positron emission tomography

60
R.B. Innis: Molecualr Imaging Nov. 16, 2001 1 Positron Emission Tomography: Tool to Facilitate Drug Development and to Study Pharmacokinetics Robert B. Innis, MD, PhD Molecular Imaging Branch National Institute Mental Health

Upload: others

Post on 03-Feb-2022

7 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Positron Emission Tomography

R.B. Innis: Molecualr Imaging Nov. 16, 2001

1

Positron Emission Tomography: Tool to Facilitate Drug Development and

to Study Pharmacokinetics

Robert B. Innis, MD, PhD

Molecular Imaging Branch

National Institute Mental Health

Page 2: Positron Emission Tomography

R.B. Innis: Molecualr Imaging Nov. 16, 2001

2

Outline of Talk

1. PET has high sensitivity and specificity

2. PET used in therapeutic drug development

3. Pharmacokinetic modeling of plasma concentration

and tissue uptake can measure receptor density

4. Study drug distribution: block distribution to

periphery and increase distribution to brain

5. Study drug metabolism: inhibit defluorination

Page 3: Positron Emission Tomography

R.B. Innis: Molecualr Imaging Nov. 16, 2001

3

Page 4: Positron Emission Tomography

R.B. Innis: Molecualr Imaging Nov. 16, 2001

4

Page 5: Positron Emission Tomography

R.B. Innis: Molecualr Imaging Nov. 16, 2001

5

Positron Emission Tomography

Page 6: Positron Emission Tomography

R.B. Innis: Molecualr Imaging Nov. 16, 2001

6

PET vs. MRI

PET MRI

Spatial

Resolution2 – 6 mm << 1 mm

Sensitivity 10-12 M 10-4 M

Temporal

Resolutionminutes <1 sec

Radionuclide (11C): high sensitivity

Ligand (raclopride): high selectivity

Radioligand [11C]raclopride: high sensitivity

& selectivity

Page 7: Positron Emission Tomography

R.B. Innis: Molecualr Imaging Nov. 16, 2001

7

Radioligand = Drug + Radioactivity

1. Drug administered at tracer doses

a) No pharm effects

b) Labels <1% receptors

c) Labeled subset reflects entire population

2. Radioligand disposed like all drugs

a) Metabolism & distribution

3. Radiation exposure

Page 8: Positron Emission Tomography

R.B. Innis: Molecualr Imaging Nov. 16, 2001

8

NIH Rodent PET Camera18F bone uptake rat

Developed By: Mike Green & Jurgen Seidel

Page 9: Positron Emission Tomography

R.B. Innis: Molecualr Imaging Nov. 16, 2001

9

PET: Tool in Therapeutic

Drug Development

• Determine dose and dosing interval

• Identify homogeneous group

• Biomarker for drug efficacy

• Monitor gene or stem cell therapy

Page 10: Positron Emission Tomography

R.B. Innis: Molecualr Imaging Nov. 16, 2001

10

Lazabemide blocks [11C]deprenyl

binding to monoamine-oxidase-B (MAO-B)

Selegilene is more potent and longer acting

than lazabemide

Page 11: Positron Emission Tomography

R.B. Innis: Molecualr Imaging Nov. 16, 2001

11

PET: Tool in Therapeutic

Drug Development

• Determine dose and dosing interval

• Identify homogeneous group

• Biomarker for drug efficacy

• Monitor gene or stem cell therapy

Page 12: Positron Emission Tomography

R.B. Innis: Molecualr Imaging Nov. 16, 2001

12

Dopamine Transporter: Located on DA Terminals

Removes DA from Synapse

Page 13: Positron Emission Tomography

R.B. Innis: Molecualr Imaging Nov. 16, 2001

13

SPECT Imaging of Dopamine Transporter

in Caudate and Putamen of Human Brain

Page 14: Positron Emission Tomography

R.B. Innis: Molecualr Imaging Nov. 16, 2001

14

Healthy Parkinson

Stage 1

123I-β-CIT Dopamine Transporter SPECT:

Decreased in Parkinson’s Disease

Page 15: Positron Emission Tomography

R.B. Innis: Molecualr Imaging Nov. 16, 2001

15

PET: Tool in Therapeutic

Drug Development

• Determine dose and dosing interval

• Identify homogeneous group

• Biomarker for drug efficacy

• Monitor gene or stem cell therapy

Page 16: Positron Emission Tomography

R.B. Innis: Molecualr Imaging Nov. 16, 2001

16

Serial Dopamine Transporter Imaging in a Parkinson Patient

Institute for Neurodegenerative Disorders

Page 17: Positron Emission Tomography

R.B. Innis: Molecualr Imaging Nov. 16, 2001

17

PET Imaging of Amyloid:

