plc.pdf

100
7 BAB 2 LANDASAN TEORI 2.1 Sejarah Teknologi PLC PLC pertama kali digunakan sekitar pada tahun 1960 an untuk menggantikan peralatan konvensional yang begitu banyak, PLC disusun dan dipakai pertama kali oleh sebuah perusahaan mesin-mesin terkenal sampai sekarang yang bernama General Motor pada tahun 1968. [4] Sebagian besar sistem kontrol pada proses industri masih menggunakan rangkaian relay, rangkaian relay ini dapat membentuk fungsi-fungsi logika tertentu yang sesuai yang sesuai dengan yang diinginkan . 2.2 Latar Belakang Pemakaian PLC Pada proses sekuensial sederhana yang hanya memerlukan sedikit komponen relay (kurang dari 10 buah), sistem kontrol relay tersebut tidak banyak menimbulkan masalah, tetapi untuk proses yang lebih rumit dan memerlukan banyak sekali komponen relay akan menyebabkan munculnya berbagai masalah, kerusakan sebuah relay saja dapat menyebabkan proses berjalan tidak sesuai dengan yang dikehendaki atau proses akan berhenti. Kemajuan teknologi yang berkembang pesat dewasa ini, mengakibatkan industri sebagai produsen atau penghasil barang menggunakan cara-cara otomatisasi untuk meningkatkan jumlah hasil produksi yang banyak secara efektif dan efesien, salah satu peralatan kontrol otomatis yang saat ini paling banyak di gunakan di industri-industri adalah PLC (Programmable Logic Controller).

Upload: anari-fredcos

Post on 06-Nov-2015

34 views

Category:

Documents


1 download

TRANSCRIPT

  • 7

    BAB 2

    LANDASAN TEORI

    2.1 Sejarah Teknologi PLC

    PLC pertama kali digunakan sekitar pada tahun 1960 an untuk menggantikan

    peralatan konvensional yang begitu banyak, PLC disusun dan dipakai pertama kali oleh

    sebuah perusahaan mesin-mesin terkenal sampai sekarang yang bernama General Motor

    pada tahun 1968. [4]

    Sebagian besar sistem kontrol pada proses industri masih menggunakan

    rangkaian relay, rangkaian relay ini dapat membentuk fungsi-fungsi logika tertentu yang

    sesuai yang sesuai dengan yang diinginkan .

    2.2 Latar Belakang Pemakaian PLC

    Pada proses sekuensial sederhana yang hanya memerlukan sedikit komponen

    relay (kurang dari 10 buah), sistem kontrol relay tersebut tidak banyak menimbulkan

    masalah, tetapi untuk proses yang lebih rumit dan memerlukan banyak sekali komponen

    relay akan menyebabkan munculnya berbagai masalah, kerusakan sebuah relay saja

    dapat menyebabkan proses berjalan tidak sesuai dengan yang dikehendaki atau proses

    akan berhenti.

    Kemajuan teknologi yang berkembang pesat dewasa ini, mengakibatkan industri

    sebagai produsen atau penghasil barang menggunakan cara-cara otomatisasi untuk

    meningkatkan jumlah hasil produksi yang banyak secara efektif dan efesien, salah satu

    peralatan kontrol otomatis yang saat ini paling banyak di gunakan di industri-industri

    adalah PLC (Programmable Logic Controller).

  • 8

    Dimana PLC mudah diprogram berulang-ulang dan dapat langsung

    diaplikasikan, mudah dalam perawatan dan perbaikannya, lebih bisa diandalkan dalam

    lingkungan pabrik, jauh lebih kecil dan efesien daripada rangkaian relay biasa, harga

    lebih murah dari pada rangkaian konvensional dan harganya bersaing. PLC dapat

    digunakan dalam suatu sistem yang kompleks dan cukup mudah dimengerti

    PLC lebih banyak digunakan dan lebih cepat berkembang di dalam industri.

    Kelebihannya yaitu kemudahan dalam pemrograman ulang dan tanpa melakukan

    perubahan rangkaian fisiknya, PLC juga mudah digunakan atau user-friendly sehingga

    mudah digunakan meskipun bagi seorang yang tidak memiliki keterampilan dalam

    mengoperasikan komputer.

    PLC dapat melakukan manipulasi jaringan rangkaian Logika yaitu dengan

    mendesain, memprogram, mengontrol dan mengoperasikan dalam suatu sistem yang

    komplek. PLC cukup mudah dimengerti, sehingga banyak sekali dipakai dalam industri

    seperti pabrik-pabrik manifaktur yang membutuhkan penanganan atas sistem mesin-

    mesin pabrik yang kompleks.

    2.2.1 Kelebihan dan Kekurangan PLC;

    Beberapa kelebihan yang dimiliki oleh PLC dibanding dengan kontrol relay

    konvensional,yaitu:

    1. Fleksibilitas.

    Sebelum ditemukan PLC, setiap mesin produksi yang dikontrol dengan alat

    elektronik yang berbeda, dibutuhkan pengontrolnya masing-masing sendiri; untuk 15

    mesin mungkin memerlukan 15 pengontrol berbeda. Tapi sekarang kemungkinan

    untuk hanya menggunakan satu model dari PLC saja dapat menjalankan seluruh

  • 9

    mesin. Lagi pula, hanya memerlukan pengontrol yang sedikit, karena satu PLC dapat

    menjalankan banyak mesin dengan mudah. Setiap mesin yang dikontrol PLC harus

    memiliki program tersendiri yang jelas.

    2. Dapat melakukan perubahan implementasi dan perbaikan kesalahan.

    jika terdapat error program yang harus dikoreksi di dalam statement list PLC control,

    dapat diubah dengan cepat.

    3. Biaya yang murah.

    Sekarang dengan membeli sebuah satu PLC yang memiliki banyak relay, timer,

    counter, sequencer dan fungsi lainnya bisa menganti seluruh alat control atau

    pengendali, dan sekarang PLC dalam bentuk yang kecil dan murah.

    4. Pemrograman ulang yang mudah dan cepat.

    5. Pengendalian secara visual.

    Sebuah operasi circuit PLC dapat dilihat selama operasinya pada layar CRT.

    6. PLC bagus sekali dalam pengendalian masukan dan keluaran.

    7. Program PLC beroperasi dengan kecepatan yang tinggi.

    8. kualitasnya bagus, Handal dan mudah dirawat.

    9. Dokumentasi yang mudah, dan menyeluruh atas program-program yang telah dibuat,

    hasil pemrogaman PLC dapat dicetak dengan mudah hanya dalam beberapa menit

    saja.

    10. Keamanan yang terjamin

    11. Program baru dapat digabungkan dengan program lama dengan mudah dan tidak

    merusak.

    12. Teknologinya tergolong masih baru.

  • 10

    13. Tahan terhadap gangguan.

    14. Operasi yang dilakukan berdasarkan logika jaringan secara elektrik sehingga dapat

    mengurangi resiko perilaku fisik.

    15. Operasi yang telah terprogram tidak berubah dan stabil.

    16. Operasi yang dapat dilakukan tidak memiliki perubahan banyak karena keterbatasan

    program dan fungsi.

    17. Semakin kompleks sistemnya maka ukuran kontrolernya akan makin besar.

    18. Penggunaannya pada kondisi tertentu cukup terbatas.

    19. Masih terikat dengan kemampuan prosessor pada komputer PC.

    20. Hanya dapat mengenali lingkungan yang bisa dimengerti oleh sistem PLC.

    21. Egronomis

    Sebuah sirkuit program PLC dapat diteliti atau dievaluasi di kantor ataupun lab.

    Program dapat dicetak di dalamnya, ditest, diobservasi, dan dimodifikasi jika

    diperlukan, sehingga dapat menghemat waktu kerja. Pada kenyataannya, sistem PLC

    mendapatkan hasil terbaik di pabrik, dan dapat dipakai kapan saja.

    22. Inovasi yang luar biasa.

    Beberapa kekurangan yang dimiliki oleh PLC dibanding dengan kontrol relay

    konvensional,yaitu:

    1. Memiliki jumlah yang besar atas hubungan-hubungan jaringan.

    2. PLC bisa rusak pada keadaan lingkungan panas yang tinggi, vibrasi yang tinggi

    membuat penggunaannya kurang cocok, karena dapat merusak PLC.

    3. Membuat banyak orang kehilangan pekerjaannya, karena PLC membutuhkan

    sedikit orang untuk mengerjakannya.

