polymer surge arresters(ansi) - sales-toshiba-tds.com · directly molded polymer surge arresters...

9
Directly Molded Polymer Surge Arresters Ideal means to reduce environmental impact Up to 420kV, Comply with IEEE C62.11-2005, Station class l Long-life performance (Hydrophobic silicone rubber) l Application of environment-friendly materials Lead free materials used l Safer short-circuit performance (directly molded structure) l Short lead time (Self manufacturing of arrester housing and ZnO elements) l Less transportation load during delivery and material purchasing (lightweight design) l Easy installation without special equipment and can be used with simple support structures (lightweight design) http://www.toshiba-arrester.com

Upload: ngokhue

Post on 08-May-2018

254 views

Category:

Documents


5 download

TRANSCRIPT

Page 1: Polymer Surge Arresters(ANSI) - sales-toshiba-tds.com · Directly Molded Polymer Surge Arresters ... Station class l ... demand to reduce the environmental impact caused by power

Directly Molded Polymer Surge ArrestersIdeal means to reduce environmental impactUp to 420kV, Comply with IEEE C62.11-2005, Station class

l Long-life performance (Hydrophobic silicone rubber)l Application of environment-friendly materials Lead free materials usedl Safer short-circuit performance (directly molded structure)l Short lead time (Self manufacturing of arrester housing and ZnO elements)l Less transportation load  during delivery and material purchasing (lightweight design) l Easy installation without special equipment  and can be used with simple support structures  (lightweight design)

http://www.toshiba-arrester.com

1224レターサイ� 画像調整.indd 1 11.1.12 5:11:45 AM

Page 2: Polymer Surge Arresters(ANSI) - sales-toshiba-tds.com · Directly Molded Polymer Surge Arresters ... Station class l ... demand to reduce the environmental impact caused by power

Excellent ZnO elementstechnolo gies

Directly molded polymer surge arresters for the reduction of environmental impacts. As concern about global warming and environmental destruction increases, there is growing

Silicone rubber directly molding

lLong-life cycle design-Ideal designs and development and verification by sophisticated analysis techniques.

-Improved pollution characteristics by hydrophobic silicone rubber

-Improved water resistance by silicone rubber and ZnO elements (Lead-free glass is used on the side-surface insulator.)

Operation

DevelopmentVerification

Manufacturing

TransportationInstallation

lImproved safety for nearby operators and equipment-No gas space in the arrester housing and pressure relief by splitting the silicone rubber

lImproved fire safety after pressure relief-Self fire-extinguishing in emergency case of pressure relief by using high quality fire-retardant silicone rubber

lImproved protective characteristics by adjacent installation-The expectation of longer life cycle of protective equipment thanks to improved protection by adjacent installation

lReduction of environmental impact during manufacturing-Reduction of environmental impact during purchasing transportation (Application of lightweight materials)

-The application of silicone housing which does not need high-temperature sintering

lReduction of manufacturing lead time-Self-manufacturing of ZnO elements and self molding of silicone housing

lManufacturing for long-life cycle-Quality control by ISO9001 and ISO14001 certified manufacturing line

lReduction of environmental impact during delivery transportation - Compact and lightweight design

lEasy installation- No need for special heavy equipment during installation- Application possibility of simple support structure

demand to reduce the environmental impact caused by power transmission and distribution and reduced environmental impact from manufacturing to operation, by using its excellent equipment. Toshiba supplies directly molded polymer surge arresters with leading features surge arresters since 1900.ZnO elements and silicone molding technologies based on its experience of manufacturing

2 3

1224レターサイ� 画像調整.indd 2-3 11.1.12 5:11:48 AM

Page 3: Polymer Surge Arresters(ANSI) - sales-toshiba-tds.com · Directly Molded Polymer Surge Arresters ... Station class l ... demand to reduce the environmental impact caused by power

Toshiba’s polymer surge arresters have low environmental impact thanks to the use of silicone rubber which remains hydrophobic throughout its life cycle (Fig. 1), consequently a continuous conductive layer is not formed on the surface of surge arresters by moisture and/or pollution materials. Therefore, the surge arresters continue to show optimum performances even under extreme environmental conditions with heavy pollution, or in industrial, coastal or desert areas. In addition, the surge arrester have been made highly water resistant by applying water-resistant glass to the side-surface insulator (Fig. 2) and using water-resistant silicone rubber (Lead-free glass for the glass coating is another environmental benefit.) The best seal strength of silicone rubber is achieved by optimal selection and application of primer. These long life cycle performances have been fully verified by detailed evaluations such as pollution tests, boiling tests in salt water (Fig. 3), long-term life performance tests in a coastal area (Fig. 4), heat-cycle tests, and other tests.