Biomarker for Alzheimer’s Disease

Page 18: Positron Emission Tomography

R.B. Innis: Molecualr Imaging Nov. 16, 2001

18

PET: Tool in Therapeutic

Drug Development

• Determine dose and dosing interval

• Identify homogeneous group

• Biomarker for drug efficacy

• Monitor gene or stem cell therapy

Page 19: Positron Emission Tomography

R.B. Innis: Molecualr Imaging Nov. 16, 2001

19

Viral vectors deliver genethat synthesizes dopamine (DA)

Infuse virus into striatum (target cells)

Target cells express the DA gene

Gene Therapy Using Viral Vectors

Page 20: Positron Emission Tomography

R.B. Innis: Molecualr Imaging Nov. 16, 2001

20

Control Gene:

Lac-Z

postpre

DA Synthesis Gene:

AADC

pre post

PET Dopamine Imaging in

Hemi-Parkinson Monkey:Monitors gene for DA synthesis in right striatum

Page 21: Positron Emission Tomography

R.B. Innis: Molecualr Imaging Nov. 16, 2001

21

Normal Unilateral Lesion

Embryonic Stem Cells PET & MRI

PET Imaging to Monitor Embryonic Stem Cell

Treatment of “Parkinson Disease” in Rats

Page 22: Positron Emission Tomography

R.B. Innis: Molecualr Imaging Nov. 16, 2001

22

Outline of Talk

1. PET has high sensitivity and specificity

2. PET used in therapeutic drug development

3. Pharmacokinetic modeling: plasma concentration and

tissue uptake

4. Study drug distribution: “peripheral” benzodiazepine

receptor

5. Study drug metabolism: inhibit defluorination

Page 23: Positron Emission Tomography

R.B. Innis: Molecualr Imaging Nov. 16, 2001

23

AUC=32AUC=16

Bra

in D

rug

TimeTime

Brain Uptake of [18F]Fluoxetine:

Measures Density of Serotonin Transporters &

Affinity of Fluoxetine

Patient Healthy

Page 24: Positron Emission Tomography

R.B. Innis: Molecualr Imaging Nov. 16, 2001

24

AUC=32AUC=16

Bra

in D

rug

TimeTime

Brain Uptake of [18F]Fluoxetine:

Measures Density of Serotonin Transporters &

Affinity of Fluoxetine

Patient Healthy

Inject Activity 20 mCi 10 mCi

Patient Healthy

Page 25: Positron Emission Tomography

R.B. Innis: Molecualr Imaging Nov. 16, 2001

25

AUC=32AUC=16

Bra

in D

rug

TimeTime

Brain Uptake of [18F]Fluoxetine:

Measures Density of Serotonin Transporters &

Affinity of Fluoxetine

Patient Healthy

Inject Activity 20 mCi 20 mCi

Patient Healthy

Page 26: Positron Emission Tomography

R.B. Innis: Molecualr Imaging Nov. 16, 2001

26

AUC=32AUC=16

Bra

in D

rug

TimeTime

Brain Uptake of [18F]Fluoxetine:

Measures Density of Serotonin Transporters &

Affinity of Fluoxetine

Patient Healthy

Inject Activity 20 mCi 20 mCi

Weight 50 kg 100 kg

Patient Healthy

Page 27: Positron Emission Tomography

R.B. Innis: Molecualr Imaging Nov. 16, 2001

27

AUC=32AUC=16

Bra

in D

rug

TimeTime

Brain Uptake of [18F]Fluoxetine:

Measures Density of Serotonin Transporters &

Affinity of Fluoxetine

Patient Healthy

Inject Activity 20 mCi 20 mCi

Weight 100 kg 100 kg

Patient Healthy

Page 28: Positron Emission Tomography

R.B. Innis: Molecualr Imaging Nov. 16, 2001

28

AUC=32AUC=16

Bra

in D

rug

TimeTime

Brain Uptake of [18F]Fluoxetine:

Measures Density of Serotonin Transporters

Patient Healthy

Inject Activity 40 mCi 20 mCi

Weight 100 kg 100 kg

Liver disease Yes No

Patient Healthy

Page 29: Positron Emission Tomography

R.B. Innis: Molecualr Imaging Nov. 16, 2001

29

Binding Potential (BP): Receptor Density * Affinity

BP equals uptake in brain relative to how much drug

is delivered via arterial plasma.