  • 11

    2.2.2 Pengertian PLC

    PLC merupakan suatu alat pengontrol sistem secara logika berbasiskan komputer

    PC yang menjalankan intruksi-intruksi logika yang dapat melakukan kontrol terhadap

    rangkaian-rangkaian logika dari input, proses, yang kemudian outputnya dapat

    melakukan suatu tujuan tertentu pada aplikasi yang bersifat fisikal yang dapat diatur

    oleh suatu program dengan efesien, cepat dan handal.

    PLC (programmable logic controller) yaitu kendali logika terprogram

    merupakan suatu sistem atau piranti elektronik yang di rancang untuk dapat beroperasi

    secara digital dengan menggunakan memori sebagai media penyimpanan instruksi-

    instruksi internal untuk menjalankan fungsi-fungsi logika, seperti fungsi pencacah,

    fungsi urutan proses(sekuensial), fungsi pewaktu, fungsi arimatika dan fungsi lainnya

    dengan cara memprogramnya untuk mengontrol berbagai macam mesin, mengendalikan

    sistem lampu dan memproses modul masukan atau keluaran baik digital maupun analog.

    Program-program yang dibuat kemudian dimasukkan dalam PLC melalui programmer

    atau monitor, pembuatan program dapat menggunakan komputer sehingga dapat

    mempercepat hasil pekerjaan.

    PLC dapat beroperasi pada sistem yang memiliki output atau input yang bisa

    menghasilkan on atau off (Digital). Inputnya biasanya berasal dari sensor atau saklar

    atau tombol yang menghasilkan input digital, sedangkan outputnya yang berupa motor,

    buzzer dan kipas angin, juga biasanya berdasarkan hasil on ataupun off saja.

  • 12

    2.2.3 Teori Dasar PLC

    PLC merupakan sebuah komputer kecil yang di desain sebagai otomatisasi

    kontrol, Berbeda dengan komputer pada umumnya yang biasa digunakan, dalam sistem

    komputer biasa dikenal dengan komputer pemroses data, dimana komputer hanya

    sebagai pemroses data yang biasa pakai untuk menulis, memrogram, main games,

    menggambar desain grafis dalam komputer dan lain lain, dimana banyak orang

    menyebut komputer biasa sebagai mesin pemroses data, dimana alat masukannya berupa

    keyboard dan mouse, dan alat keluarannya Video Display Terminal (monitor) dan

    printer, berbeda halnya dengan PLC dimana banyak orang menyebutnya dengan

    komputer pemroses kontrol, tapi tentunya dalam PLC juga memroses data, itu juga

    merupakan fungsi awal untuk pengontrolan pabrik dan proses industri seperti mesin-

    mesin, robot dan lain lain. [11]

    Dimana dalam skripsi ini input pengontrolnya berupa switches dan sensors dan

    output pengontrolnya berupa motor, lampu, buzzer, dan lain lain.

    Untuk aplikasi dipabrik alat PLC skripsi ini bisa digunalan sebagai berikut;

    1. Sistem kontrol untuk sebuah mesin bor otomatis.

    2. Sistem kontrol untuk sebuah sistem pengemasan kotak.

    3. Sistem kontrol untuk pembuka pintu garasi otomatis.

    4. Sistem kontrol untuk pembuka pintu pagar otomatis.

    5. Sistem kontrol untuk sistem keamanan, mis: pendeteksi asap.

    6. Sistem kontrol untuk pengatur lampu rumah.

    7. sistem kontrol untuk pengendali parkir otomatis.

    8. dll.

  • 13

    2.3 Perbedaan PLC dengan komputer

    Dimana bisa dilihat perbedaan antara PLC (Process control computer system)

    dengan sistem komputer proses data (Data processing computer system) pada diagram

    blok di gambar.2.1. sebagai berikut;

    Gambar 2.1. Data Processing dan Process Control Computer

  • 14

    2.4 Sistem PLC

    Dalam suatu sistem PLC ini yang seperti pada gambar.2.2. terdapat 4 (empat)

    komponen bagian utama, keempat komponen itu yaitu;

    1. Central Control Unit (CCU) atau Central Prosesing Unit (CPU), merupakan otak

    dari PLC.

    2. Memori.

    3. Programmer atau Monitor.

    4. Input atau output modul

    Dimana blok diagram rancangan sistem PLC sebagai berikut;

    Gambar 2.2. Diagram keseluruhan sistem PLC

    Programmer atau monitor

    CCU Modul masukan

    Modul keluaran

  • 15

    Dari gambar 2.2 diatas cara kerja singkatnya sebagai berikut:

    dimana pada masukan dan keluaran di kontrol dan di proses melalui CPU atau CCU,

    sinyal masukan ke CCU yang sebelumnya uda di program melalui programmer monitor,

    kemudian CCU memberikan suatu sinyal informasi pada keluaran, hasil kerja tersebut

    bisa di simpan dalam komputer.

    Dimana CCU, programer atau monitor, dan modul I/O, penjelasannya secara

    detail sebagai berikut;

    CCU (Central Control unit atau pusat unit pengontrolan)

    Sesuai dengan namanya unit CCU merupakan alat yang di gunakan sebagai pusat

    pemrosesan semua intruksi-intruksi atau perintah-perintah yang di berikan ke PLC.

    Piranti keras dan otaknya PLC berupa CCU (Central Control unit), CCU terdiri

    dari 4 bagian yaitu;

    a. IC AT89S52 merupakan otak dari CCU yang menjadi pusat pengontrolan yang di

    fungsikan untuk operasi pengontrolan dan operasi logika.

    b. Memori, pada IC AT 89S52 terdapat memori yang merupakan daerah CCU yang di

    gunakan untuk melakukan proses penyimpanan dan pengiriman data pada PLC.

    Yang dimana memori ROM dan RAM uda menjadi satu dalam IC CCU pada

    IC AT 89S52

    c. Optocoupler, menerima sinyal masukan dari modul input.

    d. Relay, berfungsi sebagai on/off pada modul output.

  • 16

    Blok diagram CCU PLC dapat dilihat pada gambar 2.3 di bawah ini;

    Gambar 2.3 Blok Diagram CCU

    Catu daya berfungsi untuk memberikan sumber tegangan pada CCU dengan cara

    mengubah sumber masukan tegangan bolak-balik menjadi tegangan searah, kebanyakan

    PLC beroperasi pada tegangan searah +5 volt, oleh sebab itu catu daya PLC harus

    membuat rangkaian untuk mengubah 220 VAC menjadi +5 V DC.

    banyak perusahaan PLC membekali PLC dengan baterai cadangan yang membuat sistem

    operasi dalam CCU selalu ada sekalipun dalam catu daya yang gagal.

    Pada unit ini penyusun utama dari rangkaian-rangkaian elektronik yang rumit

    dan kompleks, saat suatu perintah diberikan ke unit ini, maka perintah itu akan diterima,

    diterjemahkan, kemudian dipecahkan dalam kode-kodenya, kemudian kode-kode di

    teruskan ke unit-unit lain sebagai perintah untuk melaksanakan tugas yang di

    terimannya.

    CCU

    Mcs 52

    Catu daya

    Relay optocoupler

  • 17

    2.4.1 Cara kerja sistem PLC

    dimana sistem kerja PLC dengan CCU di gambarkan dalam gambar diagram 2.5 sebagai

    berikut ;

    Gambar 2.4. Sistem kerja diagram blok PLC.

  • 18

    Keterangan cara kerjanya sebagai berikut ;

    Bisa dilihat bagian atas pada gambar 2.4 pada diagram sistem CCU; dimana memori ROM dengan sistem operasi yang tetap (tidak bisa di ubah-ubah) dan

    pasti berhadapan atau berhubungan langsung dengan bagian kontrol (control section),

    program sistem operasi disini menyusun dan mengatur setiap operasi dari PLC.

    Apapun permintaan dan perintah dari logic scan program (user) kepada PLC untuk

    melakukan sesuatu, program sistem operasi tetap yang mengurus semua pekerjaan atau

    tugas-tugas dalam PLC.

    Pada bagian kontrol (control section), yang merupakan jantung dari CCU, terdiri dari; control unit dengan clock, sebuah arithmetic logic unit (ALU), dan beberapa bagian

    dalam (internal) penyimpanan register sementara.

    Bagian kontrol yang menentukan bagian operasi yang mana yang di fungsikan, untuk

    tugas apa dan untuk berapa lama.

    Kemudian pada bagian input scan block mengscan input dan kedudukan atau keadaan status input secara individual dari input module kedalam memori ROM, setelah

    menganalisa input, logic scan (user ladder logic program) meng updates tugas atau status

    atau keadaan baru pada ouput module melalui output scan blok secara tepat., maka

    keadaan output setelah di scan dan di update, keadaan dan statusnya bisa berubah atau

    juga bisa tetap tergantung analisis dari logic scan (tergantung program yang diberikan

    oleh user dalam ladder diagram).