Toshiba’s polymer surge arresters feature directly molded silicone rubber housing instead of the conventional porcelain housing. Since silicone rubber is approximately 50 % lighter than a porcelain housing, environmental impact during transportation of purchased materials is significantly reduced. We also substantially reduced the size and weight of the surge arresters compared with porcelain surge arresters by applying ZnO elements with high energy absorption capability and the silicone directly mold structure. Therefore, the environmental impact during transportation for delivery is significantly reduced. Figure 5 compares porcelain and polymer surge arresters for the 245 kV system. The weight is reduced from 375 lbs (170 kg) to 144 lbs (65kg) and the height is also reduced with maintaining proper creepage distance because the complicated shed design was achieved by silicone injection.

Toshiba’s polymer surge arresters have a structure in which an internal section with stacked ZnO elements is directly molded by silicone rubber. Because there is no gas space in the arresters and thanks to the suitable design of the internal section, pressure can successfully relieve by splitting the silicone rubber, thus preventing the internal parts from bouncing out in emergency case of a short-circuit caused by a surge arrester failure (Fig. 6). This feature ensures the safety of nearby operators and equipment during pressure relief. In addition, the use of high-quality incombustible silicone rubber makes the surge arresters self-extinguishing soon after pressure relief.

Toshiba’s surge arresters do not require special heavy equipments thanks to their compact and light weight design, making installation easier. In some cases, in addition to simplification of support structure (Fig. 7), the support structure for adjacent equipments was also used (Fig. 8). The safer pressure relief of the Toshiba polymer surge arresters enables them to be installed near other equipments.

The delivery lead time of Toshiba’s polymer surge arresters has been reduced by self-manufacturing of ZnO elements (Fig. 9) and silicone molding. They are manufactured in ISO9001 and ISO14001 certified manufacturing l ines under a str ict qual i ty and environmental control system.

Our highly experienced development staff develop and design Toshiba’s polymer surge arresters with using pioneering analysis techniques. The flow of silicone rubber during injection (Fig. 10) is also analyzed and the best injecting condition is obtained. These manufacturing technologies result in long life cycle performance in the field.

1. Features of Toshiba polymer surge arrestersLong life cycle design

Safer short-circuit properties for nearby operators and equipment. Excellent fire extinguishing after a short-circuit

Easy installation and application possibility of simple support structure

Shorter manufacturing lead time and manufacturing certified by ISO9001, ISO14001 under strict quality control

Fig. 1. Hydrophobicity of silicone rubber

Fig. 3 View of boiling testFig. 2 Applied ZnO elements Fig. 4 Long-term life performance tests

Fig.5 Comparison on the surge arrester with the rated voltage of 192 kV

Fig. 6 View of short circuit test Fig. 7 Example of simple support structure Fig. 8 Utilization of support structure of adjacent equipment

Fig. 9 Manufacturing facilities for ZnO elements

Reduction of environmental impact during transportation of purchased materials and delivery of surge arresters

Porcelain type Polymer type

375 lbs(170kg)

144 lbs(65kg)

4 5

Development using pioneering analysis technologies

Fig. 10 Example of the analysis of silicone rubber injection

1224レターサイ� 画像調整.indd 4-5 11.1.12 5:11:54 AM

Page 4: Polymer Surge Arresters(ANSI) - sales-toshiba-tds.com · Directly Molded Polymer Surge Arresters ... Station class l ... demand to reduce the environmental impact caused by power

Toshiba’s directly molded polymer surge arresters, which are the gapless ZnO element type, comply with IEEE standard C62.11-2005. These surge arresters cover the system voltages up to 420 kV as summarized in Fig. 11. Standard type and high mechanical strength type are available for different applications. The principal characteristics of each type of surge arrester are summarized in Table 1.

2. Performance Figure 12 shows the temporary over-voltage capability. Toshiba’s directly molded polymer surge arresters are available for all ratings. The curve represents the recommendation temporary over-voltage capability and defines the duration and magnitude of temporary over-voltages that may be applied to the surge arrester until the applied voltage reduces to the normal continuous voltage.