AUC=2Pla

sma

Dru

g

Time

Bra

in D

rug

AUC=16

Area Brain Curve

Area Plasma CurveBP =

BP =16

2= 8

Page 30: Positron Emission Tomography

R.B. Innis: Molecualr Imaging Nov. 16, 2001

30

Bra

in D

rug

Time

Binding Potential: Independent of Injected Dose*

Double Plasma Input =>Double Brain Response

AUC=32

AUC=16 BP 2nd Time =324

= 8

BP 1st Time =162

= 8

Pla

sma D

rug

AUC=2

AUC=4

*If ligand does not saturate receptors - i.e., if tracer doses used

Page 31: Positron Emission Tomography

R.B. Innis: Molecualr Imaging Nov. 16, 2001

31

Plasma Brain

K1

k2

2

1

k

KBP

From curves of plasma and brain radioactivity over time,

estimate rate constants of entry and removal to/from tissue.

BP can be calculated from the Area Under Curve (math integral)

as well as rate constants (math differential).

Page 32: Positron Emission Tomography

R.B. Innis: Molecualr Imaging Nov. 16, 2001

32

Tissue uptake is proportional to density of

receptors and the affinity of the drug

Binding

Potentialaffinity

1max

D

max

D

max BK

BK

BBP

drugaffinitybinding1

constant bindingon dissociati

densityreceptor

D

D

max

K

K

B

Page 33: Positron Emission Tomography

R.B. Innis: Molecualr Imaging Nov. 16, 2001

33

SUMMARY PET KINETICS

• Organ uptake is proportional to receptor density and affinity of drug

• Binding Potential (BP) = density X affinity

• “Drug Exposure” to tissue is AUC of:

plasma concentration vs. time

• “Response” (uptake) of tissue is AUC of:

tissue concentration vs. time

plasma

tissue

Exposure

Response

AUC

AUCBP

• BP also equals ratio of rate constants of entry and removal to/from tissue

2

1

k

KBP

Page 34: Positron Emission Tomography

R.B. Innis: Molecualr Imaging Nov. 16, 2001

34

Major Point of PET Pharmacokinetics

(in words)

• Plasma pharmacokinetics provides a

limited view of what’s happening to drug in

plasma.

• PET provides a limited view of what’s

happening to drug in tissue.

• Concurrent measurement of drug in

plasma and of drug in tissue allows

quantitation of the target of drug action

– i.e., receptor.

Page 35: Positron Emission Tomography

R.B. Innis: Molecualr Imaging Nov. 16, 2001

35

Outline of Talk

1. PET has high sensitivity and specificity

2. PET used in therapeutic drug development

3. Pharmacokinetic modeling: plasma concentration and

tissue uptake

4. Study drug distribution: “peripheral” benzodiazepine

receptor

5. Study drug metabolism: inhibit defluorination

Page 36: Positron Emission Tomography

R.B. Innis: Molecualr Imaging Nov. 16, 2001

36

Translocator Protein (18 kDa)a.k.a. “peripheral benzodiazepine receptor”

1. Mitochondrial protein highly expressed in macrophages and activated microglia

2. Exists in periphery and brain

3. Multiple potential functions: steroid synthesis, nucleotide transport

4. Distinct from typical benzodiazepine GABAA receptor in brain

5. Marker for cellular inflammation

Page 37: Positron Emission Tomography

R.B. Innis: Molecualr Imaging Nov. 16, 2001

37

0 40 80 1200

100

200

300

400

500

0 40 80 1201

10

100

1000

Time (min)0 40 80 120

1

10

100

1000

Time (min)

Co

nc

[11C

]PB

R28

in

pla

sma

(%

SU

V)

0 40 80 1200

100

200

300

400

500

Conc

radio

acti

vit

y

in p

uta

min

(%

SU

V)