    Status tugas yang diberikan pada output module tergantung sinyal output dari CPU.

    Keyboard mengambil aksi berdasarkan operasi yang diberikan

    Bagian interfacing merupakan pilihan,dimana bisa berkomunikasi dengan PLC lain.

  • 19

    2.4.2 Penyusunan sistem PLC

    Dimana susunan sistem PLC bisa dilihat pada gambar 2.5. blok diagram berikut;

    Gambar 2.5. Susunan Sistem PLC

    2.4.2.1 Mikrokontroler

    Semua Mikrokontroler di rancang untuk mengerjakan soal-soal kontrol dan

    melakukan operasi logika.

    Ilmuan-ilmuan elektronik Atmel mengerjakan hal itu semua kedalam satu chip

    yang bisa digunakan untuk mengendalikan alatalat elektronik yang bisa dinamakan IC

    mikrokontroler, Unit pusat pemrosesan ada pada IC AT89S52 sebagai IC

    mikrokontroler, yang dipakai pada skripsi PLC, dimana mikrokontroler ini mempunyai

  • 20

    karakter yang unik dan bisa di program dalam memori internal tetap untuk mengerjakan

    satu set instruksi, yang disusun dalam satu program.

    Keberadaan suatu chip microprocessor atau microcontroller dipengaruhi unjuk

    kerjanya pada kapasitas pemrosesan bit-nya dan juga oleh kecepatan atau clock

    frekuensi kerjanya.

    Dalam jenis microprocessor atau microcontroller mempunyai beberapa besaran bit yaitu;

    4,8,16,32-Bit, semakin besar bitnya semakin bagus dalam performance maupun

    pemrosesannya.

    Suatu mikroprosesor dengan kapasitas pemrosesan 8 bit, maka dapat diandaikan

    bahwa mikroprosesor tersebut mempunyai 8 jalur pintu masukan sebagai penerima

    menerima bit-bit intruksi, dengan demikian mikroprosesor dengan kapasitas pemrosesan

    16 bit dan 32 bit tentunya mikroprosesor ini akan mempunyai 16 dan 32 jalur pintu

    cepat, demikian juga mikro prosesor dengan 32 bit akan dapat memproses 16 bit dengan

    dengan 2 kali lebih cepat, begitu seterusnya, tetapi dalam praktek biasanya tidak dapat

    tepat 2 kali atau 4 kali, sebab masih ada faktor-faktor lain yang juga mempengaruhi, di

    antaranya adalah frekuensi kerja mikro prosesor tersebut.

    Biasanya PLC besar memakai mikro prosesor 32 bit dengan clock speed 33 Mhz sampai

    50 Mhz dan beberapa PLC yang kecil sudah bagus dengan memakai microprocessor 8

    bit dengan clock speed 4 Mhz, tetapi sekarang kebanyakan PLC yang kecil sudah

    memakai microprocessor 16 bit dengan clock speed 10 Mhz,

    Dan dalam pembuatan skripsi PLC ini memakai mikro kontroler IC AT 89S52 dgn

    besaran 8 bit.

    MCS IC AT 89S52 mengatur dan mengawasi semua operasi dalam PLC, dengan

    melaksanakan instruksi-instruksi program yang di simpan dalam memori, kemudian di

  • 21

    jalankan untuk membuat output device dalam keadaan OFF atau dalam keadaan ON.

    Dalam IC AT 89S52 sebuah jalur komunikasi dalam, atau sistem bus, membawa

    informasi ke atau dari prosesor, memori dan unit masukan atau keluaran, dibawah

    pengaturan dari CCU.

    Mikrokontroler merupakan otak dari PLC dimana tugasnya menganalisa,

    memproses dan mengirim data.

    2.4.2.2 Memori

    Ukuran CCU sangat penting, sesuai dengan internal memori yang diperlukan

    untuk menjalankan program, pengendalian untuk pengoperasian kecil hanya

    memerlukan unit PLC yang mempunyai memori yang terbatas, sedangkan untuk

    pengoperasian yang besar tentu saja di butuhkan PLC yang mempunyai kemampuan

    penyimpanan memori yang lebih besar dan juga memiliki fungsi yang lebih besar.

    Sistem operasi dasar seperti ; logic, Edit, monitor, communicate di simpan secara

    permanen dalam ROM (Read only Memory/memori hanya baca), disebut memori hanya

    baca karena chip ini di rancang sehingga byte-byte yang tersimpan tidak bisa di uba-

    ubah dengan cara apapun Cuma bisa di baca tidak bisa di tulis atau di hapus, kegunaan

    utama ROM dalam sistem CCU adalah untuk menyediakan suatu program yang di sebut

    monitor dan operasi logic, program yang sudah di taruh dalam sebuah ROM akan tetap

    bertahan ketika tidak ada lagi catu daya yang diberikan.

    Di dalam sebuah ROM terdapat sistem operasi yang tetap dan pasti, program monitor

    atau pembangkit karakter merupakan bagian penting dan banyak di pakai dalam

    perancangan PLC, perlu di buat pola programnya, tetapi untuk pemakaian dan

    pembuatan program perlu di simpan dalam memori yang dapat di ubah-ubah dan di

    hapus yang di sebut random access memory (RAM), yang di gunakan sebagai memori

  • 22

    baca atau tulis dimana untuk penyimpan sementara status dari fungsi dalam yaitu;

    pewaktu, pencacah, relay penanda (marker relay) serta diagram ladder, numerics dan I/O

    masukannya hilang maka program juga akan hilang, oleh karena itu sebuah RAM

    membutuhkan baterai cadangan atau battery back up supaya programnya tidak hilang

    sewaktu masih di butuhkan.

    Di skripsi ini program monitor dan fungsi semua disimpan dalam memori ROM.

    selain ROM dan RAM ada beberapa memori yang sering di gunakan pada beberapa

    CPU PLC, antara lain: PROM, EPROM, EEPROM, dan NOVRAM.

    Ket sebagai berikut;

    A. Programmable read-only memory (PROM) pada dasarnya sama dengan ROM, hanya

    pada PROM dapat di program oleh programmer, tapi hanya untuk satu kali.

    B. Erasable programmable read-only memory (EPROM) adalah PROM yang dapat di

    hapus dengan menyinari dengan sinar ultraviolet (UV) pada jendela IC untuk beberapa

    menit, memori ini sering juga di sebut UVROM, sewaktu disinari dengan ultra violet,

    bit-bit dalam IC memori di reset menjadi 0, dalam EPROM ada beberapa kekurangan

    yaitu; pertama Cuma bisa di hapus beberapa kali, kedua sewaktu EPROM dihapus

    dengan sinar UV, semua lokasi dalam IC memori terhapus walaupun yang ingin di

    hapus atau diubah beberapa lokasi saja.

    C. Electrically erasable programmable read-only memory (EEPROM) agak sama dengan

    EPROM tetapi mempunyai kelebihan jika di bandingkan dengan EPROM, karena

    EEPROM dengan sangat cepat dan mudah dapat direset dan di hapus, dalam EEPROM

    menghapus isi memorinya dengan menggunakan sinyal elektrik

    D. Non Volatile Random Access Memory (NOVRAM) ini merupakan memori

    kombinasi antara EEPROM dan RAM, ketika catu dayanya berkurang maka memori

  • 23

    pada RAM dapat di simpan pada EEPROM sebelum hilang dan dapat di baca pada

    RAM lagi setelah catu dayanya tersedia kembali normal. Non Volatile Random Access

    Memory (NOVRAM) merupakan jenis memori yang sering di gunakan pada CPU PLC.

    Dalam sebuah memori Volatile ataupun NonVolatile di golongkan menurut besaran bit.

    Besaran 1 bit bisa 0 (low voltage) ataupun 1 (high voltage) yang merupakan isi dari

    setiap bit atau cell, cell di atur dan di susun dalam suatu tempat yang terdiri kotak-kotak

    bit, biasanya mempunyai lebar 8 bit dan 16 bit, dimana yang besarnya 8 bit disebut

    dengan byte dan yang besarnya 16 bit disebut dengan word.

    PLC pada umumnya mempunyai kapasitas memori ROM dari 2 sampai 8 Kilo Byte,

    semakin banyak proses intruksi dan pengontrolan input-output semakin banyak

    memerlukan kapasitas memori dalam sebuah PLC.