3. Power frequency voltage versus time characteristics

TOSHIBA surge arrester

Export

Family name of ZnO elements

Duty-cyclevoltage

Polymertype

Designation Pollution level

V Very heavy 31mm/kV

H Heavy 25mm/kV

Fig. 12 Power frequency voltage versus time characteristics (TOV)

Table 1 Standard ratings

4. Designation of surge arrester typeAn example of the arrester type designation is given below. The type designation gives information about arrester duty-cycle voltage and the applicable pollution level .

Arrester type RVLQC-nnPLxY RVLQC-nnHPLxY RVLQB-nnHPLxY

Max. system voltage (Um) [kV rms] 4.37 ~ 48.3 72.5 ~ 242 72.5 ~ 420

Duty-cycle voltage [kV rms] 3 ~ 48 54 ~ 240 42 ~ 360

Classification Station Station Station

Lightning impulse classifying current [kA crest] 10 10 10

High current impulse capability [kA crest] 100 100 100

Pressure relief capability

High current [kA rms] 50 65 65

Low current [A rms] 600 600 600

Energy absdorption capability [kJ/kV_MCOV] 7.4 7.4 13.5

Max. design cantilever load [inch-lbs (Nm)] 7087 (800) 20376 (2300) 26578 (3000)

Designation Type of application

(Blank) Standard

H High mechanical strength

Notes 1) Various surge arresters outside of this range are possible according to the customer’s needs. 2) “nn” in Arrester type denotes duty-cycle voltage. 3) “x” in Arrester type denotes the pollution level which the arrester can be applied.

Fig. 11 Covered range (system voltages)

Notes 1) Surge arresters with larger energy absorption capability are available. 2) The energy absorption capability means the dissipated total energy per two shots of switching surge that the surge arrester can withstand without losing thermal stability.

RV /H PL V YLQB 192

(kV : Max. system voltage)

6 7

Standard type High mechanical strength type

42036230024517014512372.5

Less than72.5

Classification Station Station StationDLR (V10kA / Duty-cycle voltage) 2.45 2.45 2.3

Arrester type RVLQC-nnPLxY RVLQC-nnHPLxY RVLQB-nnHPLxY

Max

. sy

stem

vol

tage

(kV

)

Max. duration (s)

1.8

1.7

1.6

1.5

1.4

1.3

1.2

1.1

0.1 1 10 100 1000

Volta

ge in

per

uni

t M

COV

With prior duty

0.8

0.9

1.0

10000

Without prior duty

RVLQB series

Max. duration (s)

1.8

1.7

1.6

1.5

1.4

1.3

1.2

1.1

0.1 1 10 100 1000

Volta

ge in

per

uni

t M

COV

With prior duty

0.8

0.9

1.0

10000

Without prior duty

RVLQC series

1224レターサイ� 画像調整.indd 6-7 11.1.12 5:11:55 AM

Page 5: Polymer Surge Arresters(ANSI) - sales-toshiba-tds.com · Directly Molded Polymer Surge Arresters ... Station class l ... demand to reduce the environmental impact caused by power

5. Detailed characteristicsStation class : RVLQC-nnPLHY

Catalog numberDuty-cycle

voltage MCOV

Maximum discharge voltages Longdurationcurrent

Max.energy

absorptioncapability

Height Creepagedistance

Gradingring

diameter

Numberof

stackedunits

Max. designcantilever

load

Mass(Approx.) Outline

FigureLightning current imp. 8/20 μs Switching surge currenrt imp. Steep

current imp.1.5 kA 3 kA 5 kA 10 kA 20 kA 40 kA 0.5 kA 1 kA 2 kA 10 kA 2 ms

kVrms kVrms kVp kVp kVp kVp kVp kVp kVp kVp kVp kVp A kJ/kV MCOV in (mm) in (mm) in (mm) inch-lbs (Nm) lbs (kg)

RVLQC-3PLHY 3 2.55 7.70 8.03 8.38 8.86 9.78 11.0 7.11 7.31 7.65 9.89 800 7.4 18.4 (467) 51.2 (1300) N.A. 1 7087 (800) 34 (15)

Fig. 13

RVLQC-6PLHY 6 5.1 12.6 13.2 13.8 14.5 16.0 18.0 11.7 12.0 12.6 16.2 800 7.4 18.4 (467) 51.2 (1300) N.A. 1 7087 (800) 34 (15)

