   of   1.5   x   104     cells/well   and   treated  with  Vape,  E.lqiuid  or  posi=ve  control  (vanadyl  sulphate)  in  appropriate  media  for  24  hours  under  standard  condi=ons,  aner  which   IL-­‐6  release  was  measured  using   a   commercially   available   Human   IL-­‐6   ELISA   kit   (BD  OptEIA™,  Biosciences  Pharmingen  ,USA).      LDH  Cytotoxicity  assay:  Cells   were   seeded   with   a   density   of   1.0   x   104   cells/well   in   96-­‐well  microplates   ,in   appropriate   media   overnight.   Medium   was   subs=tuted   by  treatments   or   len   untreated   (control)   for   24   hours   and   successively,  evaluated   using   a   Pierce   LDH   Cytotoxicity   Assay   Kit.   (Thermo   Scien=fic,  Rockford,  USA)  

The  E.C  was  ac=vated  for  2-­‐2.5  sec.  every  30  secs.  for  a  period  of  1  hour.  Successively  the  extracts  from  the  two  collec=ons  flasks  were  combined  together.  

Cytotoxicity  is  pH  dependent  

a)  2  way  Anova;  Kukey  Post  Hoc  b)  Kruskal-­‐wallis,  and  Mann-­‐Whitney  post  hoc.  

*Represents  the  significant  difference  in  cytotoxicity  with  respect  to  control  treatments  p<0.05.    nRepresents  the  significant  difference  between  cytotoxicity  with  respect  to  Treatment  concentra?on  5  %v/v.    p<0.05    ✚Represents  significant  difference  between    cytotoxicity  of  E.liquid  and  Vape    p<0.05.  

References  1-­‐  Nico=ne  without  smoke  Tobacco  harm  reduc=on    A  report  by  the  Tobacco  Advisory  Group  of  the  Royal  College  of  Physicians  (April  2016)  h5ps://www.rcplondon.ac.uk/file/3563/download?token=uV0R0Twz  (accessed  05.05.16)  2-­‐  Famele,  M.,  C.  Ferran=,  C.  Abenavoli,  et  al.  'The  Chemical  Components  of  Electronic  Cigare5e  Cartridges  and  Refill  Fluids:  Review  of  Analy=cal  Methods',  Nico?ne  &  Tobacco  Research,  vol.  17/no.  3,  (2015),  pp.  271-­‐279.  3-­‐ISO  10993:5  Standard.  Biological  Evalua=on  of  Medical  Devices—Part  5:  Tests  for  in  vitro  Cytotoxicity,  2009.  Available  online:  h5p://www.iso.org/iso/home/store/catalogue_tc/  catalogue_detail.htm?csnumber=36406  (accessed  on  14  March  2016).  

*