    Dalam proses menjalankan pengontrolan dari sebuah input menggerakkan sebuah

    output, besarnya kapasitas memori yang dibutuhkan tergantung pada jumlah input dan

    jumlah output dan banyaknya proses dalam diagram pengontrolan

    Dalam penempatan isi memori menurut tugasnya dibagi dalam 2 kategori, yaitu: user

    memory (memori yang digunakan user dalam membuat program, mis : ladder diagram)

    dan storage memory (memori penyimpanan, mis: I/O status, timer status, numerical data,

    timer status, counter status, dan lain lain).

    Besarnya kapasitas user memori dalam menempati sebuah memori biasanya 75 % keatas

    dari total kapasitas memori yang biasanya digunakan user untuk memprogram ladder

    diagram.

    Tetapi dalam skripsi ini digabung menjadi satu memori pada ROM.

    2.4.2.3 Program atau monitor

    Program atau Monitor: Media-media tempat dimana program dimasukan.

  • 24

    Program atau monitor merupakan suatu alat yang di gunakan untuk berkomunikasi

    dengan PLC, dengan menggunakan programatau monitor ini dapat di buat program yang

    kemudian dimasukkan ke dalam PLC dan juga dapat memonitor proses yang di lakukan

    oleh PLC, programmer atau monitor mempunyai beberapa fungsi yaitu:

    1. Off, difungsikan untuk mematikan PLC sehingga program yang di buat tidak

    dapat di jalankan.

    2. Run, di fungsikan untuk pengendalian suatu proses pada saat program dalam

    kondisi di aktifkan .

    3. Monitor untuk mengetahui keadaan suatu proses yang terjadi pada PLC.

    4. Program yang menyatakan suatu keadaan dimana programmer atau monitor

    dapat di gunakan untuk membuat program.

    (dalam skripsi dibuat program yang langsung menggerakan instrument)

    2.4.2.4 I/O MODUL (INTERFACES)

    I/O Modules: Tempat dimana seluruh sistem menerima dan mengirim informasi

    (antarmuka atau interface).

    2.4.2.4.1 Modul Input

    Terminal masukan menerima sinyal dari kabel yang di hubungkan dengan

    masukan sensor dan transduser, sedangkan keluaran menyediakan tegangan keluaran

    untuk actuator atau indicator alat.

    Beberapa tipe modul masukan dan keluaran antara lain 4,8,12 atau 16 module, dan lain

    lain. Dan yang dipakai pada skripsi memiliki 8 masukan dan 8 keluaran.

  • 25

    Dalam modul masukan (input module) mempunyai 4 tugas secara elektronika;

    Pertama: merasakan kehadiran dari setiap sinyal input dalam terminal input, sinyal input

    memberitahu switch dan sensor apa dan yang mana yang digunakan, atau sinyal lain

    dalam keadaan off atau on di dalam proses pengontrolan.

    Kedua : mengubah sinyal input yang dalam keadaan high atau on pada Optocoupler atau

    optoisolator kedalam bentuk ground yang dapat digunakan pada IC AT 89S52, jika tidak

    ada sinyal input yang di ubahkan maka di indikasikan sebagai off.

    Ketiga : modul input membuat isolator elektronik yang mengisolasi module input setelah

    converter dan sebelum output logic secara elektronik, yang berguna untuk melindungi

    IC AT 89S52 dari lonjakan tegangan input.

    Keempat : sirkuit elektronika module input membuat sinyal output yang bisa dirasa dan

    dimengerti CCU dari PLC.

    Dimana gambar layout dari module input bisa dilihat sebagai berikut;

    Gambar 2.6. PLC Input Module layout

    Gambar 2.6. menggambarkan sirkuit untuk satu terminal, semua terminal

    menggambarkan sirkuit module yang serupa (identical).

  • 26

    pertama menerima sinyal input dari switch, sensor, dan lain lain.

    Untuk tegangan input AC, dalam converter diubah menjadi tegangan DC yang bisa

    (converter) yang di hubungkan dengan semua input, keluaran dari converter tidak

    langsung terhubung dengan CCU karena jika terhubung langsung akan terjadi sentakan

    tegangan input dan bisa membuat CCU tidak berfungsi, misalkan dalam converter

    menerima tegangan AC 20 volt yang diberikan input kepada CCU, oleh karena CCU

    hanya bekerja pada tegangan DC 5 volt, maka CCU bisa mengalami kerusakan fatal, di

    situlah optoisolator atau optocoupler sebagai isolator elektronik melindungi CCU dari

    kerusakan tersebut.

    Sinyal on off dari keluaran converter dibawa berupa sinar dengan sebuah LED

    (Light Emitting Diode) dalam satu arah di dalam optoisolator, sentakan tegangan tidak

    akan melewati optoisolator dalam arah yang sama.

    Sewaktu ada sinyal input, optoisolator mengirim sinyal ke CCU melalui blok output

    logic, ketika sinyal yang diterima block output logic dalam keadaan on maka diubah

    menjadi kode sinyal berupa 0 yang diterima oleh CCU kalau dalam off maka diubah

    menjadi kode sinyal berupa 1 yang diterima oleh CCU, yang dijadikan modul yang

    terdiri sederetan angka secara paralel, dimana modul kode angka-angka dalam setiap

    terminal bisa disusun secara bersamaan, dalam setiap kode sinyal menggambarkan status

    on off yang kemudian di scan oleh blok scan input dan ditempatkan kedalam memori

    ROM seperti yang diberitahu sebelumnya.

    2.4.2.4.2 Modul output

    Dimana gambar layout dari module output bisa dilihat pada gambar 2.7. sebagai

    berikut;

  • 27

    Gambar 2.7. PLC Output Module layout

    Sinyal CCU yang diterima dari output logic pada input modul, setiap kode

    sinyalnya discan pada input scan blok dan kemudian ditaruh pada memori dan jika kode-

    kode sinyal CCU cocok dengan tanda kode angka dari modul input yang sesuai dengan

    program laddernya maka modul output dalam keadaan on atau aktif.

    Pengenalan kode angka-angka sinyal pada modul output sudah di tentukan, jika kode

    sinyal CCU tidak cocok yang diterima dengan tanda kode sinyal blok output scan yang

    berupa relay maka terminal modul output tidak bekerja atau dalam keadaan off.

    Kemudian jika sinyal CCU cocok dengan tanda kode dari scan modul input, maka

    diteruskan dan di terima oleh modul output dan diteruskan pada blok IC motor yang

    menggerakan relay pada modul output, kemudian sinyal yang dari relay output tersebut

    yang menentukan sebuah output atau transducer dalam keadaaan ON atau OFF.

    2.4.2.5 Besaran Tegangan I/O

    Hal yang penting dalam modul masukan atau keluaran adalah tegangan modul dan nilai

    arus, modul masukan bernilai 3 sampai 12 volt dc dan tidak di perbolehkan bekerja

    selain pada tegangan tersebut, tegangan ini akan membuat kerusakan PLC.

  • 28

    PLC bekerja pada tegangan antara 6 sampai 12 volt, modul masukan atau

    keluaran membentuk interface antara mikro elektronik dari PLC dengan alat-alat

    masukan dan alat-alat keluaran.

    2.4.2.6 Jenis-jenis I/O

    Dimana jenis dan keterangan modul input dan modul output sebagai berikut;

    1. Modul Input (Sensor)

    Berfungsi untuk mengubah besaran fisis menjadi besaran elektris yang kemudian

    diproses pada AT89S52 yang merupakan sinyal masukan yang akan di proses oleh

    ALU.

    Modul Input atau Sensor ini dapat berupa :

    A. Saklar (switch)

    saklar merupakan saklar biasa yang telah diketahui di mana sensor ini dapat

    mendeteksi adanya penekanan. Sensor Saklar merupakan sensor yang sederhana

    Terdapat dua keadaan awal yaitu Normaly Open (NO) di mana saklar pada keadaan

    awal adalah hubung buka (non aktif) jika ditekan baru terhubung singkat (aktif) dan

    Normaly Close (NC) di mana saklar pada keadaan awal adalah hubung tutup atau

    hubung singkat (aktif) bila ditekan maka hubungannya terputus (non aktif).

  • 29

    a. Normaly Open b. Normaly Close

    Gambar 2.8. Saklar

    B. Limit Switch

    Limit Switch dapat mendeteksi ada atau tidaknya sesuatu (benda), serta dapat mengecek

    sesuatu(benda) yang ditangkap sesuai dengan batas-batas yang sudah ditetapkan

    limit Switch mendeteksi keberadaan suatu benda berdasarkan sifatnya, misalnya berupa

    logam, benda gelap atau terang, dan sebagainya.