RVLQC-9PLHY 9 7.65 20.3 21.3 22.2 23.4 25.8 29.0 18.9 19.4 20.3 26.1 800 7.4 18.4 (467) 51.2 (1300) N.A. 1 7087 (800) 34 (15)

RVLQC-10PLHY 10 8.4 23.1 24.1 25.2 26.6 29.4 33.0 21.4 22.0 23.0 29.7 800 7.4 18.4 (467) 51.2 (1300) N.A. 1 7087 (800) 34 (15)

RVLQC-12PLHY 12 10.2 25.2 26.4 27.6 29.0 32.0 36.0 23.4 24.0 25.2 32.4 800 7.4 18.4 (467) 51.2 (1300) N.A. 1 7087 (800) 34 (15)

RVLQC-15PLHY 15 12.7 32.9 34.5 36.0 37.9 41.8 47.0 30.6 31.4 32.9 42.3 800 7.4 18.4 (467) 51.2 (1300) N.A. 1 7087 (800) 34 (15)

RVLQC-18PLHY 18 15.3 37.8 39.6 41.4 43.5 48.0 54.0 35.1 36.0 37.8 48.6 800 7.4 18.4 (467) 51.2 (1300) N.A. 1 7087 (800) 34 (15)

RVLQC-21PLHY 21 17.0 45.5 47.7 49.8 52.4 57.8 65.0 42.3 43.4 45.5 58.5 800 7.4 18.4 (467) 51.2 (1300) N.A. 1 7087 (800) 34 (15)

RVLQC-24PLHY 24 19.5 50.4 52.8 55.2 58.0 64.0 72.0 46.8 48.0 50.4 64.8 800 7.4 18.4 (467) 51.2 (1300) N.A. 1 7087 (800) 34 (15)

RVLQC-27PLHY 27 22.0 58.1 60.9 63.6 66.9 73.8 83.0 54.0 55.4 58.1 74.7 800 7.4 18.4 (467) 51.2 (1300) N.A. 1 7087 (800) 34 (15)

RVLQC-30PLHY 30 24.4 63.0 66.0 69.0 72.5 80.0 90.0 58.5 60.0 63.0 81.0 800 7.4 18.4 (467) 51.2 (1300) N.A. 1 7087 (800) 34 (15)

RVLQC-33PLHY 33 26.7 70.7 74.1 77.4 81.4 89.9 101 65.7 67.4 70.7 90.9 800 7.4 18.4 (467) 51.2 (1300) N.A. 1 7087 (800) 34 (15)

RVLQC-36PLHY 36 29.0 75.6 79.2 82.8 87.0 96.0 108 70.2 72.0 75.6 97.2 800 7.4 18.4 (467) 51.2 (1300) N.A. 1 7087 (800) 34 (15)

RVLQC-39PLHY 39 31.5 83.3 87.3 91.2 95.9 106 119 77.4 79.4 83.3 108 800 7.4 32.7 (830) 102.4 (2600) N.A. 2 7087 (800) 47 (21)

Fig. 14RVLQC-42PLHY 42 34.0 88.2 92.4 96.6 102 112 126 81.9 84.0 88.2 114 800 7.4 32.7 (830) 102.4 (2600) N.A. 2 7087 (800) 47 (21)

RVLQC-45PLHY 45 36.5 95.9 101 105 111 122 137 89.1 91.4 95.9 124 800 7.4 32.7 (830) 102.4 (2600) N.A. 2 7087 (800) 47 (21)

RVLQC-48PLHY 48 39.0 101 106 111 116 128 144 93.6 96.0 101 130 800 7.4 32.7 (830) 102.4 (2600) N.A. 2 7087 (800) 47 (21)

Station class : RVLQC-nnHPLHY

Catalog numberDuty-cycle

voltage MCOV

Maximum discharge voltages Longdurationcurrent

Max.energy

absorptioncapability

Height Creepagedistance

Gradingring

diameter

Numberof

stackedunits

Max. designcantilever

load

Mass(Approx.) Outline

FigureLightning current imp. 8/20 μs Switching surge currenrt imp. Steep

current imp.1.5 kA 3 kA 5 kA 10 kA 20 kA 40 kA 0.5 kA 1 kA 2 kA 10 kA 2 ms

kVrms kVrms kVp kVp kVp kVp kVp kVp kVp kVp kVp kVp A kJ/kV MCOV in (mm) in (mm) in (mm) inch-lbs (Nm) lbs (kg)