Receptor Blockade [11C]PBR28 in Monkey Brain:

more radioligand in plasma and brain

VT = 130 mL/cm3 VT = 1.7 mL/cm3

BASELINE RECEPTORS BLOCKED

BRAIN

PLASMA

Page 38: Positron Emission Tomography

R.B. Innis: Molecualr Imaging Nov. 16, 2001

38

2 min 25 min 115 min

Brain

Lungs

Kidneys

Heart

LiverGall bladder

Urinary bladder

Spleen

Baseline

BlockedPK11195 10 mg/kg

MONKEY WHOLE BODY SCANS [11C]PBR28Receptor blockade displaces from lung & kidney

Drives more to metabolism (liver) and exretion (urine)

Page 39: Positron Emission Tomography

R.B. Innis: Molecualr Imaging Nov. 16, 2001

39

0 40 80 1200

100

200

300

Time (min)

Bra

in a

ctiv

ity (

%S

UV

)

0 40 80 1200

100

200

300

400

500

Time (min)

Brain

acti

vit

y (

%S

UV

)

0 40 80 1200

50

100

150

200

250

Time (min)

Brain

acti

vit

y (

%S

UV

)

0 40 80 1200

100

200

300

400

Time (min)

Brain

acti

vit

y (

%S

UV

)

Human with low uptake is similar to monkey with receptor blockade

A) regular healthy subject B) odd healthy subject

C) normal monkey D) pre-blocked monkey

Page 40: Positron Emission Tomography

R.B. Innis: Molecualr Imaging Nov. 16, 2001

40

Some HEALTHY Subjects May have No Receptor

Binding of [11C]PBR28

2 min 26 min 103 min

Brain

Lungs

Kidneys

Liver

Gall Bladder

Urinary Bladder

Spleen

Normal Binding

Majority

No Binding

(3 of 23)

Gall Bladder

Heart

Nonbinders showed a trend of higher plasma [11C]PBR28

Page 41: Positron Emission Tomography

R.B. Innis: Molecualr Imaging Nov. 16, 2001

41

Focal and Global Increase of Inflammation

Alzheimer’s

disease

Epilepsy

Global increase of

inflammation

Disease

Healthy Alzheimer

Inflammation imaging

Focal increase in

epileptogenic

focus

Page 42: Positron Emission Tomography

R.B. Innis: Molecualr Imaging Nov. 16, 2001

42

Outline of Talk

1. PET has high sensitivity and specificity

2. PET used in therapeutic drug development

3. Pharmacokinetic modeling: plasma concentration and

tissue uptake

4. Study drug distribution: “peripheral” benzodiazepine

receptor

5. Study drug metabolism: inhibit defluorination

Page 43: Positron Emission Tomography

R.B. Innis: Molecualr Imaging Nov. 16, 2001

43

[18F]FCWAY: Defluorination

Bone uptake: human skull at 2 h

Page 44: Positron Emission Tomography

R.B. Innis: Molecualr Imaging Nov. 16, 2001

44

[18F]Fluoride

Brain

Skull

Miconazole Inhibits Defluorination &

Bone Uptake

Temp CtxSkull

[18F]FCWAY: Miconazole

Baseline 15 mg/kg 30 mg/kg 60 mg/kg

Page 45: Positron Emission Tomography

R.B. Innis: Molecualr Imaging Nov. 16, 2001

45

Disulfiram: Decreases Skull Activity &

Increases Brain Uptake

Baseline DisulfiramImages at 2 h in same subject. Disulfiram 500 mg PO prior night

Page 46: Positron Emission Tomography

R.B. Innis: Molecualr Imaging Nov. 16, 2001

46

Disulfiram: Decreases skull uptake of fluoride &

Increases brain uptake of [18F]FCWAY

0 25 50 75 100 1250

100

200

300

400

500

Baseline

Disulfiram

Time (min)

Me

an

%

SU

V

0 25 50 75 100 1250

100

200

300

400

Baseline

Disulfiram

Time (min)

Me

an

%

SU

V

Skull Temporal Cortex

Page 47: Positron Emission Tomography

R.B. Innis: Molecualr Imaging Nov. 16, 2001

47

0 25 50 75 100 1250

250

500

750

1000

1250

1500

1750

2000

Baseline

Disulfiram

Time (min)

Ac

tiv

ity

(B

q/m

L)

Disulfiram: Decreases plasma fluoride &

Increases plasma radiotracer [18F]FCWAY

[18F]fluoride[18F]FCWAY

(parent tracer)

0 25 50 75 100 1250

200

400

600

800

1000

1200

1400

1600

Baseline

Disulfiram

Time (min)