    C. Sensor

    Ada dua macam sensor yang dapat dipergunakan :

    I. Sensor Proximity

    Sensor yang dapat mendeteksi perubahan lingkungan pada sensor tanpa

    melakukan sentuhan fisik.

    Jarak benda yang dapat dideteksi terbatas pada jarak tertentu. Terdapat beberapa

    jenis sensor ini yaitu :

    1. Sensor kapasitif

    Sensor ini biasa digunakan untuk mendeteksi semua jenis benda dengan jarak

    deteksi sensor yang terbatas.

    2. Sensor induktif

    Hanya dapat mendeteksi keberadaan benda jenis logam.

  • 30

    3. Sensor optik

    Mendeteksi benda berdasarkan tingkat intensitas sinar yang dipantulkan oleh benda.

    Sinar yang digunakan biasanya infra red atau sinar biasa (yang dapat ditangkap oleh

    mata manusia). Sensor ini berupa foto dioda yang akan hubung singkat jika

    mendapatkan sinar yang cukup kuat dan akan hubung buka jika tidak mendapatkan

    sinar yang cukup. Pada perkembangan selanjutnya terdapat sensor optik yang

    mampu mendeteksi warna-warna lain.

    4. Sensor magnet

    Mendeteksi keberadaan medan magnet. Jika terdapat medan magnet maka rangkaian

    akan hubung singkat di kaki output dengan ground dan sebaliknya.

    5. LDR (Light Dependent Resistor)

    Sensor ini bekerja berdasarkan cahaya, dimana resistor yang bergantung pada cahaya

    artinya nilai tahanannya akan berubah-ubah apabila terkena cahaya dan

    perubahannya tergantung dari intesitas cahaya yang di terimanya. Semakin banyak

    cahaya maka hambatannya semakin sedikit, sebaliknya jika tidak ada cahaya maka

    tahanannya akan membesar.

    II. Sensor Non Proximity (Sensor Roller)

    Sensor jenis ini dapat mendeteksi perubahan lingkungan pada sensor jika ada

    sentuhan fisik.

    Contoh sensor jenis ini adalah Sensor Roller atau bumper.

    Input yang dipakai hanya memakai sensor magnet, LDR dan saklar.

  • 31

    6. Modul Output

    Berfungsi untuk mengubah besaran elektris yaitu data elektris hasil proses

    CCU menjadi besaran fisis. Modul output ini dapat berupa :

    a. Lampu, mengubah besaran elektris menjadi optis/cahaya.

    b. Buzzer atau speaker , mengubah besaran elektris menjadi gelombang suara.

    Tidak seperti speaker yang menggunakan tegangan AC, Buzzer hanya

    menerima tegangan DC.buzzer dikendalikan logika 1(high) atau 0(low), jika

    1 atau diberi tegangan maka bunyi dan 0 atau tidak diberi tegangan maka

    tidak bunyi.

    c. Motor dc, mengubah besaran elektris menjadi energi gerak.

    d. kipas angin

    2.5 Logic Function Chart

    Function Chart ini menggambarkan fungsi-fungsi logika yang dipakai dalam PLC

    o Identity ( A = X )

    o NOT ( A = X )

  • 32

    o AND ( A = X Y )

    o OR ( A = X Y )

    o NAND ( A = NOT ( X Y ) )

    o NOR ( A = NOT( X Y ) )

    2.6 IC AT8952 Dan PIN Konfigurasi

  • 33

    Gambar 2.9. Diagram Konfigurasi PIN AT89S52

    [12]

  • 34

    Gambar 2.10. Diagram blok AT89S52

  • 35

    2.6.1 Fitur-fitur dari IC AT89S52

    + 8 k bytes Flash Memory dalam ISP (In system Programmable) dimana bisa sampai

    1000 write/ erase cycles.

    + Jarak operasi dari 4 V sampai 5.5 V .

    + Operasi penuh static: 0 Hz ke 33 Mhz.

    + 3 level program memory lock.

    + 256 * 8 bit Internal RAM.

    + 32 Programmable I/O lines.

    + 3 buah 16 bit Timer/counters.

    + 8 sumber interrupt.

    + Full Duplex UART Serial Channel port.

    + Low Power Idle dan Power Down Modes.

    + Interrupt Recovery dari power down mode.

    + watch dog Timer.

    + Dual Data Pointer.

    + Power Off Flag.

    + On chip oscillator.

    + arsitektur enam vector dua level interrupt

    + clock circuitry.

  • 36

    IC AT89S52 membutuhkan tegangan rendah,merupakan mikrokontroler CMOS

    8 bit berdaya guna tinggi dengan 8 kbytes ISP (In system programmable) Flash memori

    yang memiliki 40 kaki pin, sedangkan dalam mikrokontroler AT89C52 belum memiliki

    ISP. dimana ISP bisa memungkinkan IC di program langsung dari komputer tanpa

    diprogram dulu melalui ATMEL writer, IC AT89S52 menggunakan memori yang tidak

    mudah hilang, dan sesuai industri Mcs 51 dengan standard instruksi set dan pin

    keluaran

    Memori

    Memori merupakan bagian yang sangat penting bagi mikrokontroler yang

    berfungsi untuk tempat pemrograman, diperlukan 2 macam memori yang sifatnya

    berbeda. [8]

    Memori jenis ROM (Read Only Memory) yang isinya tidak berubah meskipun

    IC kehilangan catu daya, dipakai untuk menyimpan program, begitu di reset

    mikrokontroler akan langsung bekerja dengan program ROM tersebut. Sesuai dengan

    keperluannya, dalam susunan Mcs 51 memori penyimpan program ini dinamakan

    sebagai Memori Program. Memori program hanya dapat di baca dan tidak dapat di tulis

    Memori jenis RAM (Random Access memory) yang isinya akan sirna begitu IC

    kehilangan catu daya, yang dimana dipakai untuk menulis,menghapus dan menyimpan

    data pada saat program bekerja. Di samping untuk data, RAM dipakai pula untuk stack.

    Dimana RAM yang dipakai untuk menyimpan data ini disebut pula sebagai Memori Data.

    Pembacaan memori data eksternal dilakukan melalui pengaktifan sinya RD dan WR.

    Ada berbagai jenis ROM. Untuk mikrokontroler dengan program yang sudah

    baku dan diproduksi secara massal, dimana program tersebut diisikan ke dalam ROM

    pada saat IC mikrokontroler di cetak di pabrik IC. Untuk keperluan yang jumlahnya

  • 37

    tidak banyak biasanya tidak dipakai ROM yang tidak bisa di hapus, tapi dipakai ROM

    yang bisa di hapus dan di isi ulang atau Programmable-Eraseabke ROM (disingkat

    menjadi PEROM atau PROM).

    Dulu banyak yang dipakai UV-EPROM (Ultra Violet Eraseable programmable

    ROM) yang kemudian di nilai mahal harganya dan di tinggalkan setelah ada Flash

    PEROM yang harganya jauh lebih murah.

    Jenis memori yang dipakai untuk memori program IC AT89S52 adalah Flash

    PEROM, program untuk mengendalikan mikrokontroler diisikan ke memori itu lewat

    bantuan ISP (In System Programming).

    Dalam IC AT89S52 dalam memori program bisa di program berulang ulang

    dalam system IC AT89S52. dengan mengkombinasikan 8 bit CPU serba guna dengan In

    system programmable Flash ROM dalam satu chip. IC AT89S52 adalah mikrokontroler

    yang powerfull, dimana mempunyai flexibilitas yang tinggi dan biaya yang sangat

    murah. IC AT89S52 di pasang dalam Alat PLC sebagai otak pengontrol input,proses dan

    outputnya. IC AT89S52 memiliki besaran-besaran memori yaitu: 8 k bytes Flash

    EPROM dan 256 bytes RAM. IC AT89S52 di rancang dengan static logic untuk operasi

    frekwensi 0 dan mensupport power saving mode.

    Idle mode menghentikan CPU sementara membiarkan RAM, timer/counter, serial port,

    dan system interrupt terus bekerja.

    Power down mode menyimpan RAM dengan baik tapi menghentikan osilator, men

    disable semua fungsi lainnya dalam chip sampai interrupt berikutnya atau reset

    hardwarenya.

  • 38

    IC AT 89S52 menyediakan sarana input/output yang cukup banyak dan bervariasi, yang

    mempunyai 32 jalur input/output parallel dari port 0 (P0.0P0.7) sampai sampai port 3

    (P3.0P3.7).

    IC AT 89S52 dilengkapi UART (Universal Asynchronous Receiver/Transmitter) yang

    biasa dipakai untuk komunikasi data secara seri.