RVLQC-54HPLHY 54 42.0 114 119 125 131 144 162 106 108 114 146 800 7.4 35.0 (890) 88.6 (2250) N.A. 1 20376 (2300) 67 (30)

Fig. 15

RVLQC-60HPLHY 60 48.0 126 132 138 145 160 180 117 120 126 162 800 7.4 35.0 (890) 88.6 (2250) N.A. 1 20376 (2300) 67 (30)

RVLQC-66HPLHY 66 53.4 139 146 152 160 176 198 129 132 139 179 800 7.4 35.0 (890) 88.6 (2250) N.A. 1 20376 (2300) 67 (30)

RVLQC-69HPLHY 69 55.8 147 154 161 169 186 209 136 140 147 189 800 7.4 35.0 (890) 88.6 (2250) N.A. 1 20376 (2300) 67 (30)

RVLQC-72HPLHY 72 57.0 152 159 166 174 192 216 141 144 152 195 800 7.4 35.0 (890) 88.6 (2250) N.A. 1 20376 (2300) 67 (30)

RVLQC-75HPLHY 75 60.7 159 167 174 183 202 227 148 152 159 205 800 7.4 35.0 (890) 88.6 (2250) N.A. 1 20376 (2300) 67 (30)

RVLQC-84HPLHY 84 68.0 177 185 194 203 224 252 164 168 177 227 800 7.4 42.9 (1090) 118.1 (3000) N.A. 1 20376 (2300) 78 (35)

RVLQC-90HPLHY 90 70.0 189 198 207 218 240 270 176 180 189 243 800 7.4 42.9 (1090) 118.1 (3000) N.A. 1 20376 (2300) 78 (35)

RVLQC-96HPLHY 96 76.0 202 212 221 232 256 288 188 192 202 260 800 7.4 42.9 (1090) 118.1 (3000) N.A. 1 20376 (2300) 78 (35)

RVLQC-102HPLHY 102 82.6 215 225 235 247 272 306 199 204 215 276 800 7.4 42.9 (1090) 118.1 (3000) N.A. 1 20376 (2300) 78 (35)

RVLQC-108HPLHY 108 84.0 227 238 249 261 288 324 211 216 227 292 800 7.4 42.9 (1090) 118.1 (3000) N.A. 1 20376 (2300) 78 (35)

RVLQC-120HPLHY 120 98.0 252 264 276 290 320 360 234 240 252 324 800 7.4 50.8 (1290) 149.6 (3800) N.A. 1 20376 (2300) 89 (40)

RVLQC-126HPLHY 126 102 265 278 290 305 336 378 246 252 265 341 800 7.4 50.8 (1290) 149.6 (3800) N.A. 1 20376 (2300) 89 (40)

RVLQC-132HPLHY 132 106 278 291 304 319 352 396 258 264 278 357 800 7.4 50.8 (1290) 149.6 (3800) N.A. 1 20376 (2300) 89 (40)

RVLQC-138HPLHY 138 111 290 304 318 334 368 414 270 276 290 373 800 7.4 50.8 (1290) 149.6 (3800) N.A. 1 20376 (2300) 89 (40)

RVLQC-144HPLHY 144 115 303 317 332 348 384 432 281 288 303 389 800 7.4 58.7 (1490) 179.1 (4550) N.A. 1 20376 (2300) 100 (45)

RVLQC-150HPLHY 150 121 315 330 345 363 400 450 293 300 315 405 800 7.4 58.7 (1490) 179.1 (4550) N.A. 1 20376 (2300) 100 (45)

RVLQC-168HPLHY 168 131 353 370 387 406 448 504 328 336 353 454 800 7.4 80.5 (2045) 236.2 (6000) 23.6 (600) 2 20376 (2300) 144 (65)

Fig. 16

RVLQC-172HPLHY 172 140 366 383 401 421 464 522 340 348 366 470 800 7.4 80.5 (2045) 236.2 (6000) 23.6 (600) 2 20376 (2300) 144 (65)

RVLQC-174HPLHY 174 140 366 383 401 421 464 522 340 348 366 470 800 7.4 80.5 (2045) 236.2 (6000) 23.6 (600) 2 20376 (2300) 144 (65)

RVLQC-180HPLHY 180 144 378 396 414 435 480 540 351 360 378 486 800 7.4 80.5 (2045) 236.2 (6000) 23.6 (600) 2 20376 (2300) 144 (65)