Ac

tiv

ity

(B

q/m

L)

Page 48: Positron Emission Tomography

R.B. Innis: Molecualr Imaging Nov. 16, 2001

48

Summary

1. PET has high sensitivity and specificity

2. PET used in therapeutic drug development

3. Pharmacokinetic modeling of plasma concentration

and tissue uptake can measure receptor density

4. Study drug distribution: block distribution to

periphery and increase distribution to brain

5. Study drug metabolism: inhibit defluorination

Page 49: Positron Emission Tomography

R.B. Innis: Molecualr Imaging Nov. 16, 2001

49

Self-Assessment Quiz:

True or False?• Positron emission tomography (PET) studies involve

the injection of a radioactively labeled drug that emits a particle called a positron.

• PET shows the location of radioactivity in a cross section (or tomograph) of the body.

• PET can be used to quantify the density of specific proteins in the body.

• Compartmental modeling of PET data typically uses measurements over time of 1) PET images of the target tissue and 2) concentrations of unchanged parent radioligand in plasma.

Page 50: Positron Emission Tomography

R.B. Innis: Molecualr Imaging Nov. 16, 2001

50

Page 51: Positron Emission Tomography

R.B. Innis: Molecualr Imaging Nov. 16, 2001

51

FDA Critical Path Initiative

• Approvals for new drugs declining

• R&D funding by industry and NIH is increasing

• Problem: tools are inadequate for efficient

evaluation of new drugs in the “critical path” of

development

• Still using old tools like liver enzymes and

hematocrit to evaluate safety and efficacy

• Need new Product Development Toolkit

Page 52: Positron Emission Tomography

R.B. Innis: Molecualr Imaging Nov. 16, 2001

52

CRITICAL PATH to New Medical ProductsFDA, March 2004

“There is currently an urgent need for

additional public-private collaborative work on

applying technologies such as … new imaging

technologies.

Opportunity: Imaging technologies, such as

molecular imaging tools in neuropsychiatric

diseases or as measures of drug absorption and

distribution, may provide powerful insights into

the distribution, binding, and other biological

effects of pharmaceuticals.”

Page 53: Positron Emission Tomography

R.B. Innis: Molecualr Imaging Nov. 16, 2001

53

Page 54: Positron Emission Tomography

R.B. Innis: Molecualr Imaging Nov. 16, 2001

54

Page 55: Positron Emission Tomography

R.B. Innis: Molecualr Imaging Nov. 16, 2001

55

55

Quantification of receptor density

Uptake in brain relative to how much drug is

delivered via arterial plasma

AUC=2

AUC=16

Area Brain Curve

Area Plasma CurveVT =

VT = 162

= 8

Distribution volume

Bra

in D

rug

Pla

sma

Dru

g

Time after injection

Page 56: Positron Emission Tomography

R.B. Innis: Molecualr Imaging Nov. 16, 2001

56

18F-SP203 in Human:

Quantification went well

RegionsVT

(mL∗cm-3)COV (%)

Temporal

cortex25.8 ± 2.4 9.3

Cerebellum 14.2 ± 1.6 11.2

Brain

Plasma

Brown et al. 2008

Page 57: Positron Emission Tomography

R.B. Innis: Molecualr Imaging Nov. 16, 2001

57

57

Quantification of receptor density

Equilibrium method

Concentration ratio of tissue to plasma under equilibrium

Distribution volume

32

4

Bra

in D

rug

Pla

sma

Dru

g

Time after injection

AUC=2

AUC=16

Bolus injection

Time after injection

Equilibrium method

57

Page 58: Positron Emission Tomography

R.B. Innis: Molecualr Imaging Nov. 16, 2001

58

Advantages of equilibrium method

• Determine VT directly from concentration ratio

of tissue to plasma under equilibrium

• Less invasive

• Rapid equilibrium can be achieved with bolus

and constant infusion

Page 59: Positron Emission Tomography

R.B. Innis: Molecualr Imaging Nov. 16, 2001

59

Rapid equilibrium with

bolus plus constant infusion

From pharmacokinetic course 2009 by R.E. Carson

+

Page 60: Positron Emission Tomography

R.B. Innis: Molecualr Imaging Nov. 16, 2001

60

Plasma parent

Temporal cortex

Thalamus

Radioactivity became stable in plasma and brain

with bolus plus constant infusion