    Jalur untuk komunikasi data seri ada di port 3.0 (RXD) dan di port 3.1 (TXD).

    2.6.2 FUNGSI DAN PENJELASAN - PENJELASAN SETIAP KAKI PIN DAN

    DESKRIPSI IC AT 89S52

    VCC di kaki pin 40

    sumber Tegangan 4V 5.5V

    GND di kaki pin 20

    Ground dari sumber tegangan.

    Port 0 di kaki pin 32 sampai kaki pin 39

    Port 0 terdiri dari 8 bit saluran dua arah port I/O. Kalau sebagai output,setiap

    pinnya bisa memasukkan 8 TTL input.sewaktu tertulis di pin port 0.pin-pin nya bisa di

    gunakan sebagai impedansi tinggi input.

    Port 0 juga bisa dibentuk menjadi multiplexed low-order address atau data bus selama

    akses ke eksternal program dan memori data.dalam mode ini P0 mempunyai internal

    pull-ups.

    Port 0 juga menerima kode bytes selama flash program dan mengeluarkan kode bytes

    selama verifikasi program. Eksternal pull-ups di butuhkan selama verifikasi program.

  • 39

    Port 1 di kaki pin 1 sampai kaki pin 8

    Port 1 terdiri 8 bit dua arah port I/O dengan internal pull-ups.

    Output buffer port 1 bisa memasukkan sumber 4 TTL input. sewaktu pertama kali

    tertulis ke pin-pin port 1, kodenya ditarik tinggi dengan internal pull-ups dan bisa di

    gunakan sebagai input, sebagai input pin-pin port 1 secara eksternal di tarik rendah

    menjadi sumber arus (IIL) dari internal pull-ups.

    Dalam penjumlahan, P1.0 dan P1.1 bisa di gambarkan sebagai timer/counter 2 eksternal

    input penghitung dan timer/counter 2 input pemicu.

    Dimana bisa dilihat fungsi-fungsi dari pin-pin port 1 dalam tabel 2.1. sebagai berikut;

    Tabel 2.1 PIN Port 1

    Port 1 juga bisa menerima low order address bytes selama menyinari program dan

    verifikasi program.

    Port 2 di kaki pin 21 sampai kaki pin 28

    Port 1 terdiri 8 bit dua arah port I/O dengan internal pull-ups.

    Output buffer port 2 bisa memasukkan sumber 4 TTL input. sewaktu pertama kali

    tertulis ke pin-pin port 2, kodenya ditarik tinggi dengan internal pull-ups dan bisa di

    gunakan sebagai input, sebagai input pin-pin port 2 secara eksternal di tarik rendah

    menjadi sumber arus (IIL) dari internal pull-ups.

  • 40

    Port 2 memancarkan high order address byte selama di tarik dari memori

    eksternal program dan selama akses ke eksternal memori data dimana menggunakan 16

    bit addresses (MOVX @ DPTR). Dalam aplikasi ini, port 2 menggunakan internal pull-

    ups yang kuat sewaktu penyinaran. Selama dalam mengakses ke eksternal memori data

    mrnggunakan 8 bit pengalamatan (MOVX @ RI), port 2 bisa bermuatan SFR (Spesial

    Fungtion Register). Port 2 juga menerima bit high order address dan beberapa sinyal

    kontrol selama verifikasi dan mengisi program dengan penyinaran (flash).

    Port 3 di kaki pin 10 sampai kaki pin 17

    Port 3 terdiri 8 bit dua arah port I/O dengan internal pull-ups.

    Output buffer port 3 bisa memasukkan sumber 4 TTL input. sewaktu pertama kali

    tertulis ke pin-pin port 3, kodenya ditarik tinggi dengan internal pull-ups dan bisa di

    gunakan sebagai input, sebagai input pin-pin port 1 secara eksternal di tarik rendah

    menjadi sumber arus (IIL) dari internal pull-ups.

    port 3 juga menjalankan fungsi-fungsi dari bermacam-macam fitur-fitur pada khususnya

    dari AT 89S52, Dimana bisa dilihat fungsi-fungsi dari pin-pin port 1 dalam tabel 2

    sebagai berikut;

    Tabel 2.2 PIN Port 3

    .port 3 juga menerima beberapa sinyal kontrol untuk Flash program dan verifikasi

  • 41

    Reset pada kaki pin 9

    Reset input. Ketika sinyal 1 pada pin Reset untuk dua machine cycles sementara osilator

    sedang bekerja mereset IC. Pin ini mengeluarkan sinyal 1 untuk 96 periode osilator

    setelah waktu watchdog habis. Bit DISRTO dalam SFR AUX (address 8E H) bisa

    digunakan untuk membuat fitur ini tidak bekerja. Dalam keadaan normalnya dari bit

    DISRTO, pada kaki reset diberi sinyal 1 (high) membuat fitur bekerja.

    ALE / PROG pada kaki pin 30

    Pin ini berisi ALE (Address Latch Enable) berupa output denyut pulsa untuk

    latching (gerbang) sinyal byte rendah (0) dari alamat selama mengakses ke eksternal

    memori. pin ini juga program denyut input pulsa (PROG) selama penyinaran program

    (flash programming) dalam IC.

    Dalam operasi normal, ALE memancarkan kecepatan (rate) konstan dari 1/6 frekwensi

    osilator dan mungkin digunakan untuk eksternal timing (waktu di luar) atau untuk tujuan

    clocking. Bagaimanapun pulsa ALE terlewatkan selama setiap akses ke eksternal

    memori data. Jika diinginkan, operasi ALE bisa di hentikan (disable) dengan set bit 0

    pada SFR (Special Fungtion Register) di lokasi 8E H. Dengan set bit, ALE menjadi aktif

    hanya selama instruksi MOVX atau MOVC. Sebaliknya, pin dengan lemah tertarik

    sinyal tinggi (1). Set bit ALE menjadi disable tidak mempunyai efek bila mikrokontroler

    dalam keadaan external execution mode.

    PSEN di kaki pin 29

    PSEN (program store Enable) yang membaca strobe pada eksternal memori program.

    Sewaktu IC AT 89S52 menglaksanakan kode (executing code) dari eksternal memori

    program, PSEN diaktifkan dua kali setiap perputaran siklus mesin (machine cycle),

  • 42

    kecuali dua aktivitas PSEN tersebut terlewatkan selama setiap akses ke eksternal

    memori data.

    EA / VPP di kaki pin 31

    EA singkatan dari External Access Enable. EA harus terikat ke ground (GND) untuk

    membuat IC bekerja (enable) untuk memperoleh kode dari ekternal memori program

    yang berlokasi dimulai dari segmen 0000H sampai FFFFH.

    bagimanapun jika lock bit 1 ter program, EA secara internal akan terpalang pada reset.

    EA seharusnya terikat kepada VCC untuk pelaksanaan program internal.

    Kaki Pin 31 ini menerima tegangan 11 Volt (Vpp) membuat program bekerja (enable)

    selama penyinaran (flash) program di IC.

    XTAL 1 di kaki pin 19

    Input ke inverting (pembalik) osilator amplifier dan input ke sirkuit internal clock

    operasi.

    XTAL 2 di kaki pin 18

    Output dari inverting osilator amplifier.

    Special Function Register (SFR)

    Fungsi fungsi tertentu dalam alamat-alamat di memori IC yang digambarkan dalam

    sebuah map dalam ukuran besaran hexa. Tidak semua dari alamat-alamat terisi, dan

    alamat yang tidak terisi mungkin tidak bisa di implementasi dalam sebuah memori.

    Akses Pembacaan ke alamat-alamat ini akan secara umum kembali mengacak data,

    akses penulisan mempunyai penentuan efek. Register khusus (SFR) adalah satu daerah

    RAM dalam IC keluarga MCS 51 yang dipakai untuk mengatur perilaku MCS 51 dalam

    hal-hal khusus, misalnya sebagai tempat untuk berhubungan dengan paralel port P1, P2

    atau P3, dan sarana input/output lainnya, tapi tidak umum dipakai untuk menyimpan

  • 43

    data seperti layaknya memori data, meskipun demikian, dalam hal penulisan program

    SFR sama dengan memori data, untuk SFR memori data hanya dipakai cara

    pengalamatan memori secara langsung (direct memory addressing)

    Register serba guna (General purpose Register)

    Register serba guna menempati memori data sebanyak 32 byte yang di kelompokkan

    menjadi 4 kelompok Register (Register Bank). Setiap kelompok register memiliki 8 byte

    memori dan masing-masing kelompok memiliki register yang di kenali sebagai register

    0 sampai register 7 (R0,R1,R2,R3,R4,R5,R6,R7). Dalam penulisan program memori-

    memori ini bisa langsung di sebut sebagai R0R7, tidak lagi dengan nomor memori,

    Contoh: mov A ,R1 dan tidak perlu lagi dengan: mov A,$01.

    dengan ini instruksi menjadi lebih sederhana dan muda serta bekerja lebih cepat.