RVLQC-192HPLHY 192 152 404 423 442 464 512 576 375 384 404 519 800 7.4 80.5 (2045) 236.2 (6000) 23.6 (600) 2 20376 (2300) 144 (65)

RVLQC-196HPLHY 196 158 416 436 456 479 528 594 387 396 416 535 800 7.4 80.5 (2045) 236.2 (6000) 23.6 (600) 2 20376 (2300) 144 (65)

RVLQC-198HPLHY 198 160 416 436 456 479 528 594 387 396 416 535 800 7.4 80.5 (2045) 236.2 (6000) 23.6 (600) 2 20376 (2300) 144 (65)

RVLQC-210HPLHY 210 170 441 462 483 508 560 630 410 420 441 567 800 7.4 80.5 (2045) 236.2 (6000) 23.6 (600) 2 20376 (2300) 144 (65)

RVLQC-216HPLHY 216 174 454 476 497 522 576 648 422 432 454 584 800 7.4 80.5 (2045) 236.2 (6000) 23.6 (600) 2 20376 (2300) 144 (65)

RVLQC-228HPLHY 228 184 479 502 525 551 608 684 445 456 479 616 800 7.4 96.3 (2445) 299.2 (7600) 23.6 (600) 2 20376 (2300) 166 (75)

Notes 1) Surge arresters with other duty-cycle voltages are available according to the customer’s needs. 2) Surge arresters with other specifications are available according to the customer’s needs.

3) The wave shapes of switching surge and steep current impulse are as follows. - Switching surge current impulse: virtual front time greater than 45 µs but less than 60 µs - Steep current impulse: virtual front time of 0.5 µs.

8 9

1224レターサイ� 画像調整.indd 8-9 11.1.12 5:11:56 AM

Page 6: Polymer Surge Arresters(ANSI) - sales-toshiba-tds.com · Directly Molded Polymer Surge Arresters ... Station class l ... demand to reduce the environmental impact caused by power

Station class : RVLQB-nnHPLHY

Catalog numberDuty-cycle

voltage MCOV

Maximum discharge voltage Longdurationcurrent

Max.energy

absorptioncapability

Height Creepagedistance

Gradingring

diameter

Numberof

stackedunits

Max.design

cantileverload

Mass(Approx.) Outline

FigureLightning current 8/20 μs Switching surge currenrt Steep

current imp.

1.5 kA 3 kA 5 kA 10 kA 20 kA 40 kA 0.5 kA 1 kA 2 kA 10 kA 2 mskVrms kVrms kVp kVp kVp kVp kVp kVp kVp kVp kVp kVp A kJ/kV MCOV in (mm) in (mm) in (mm) inch-lbs (Nm) lbs (kg)

RVLQB-54HPLHY 54 42.0 107 113 118 124 137 153 98 101 106 136 1350 13.5 58.3 (1480) 185.0 (4700) N.A. 1 26578 (3000) 144 (65)

Fig. 15

RVLQB-60HPLHY 60 48.0 118 125 130 137 151 169 108 112 117 150 1350 13.5 58.3 (1480) 185.0 (4700) N.A. 1 26578 (3000) 144 (65)

RVLQB-66HPLHY 66 53.4 129 136 142 150 165 185 119 122 128 164 1350 13.5 58.3 (1480) 185.0 (4700) N.A. 1 26578 (3000) 144 (65)

RVLQB-69HPLHY 69 55.8 136 143 150 158 174 195 125 129 135 173 1350 13.5 58.3 (1480) 185.0 (4700) N.A. 1 26578 (3000) 144 (65)

RVLQB-72HPLHY 72 57.0 145 153 159 168 185 207 133 137 143 184 1350 13.5 58.3 (1480) 185.0 (4700) N.A. 1 26578 (3000) 144 (65)

RVLQB-90HPLHY 90 70.0 178 188 196 207 228 255 163 168 176 226 1350 13.5 58.3 (1480) 185.0 (4700) N.A. 1 26578 (3000) 144 (65)

RVLQB-96HPLHY 96 76.0 189 199 208 220 242 270 173 179 187 240 1350 13.5 58.3 (1480) 185.0 (4700) N.A. 1 26578 (3000) 144 (65)

RVLQB-102HPLHY 102 82.6 200 211 220 233 256 286 184 189 198 254 1350 13.5 58.3 (1480) 185.0 (4700) N.A. 1 26578 (3000) 144 (65)

RVLQB-108HPLHY 108 84.0 211 223 232 246 270 302 194 200 209 268 1350 13.5 58.3 (1480) 185.0 (4700) N.A. 1 26578 (3000) 144 (65)

RVLQB-120HPLHY 120 98.0 236 249 259 274 302 337 216 223 234 300 1350 13.5 58.3 (1480) 185.0 (4700) N.A. 1 26578 (3000) 144 (65)

RVLQB-126HPLHY 126 102 256 270 281 297 327 366 234 242 253 325 1350 13.5 58.3 (1480) 185.0 (4700) N.A. 1 26578 (3000) 144 (65)

RVLQB-132HPLHY 132 106 263 277 289 305 336 375 241 248 260 333 1350 13.5 58.3 (1480) 185.0 (4700) N.A. 1 26578 (3000) 144 (65)

RVLQB-138HPLHY 138 111 274 288 301 318 350 391 251 259 271 347 1350 13.5 58.3 (1480) 185.0 (4700) N.A. 1 26578 (3000) 144 (65)

RVLQB-144HPLHY 144 115 285 300 313 331 364 407 261 269 282 362 1350 13.5 58.3 (1480) 185.0 (4700) N.A. 1 26578 (3000) 144 (65)

RVLQB-150HPLHY 150 121 300 316 330 349 384 429 275 284 297 381 1350 13.5 58.3 (1480) 185.0 (4700) N.A. 1 26578 (3000) 144 (65)

RVLQB-168HPLHY 168 131 333 351 366 387 426 477 306 315 330 423 1350 13.5 111.8 (2840) 370.1 (9400) 23.6 (600) 2 26578 (3000) 287 (130)

Fig. 16

RVLQB-172HPLHY 172 140 345 363 379 400 441 493 316 326 341 438 1350 13.5 111.8 (2840) 370.1 (9400) 23.6 (600) 2 26578 (3000) 287 (130)

RVLQB-174HPLHY 174 140 345 363 379 400 441 493 316 326 341 438 1350 13.5 111.8 (2840) 370.1 (9400) 23.6 (600) 2 26578 (3000) 287 (130)

RVLQB-180HPLHY 180 144 356 375 391 413 455 509 326 336 352 452 1350 13.5 111.8 (2840) 370.1 (9400) 23.6 (600) 2 26578 (3000) 287 (130)

RVLQB-186HPLHY 186 150 367 387 403 426 469 525 336 347 363 466 1350 13.5 111.8 (2840) 370.1 (9400) 23.6 (600) 2 26578 (3000) 287 (130)

RVLQB-192HPLHY 192 152 378 398 415 439 483 540 346 357 374 480 1350 13.5 111.8 (2840) 370.1 (9400) 23.6 (600) 2 26578 (3000) 287 (130)

RVLQB-196HPLHY 196 158 389 410 427 452 497 556 356 368 385 494 1350 13.5 111.8 (2840) 370.1 (9400) 23.6 (600) 2 26578 (3000) 287 (130)

RVLQB-198HPLHY 198 160 389 410 427 452 497 556 356 368 385 494 1350 13.5 111.8 (2840) 370.1 (9400) 23.6 (600) 2 26578 (3000) 287 (130)

RVLQB-210HPLHY 210 170 411 433 452 478 526 588 377 389 407 522 1350 13.5 111.8 (2840) 370.1 (9400) 23.6 (600) 2 26578 (3000) 287 (130)

RVLQB-216HPLHY 216 174 429 452 472 499 549 614 393 406 425 545 1350 13.5 111.8 (2840) 370.1 (9400) 23.6 (600) 2 26578 (3000) 287 (130)

RVLQB-228HPLHY 228 180 451 476 496 524 577 645 414 427 447 573 1350 13.5 111.8 (2840) 370.1 (9400) 23.6 (600) 2 26578 (3000) 287 (130)

RVLQB-240HPLHY 240 190 473 499 520 550 606 677 434 448 469 601 1350 13.5 111.8 (2840) 370.1 (9400) 23.6 (600) 2 26578 (3000) 287 (130)

RVLQB-258HPLHY 258 209 511 539 562 594 654 731 468 483 506 649 1350 13.5 111.8 (2840) 370.1 (9400) 23.6 (600) 2 26578 (3000) 287 (130)