    Khusus untuk register 0 dan register 1 ( R0 dan R1 ) masih mempunyai kemampuan

    lain. Kedua register ini bisa di pakai sebagai register penampung . alamat yang dipakai

    dalam pengalamatan memori secara tidak langsung (indirect memory addressing).

    Empat kelompok register serba guna ini tidak bisa di pakai secara bersamaan, setelah di

    reset yang aktif dipakai adalah kelompok register 0 ( register bank 0), kal yang

    diaktifkan adalah kelompok register 1, maka yang dianggap sebagai R0 bukan data no

    0h melainkan memori data no 8h,demikian kalau kelompok register 3 maka memori data

    no 18h menjadi R0.

    Timer 2 Register

    Bit control dan status terisi dalam register T2CON (terlihat pada tabel 2.3)dan T2MOD

    (terlihat pada tabel 2.4) untuk Timer 2. pasangan register RCAP2H dengan RCAP2L

    adalah register yang di tangkap (capture) atau diisi (reload) kembali ke Timer 2 di 16 bit

    dalam capture mode atau 16 bit auto reload mode.

  • 44

    Tabel 2.3. T2CON-Timer / Counter 2 Control Register

    Interrupt Registers

    Secara individu bit interrupt enable ada dalam register IE (Interrup enable).

  • 45

    Tabel 2.4 AUXR: Auxiliary Register

    Tabel 2.5 AUX R1 : Auxiliary Register 1

  • 46

    Dual Data Pointer Register

    Untuk memudahkan akses dua-duanya, internal dan external dari memori data, dua

    tumpukkan dari 16 bit Data Pointer Register menyediakan DP0 pada SFR di lokasi

    alamat 82 H - 83 H dan DP1 pada lokasi 84 H 85 H. Bit DPS = 0 dalam SFR AUX R1

    memilih DP0 dan Bit DPS = 1 memilih DP1. User seharusnya selalu meng inisial bit

    DPS ke nilai yang tepat sebelum akses ke masing-masing data Pointer Register.

    Power Off Flag

    Power Off Flag (POF) berlokasi di bit 4 (PCON.4) dalam PCON SFR, POF di set ke

    nilai 1 selama listrik di nyalakan. POF bisa di set dan istirahat dalam software control

    dan tidak dapat dipengaruhi dengan reset.

    Memori secara umumnya

    Alat MCS 51 mempunyai ruang alamat yang terpisah untuk memori program dan

    memori data. Pengalamatan bisa Sampai 64 kbytes setiap dari eksternal memori program

    dan memori data.

    Memori Program

    Jika pin EA terhubung ke ground, semua program yang terambil di arahkan ke eksternal

    memori. Pada AT 89S52, jika EA terhubung ke Vcc, program di tarik ke alamat 0000H

    sampai 1FFFH di arahkan ke internal memory dan di tarik ke alamat 2000H sampai

    FFFFH ke eksternal memori.

  • 47

    Memori Data

    IC AT 89S52 meng implementasikan 256 bytes besaran alamat pada chip RAM. 128

    bytes teratas menempati ruang paralel alamat-alamat pada Special Function Register. Ini

    berarti yang 128 bytes ini mempunyai ruang alamat yang sama dengan SFR tetapi secara

    fisik terpisah dengan ruang SFR.

    Sewaktu instruksi akses ke lokasi internal diatas alamat 7F H, mode alamat di gunakan

    dalam instruksi yang di tetapkan dimana CPU bisa mengakses 128 bytes teratas dari

    RAM atau dari ruang SFR. Dimana instruksi menggunakan langsung akses alamat-

    alamat dari SFR.

    Untuk contoh, bisa dilihat instruksi pengalamatan langsung dari SFR

    di alamat 0A0H ( P2 ) sebagai berikut;

    Mov 0A0H, #data.

    Dimana instruksi itu menggunakan indirect addressing mengakses 128 bytes teratas dari

    RAM. Sebagai contoh bisa dilihat indirect addressing instruction berikut, dimana R0

    berisi 0A0 H, akses data byte di alamat 0A0 H, dari pada P2 dimana alamatnya adalah

    0A0 H.

    Mov @R0, #data.

    Stack operasi ada di indirect addressing, jadi 128 byte teratas dari data RAM berfungsi

    sebagai ruang Stack.

  • 48

    Watchdog Timer

    (One time Enable dengan Reset out)

    Watch dog timer dimaksudkan sebagai metode pemulihan dalam situasi dimana CPU

    mungkin menjadi pokok dari kerusakan software. dimana mencegah terjadinya hang,

    jika tidak memenuhi waktu yang di tentukan dalam perintah-perintah program yang di

    jalankan maka akan compile program di reset dan mulai dari awal. WDT terdiri dari 13

    bit counter dan watchdog Timer reset (WDTRST) SFR. WDT set awal untuk membuat

    disable dari exiting reset. Untuk membuat enable WDT, user harus menulis 01E H dan

    0E1 H dalam urutan pada WDTRST register (SFR berlokasi di 0A6H). sewaktu WDT

    berfungsi, WDT akan menambah setiap machine cycle sementara osilator sedang

    berjalan. Periode masa habis WDT tergantung pada eksternal clock frequency. Disana

    tidak ada jalan untuk disable WDT kecuali melalui reset (salah satu dari reset hardware

    atau WDT over flow reset). Sewaktu WDT berlebihan arus (over flow), WDT akan

    membuat output Reset aktif (High Pulse) pada pin RST (reset).

    Cara menggunakan WDT

    Untuk membuat enable WDT, user harus menulis di lokasi 01EH dan 0E1H dalam

    urutan pada WDTRST register (SFR berlokasi di 0A6H). sewaktu WDT enable,

    kebutuhan user untuk menugaskan WDT dengan menulis pada lokasi 01EH dan 0E1H

    pada WDTRST untuk menghindari WDT over flow. Counter 13 bit belebihan arus

    sewaktu mencapai 8191 (1FFFH), dan ini akan meng reset ICnya. Sewaktu WDT

    enable, WDT akan menambah setiap machine cycle sementara osilator sedang berjalan.

    Ini berarti user harus reset WDT setidaknya setiap 8191 (1FFFH) machine cycles.untuk

    meng reset WDT maka user harus menulis 01E H dan 0E1 H pada WDTRST. Dimana

    WDTRST merupakan write only register. WDT counter tidak bisa di baca ataupun di

  • 49

    tulis. Sewaktu WDT overflows, WDT akan menghasilkan pulsa output reset pada pin

    RST. Durasi Pulsa RST adalah 96 * Time OSC, dimana TOSC = 1 / FOSC. Untuk

    membuat penggunaan terbaik dari WDT, WDT seharusnya di layani dalam bagian dari

    kode, itu akan secara periodik akan di laksanakan bersamaan dengan waktu akan di

    butuhkan, untuk mencegah dari WDT reset.

    WDT selama power down dan idle ( berhenti /tidak melakukan apa-apa )

    Dalam power down mode, osilator berhenti, dimana berarti WDT juga berhenti.

    Sementara dalam power down mode, user tidak perlu menugaskan WDT. Di sana ada

    dua metode jalan keluar dari power down mode yaitu; dengan reset hardware atau

    melalui level aktif eksternal interrupt dimana memungkinkan lebih dulu memasuki

    mode power down. Sewaktu power down eksis dengan reset hardware, penugasan WDT

    seharusnya terjadi seperti normalnya dimana kapanpun IC AT89S52 di reset. Keluarnya

    power down dengan interrupt secara signifikan berbeda. Interrupt bertahan rendah cukup

    panjang untuk membuat osilator tetap stabil. sewaktu interrupt diajukan tinggi, interrupt

    di layani. Untuk mencegah WDT dari mereset IC sementara pin interrupt tertahan

    rendah (low).

    WDT tidak akan mulai sampai interrupt bernilai tinggi (high / 1).dianjurkan WDT di

    reset selama pelayanan (service) interrupt untuk penggunaan interrupt untuk keluar dari

    power down mode.

    untuk memastikan WDT tidak overflow dengan beberapa keadaan dari keluaran power

    down, terbaiknya me reset WDT hanya sebelum memasuki power down mode.