RVLQB-264HPLHY 264 212 522 550 574 607 668 747 478 494 517 663 1350 13.5 111.8 (2840) 370.1 (9400) 23.6 (600) 2 26578 (3000) 287 (130)

RVLQB-276HPLHY 276 220 544 574 598 633 696 779 499 515 539 691 1350 13.5 111.8 (2840) 370.1 (9400) 23.6 (600) 2 26578 (3000) 287 (130)

RVLQB-288HPLHY 288 230 567 597 623 658 725 810 519 536 561 720 1350 13.5 111.8 (2840) 370.1 (9400) 23.6 (600) 2 26578 (3000) 287 (130)

RVLQB-294HPLHY 294 235 578 609 635 671 739 826 529 546 572 734 1350 13.5 111.8 (2840) 370.1 (9400) 23.6 (600) 2 26578 (3000) 287 (130)

RVLQB-300HPLHY 300 243 589 621 647 684 753 842 540 557 583 748 1350 13.5 111.8 (2840) 370.1 (9400) 23.6 (600) 2 26578 (3000) 287 (130)

RVLQB-312HPLHY 312 245 611 644 671 710 781 874 560 578 605 776 1350 13.5 111.8 (2840) 370.1 (9400) 23.6 (600) 2 26578 (3000) 287 (130)

RVLQB-330HPLHY 330 267 644 679 708 749 824 922 590 609 638 818 1350 13.5 111.8 (2840) 370.1 (9400) 23.6 (600) 2 26578 (3000) 287 (130)

10 11

Notes1) Surge arresters with other rated voltages are available according to the customer’s needs.2) Surge arresters with other specifications are available according to the customer’s needs.3) The wave shapes of switching surge and steep current impulse are as follows. - Switching surge current impulse: virtual front time greater than 45 µs but less than 60 µs - Steep current impulse: virtual front time of 0.5 µs.

1224レターサイ� 画像調整.indd 10-11 11.1.12 5:11:57 AM

Page 7: Polymer Surge Arresters(ANSI) - sales-toshiba-tds.com · Directly Molded Polymer Surge Arresters ... Station class l ... demand to reduce the environmental impact caused by power

6. Typical Outline drawings

Fig. 13 Fig. 14

Standard type (RVLQC-nnPLHY)

12 13

High mechanical strength type(RVLQC-nnHPLHY, RVLQB-nnHPLHY)

Fig. 15 Fig. 16

Fig. 17 Mounting base of RVLQC series

Fig. 18 Grounding terminal of RVLQC series (Optional parts)

RVLQC-nnPLxY (Standard type) RVLQC-nnHPLxY (High mechanical strength type)

Note: Other types of line terminal and grounding terminal are available according to the customer’s needs.

Dimension : inch (mm)

1224レターサイ� 画像調整.indd 12-13 11.1.12 5:12:00 AM

Page 8: Polymer Surge Arresters(ANSI) - sales-toshiba-tds.com · Directly Molded Polymer Surge Arresters ... Station class l ... demand to reduce the environmental impact caused by power

14 15

Memo

Fig. 21 Line terminal for RVLQC and RVLQB series

Fig. 19 Mounting base of RVLQB series Fig. 20 Grounding terminal of RVLQB series(Optional parts)

1224レターサイ� 画像調整.indd 14-15 11.1.12 5:12:02 AM

Page 9: Polymer Surge Arresters(ANSI) - sales-toshiba-tds.com · Directly Molded Polymer Surge Arresters ... Station class l ... demand to reduce the environmental impact caused by power

http://www.toshiba-arrester.com 5613-2 1101G1

The data in this catalog is subject to change without notice. (AH-G2576-09P)Published by and copyright © 2010, TOSHIBA Corp.

INDUSTRIAL DIVISIONTRANSMISSION & DISTRIBUTION DIVISION13131 West Little York Road, Houston, Texas 77041, USAPhone: (800)231-1412 or 713-466-0277Fax: 713-896-5242Website: www.toshiba.com/indE-mail: [email protected]

TOSHIBA INTERNATIONAL CORPORATION

TOSHIBA CORPORATION

1224レターサイ� 画像調整.indd 16 11.1.12 5:12:02 AM

Social Infrastructure SYSTEMS COMPANY 72-34, Horikawa-cho, Saiwai-Ku, Kawasaki 212-8585, Japan Phone: +81-44-331-1473 Fax: +81-44-548-9541 Website: www.toshiba-arrester.com