    Sebelum ke dalam idle mode, bit WD idle dalam SFR AUXR di gunakan untuk

    menentukan apakah WDT terus menghitung jika WD enable. WDT tetap menghitung

  • 50

    selama IDLE (WD idle = 0) sebagai keadaan awal.untuk mencegah WDT dari peng

    resetan IC AT89S52 sementara dalam idle mode, user seharusnya selalu set waktu

    dimana secara periodik keluar dari IDLE, service WDT dan masuk kembali ke idle

    mode. Dengan WD idle bit enable, WDT akan berhenti menghitung dalam idle mode

    dan kembali menghitung yang sedang berlangsung dan keluar dari IDLE.

    Timer 2

    Timer 2 adalah 16 bit Timer / counter dimana bisa beroperasi sebagai salah satu dari

    timer atau counter. Type dari operasi di pilih oleh bit C/ T2 dalam sbuah SFR T2CON

    yang bisa dilihat pada tabel 2.3. timer 2 operasi bisa ber mode capture . Timer 2 terdiri 8

    bit register. TH2 dan TL2. dalam fungsi timer. Register TL2 bertambah setiap machine

    cycle. Sejak machine cycle terdiri dari 12 periode osilator, hitungannya 1/12 dari

    frekwensi osilator.

    dalam fungsi counter, register bertambah dalam respon transisi 1 ke 0 bersamaan dengan

    pin eksternal input, T2. sejak dua machine cycle (24 periode osilator) di butuhkan untuk

    mengenal transisi 1 ke 0, penilaian atau ukuran perhitungan maksimum adalah 1 /24 dari

    frekwensi osilator. Untuk memastikan level yang sudah di berikan sebagai percobaan

    min 1 kali sebelum berubah., level seharusnya tertahan setidaknya selama 1 machine

    cycle penuh.

  • 51

    Timer mode capture

    Gambar 2.11.Timer capture mode

    Dalam timer mode capture, 2 pilihan terpilih oleh bit EXEN2 dalam T2CON .

    bit ini kemudian bisa di gunakan untuk membangkitkan sebuah interrupt. Jika EXEN2 =

    1, Timer 2 menunjukkan operasi yang sama, tapi transisi 1 ke 0 pada eksternal input

    T2EX juga menyebabkan nilai yang sekarang dalam TH2 dan TL2 di tangkap ke dalam

    RCAP2H dan RCAP2L berturut-turut. Dalam penambahan transisi pada T2EX

    menyebabkan bit EXF2 dalam T2CON di set.bit EXF2 seperti TF2, bisa menghasilkan

    interrupt.

    Interrupts

    IC AT89S52 mempunyai 6 vector interrupt; dua eksternal interrupts ( INT0 dan INT1 ),

    3 timer intterups ( Timer 0,1 dan 2) dan serial port interrupt.

  • 52

    Bisa dilihat gambar 2.12 sebagai berikut;

    Gambar 2.12. Interrupt.

    Setiap dari sumber interrupt ini bisa secara individu menjadi enable atau disable dengan

    setting atau clearing bit dalam SFR (Special Function Register IE). IE juga berisi bit

    disable, EA dimana men disable semua interrupt dalam waktu sekali.

    Interrupt timer 2 di hasilkan oleh logical OR dari bit TF2 dan EXF2 dalam register

    T2CON. Tidak ada dari flags yang clear oleh IC sewaktu servis rutin di vector. Servis

    rutin mungkin dapat menentukan apakah TF2 atau EXF2 yang menghasilkan interrupt

    dan bit tersebut akan di hapuskan dalam software.

    Flag Timer 0 dan Timer 1 di set pada S5P2 dari putaran dimana timer overflow.

    Nilainya kemudian di tarik oleh sirkuit dalam putaran selanjutnya. Bagaimanapun flag

  • 53

    timer 2, TF2 di set pada S2P2 dan ditarik dalam putaran yang sama dimana dalam

    keadaan timer overflows.

    pada table berikut menunjukkan posisi bit IE.6 tidak dilaksanakan. Dalam IC AT 89S52,

    bit posisi IE.5 juga tidak terlaksanakan. bit2 tersebut mungkin akan di fungsikan pada

    produk AT89 berikutnya.

    Tabel. 2.6. Interrupt Enable (IE) register

  • 54

    Karakteristik Osilator

    XTAL1 dan XTAL2 merupakan input dan output masing-masing dari inverting

    amplifier bisa digunakan sebagai IC osilator. Dimana gambarnya sebagai berikut;

    Gambar 2.13 hubungan-hubungan Osilator

    tidak ada kristal kwarsa atau keramik resonator yang di gunakan. Untuk mengendalikan

    kristal dari sumber eksternal clock, XTAL2 seharusnya di biarkan tidak terhubung

    sementara XTAL1 di kendalikan.

  • 55

    Seperti terlihat pada gambar 2.14 berikut ;

    Gambar 2.14 konfigurasi eksternal clock drive

    disana tidak ada persyaratan pada duty cycle dari sinyal eksternal clock, input pada

    sirkuit internal melalui clock terbagi dua flip-flop. Tapi spesifikasi waktu minimum dan

    maksimum tegangan tinggi dan rendah harus diamati.

    Idle Mode

    Dalam idle mode, CPU menonaktifkan sendiri sementara sekeliling chip tetap

    aktif. Idle mode di aktifkan melalui software. Isi dari RAM chip dan semua register idle

    mode SFR tetap tidak berubah selama idle mode. Idle mode dapat diakhiri dengan

    beberapa enable interrupt atau dengan me reset hardware.

    Sewaktu idle mode di hapuskan oleh reset hardware, IC kembali ke eksekusi program,

    tempat dimana program ditidurkankan, naik ke dua machine cycle sebelum internal reset

    algorithm mengambil kendali. Pada perangkat keras IC mencegah idle mode masuk ke

    internal RAM tapi akses ke pin port di perbolehkan.

  • 56

    Power Down mode

    Dalam power down mode, osilator berhenti, dan instruksi meminta power down

    menjadikan intruksi tersebut instruksi terakhir yang di laksanakan. Pada chip RAM dan

    SFR menahan nilainya sampai mode power down terhapus. keluar dari power down

    mode bisa melalui dengan reset hardware atau enable external interrupt.

    Reset tidak berfungsi sampai VCC kembali dalam keadaan normal dan harus aktif

    panjang untuk membuat osilator me restart dan men stabilisasi.

    Tabel. 2.7 Mode Power Down

    Programming penyinaran dengan mode parallel

    IC AT89S52 di kirimkan dengan penyinaran sendiri dalam memori array yang siap di

    program. Program antar IC dengan IC lainnya memerlukan tegangan 12 volt, sinyal

    program enable dan cocok dengan penyinaran konvensional atau EPROM pemrogram.

    IC kode memori array AT 89S52 di program byte per byte.

    Algoritma memprogram dengan model paralel

    Sebelum memprogram IC AT 89S52, alamat, data, dan sinyal kontrol seharusnya di set

    menurut tabel 2.8 penyinaran mode pemrograman dan gambar 2.7. dan 2.8. langkah-

    langkah untuk memprogram ICAT89S52 sebagai berikut;

    1. masukan lokasi memori pada deretan baris alamat.

    2. masukan data byte yang tepat pada deretan baris data.

    3. Aktifkan kombinasi yang benar dari sinyal kontrol.

  • 57

    4. naikkan EA/Vpp sampai 12 V

    5. Pulsa ALE / PROG sekali untuk memprogram byte dalam penyinaran array . dalam

    byte menulis mempunyai waktu sendiri dan biasanya sekitar 50 s.

    2.6.3 Konfigurasi PIN ISP IC AT89S52

    dalam skripsi ini alat PLC bisa berkomunikasi dengan dua cara, yaitu ;

    1. melalui ISP AT89S52

    2. melalui RS 232

    hanya di demokan memakai komunikasi ISP, dimana keunggulannya IC AT89S52 bisa

    di program langsung dari komputer tanpa di download ke ATMEL writer

    Programming penyinaran dengan mode serial

    Dalam kode array memori bisa di program menggunakan Serial ISP (In System

    Programming) pada gambar. 2.14 sebagai antarmuka sementara RST di tarik ke Vcc.

    Serial antarmuka terdiri dari pin-pin; SCK, MOSI (Master output Slave input) dan MISO

    (Master input Slave output). Setelah reset di beri logika high (1), instruksi enable

    program butuh di laksanakan dulu sebelum operasi lain di laksanakan . sebelum urutan

    program ulang terjadi, operasi penghapusan dalam chip di butuhkan. Dalam operasi

    penghapusan chip kembali pada isi setiap lokasi memori dalam kode array dalam FFH.

    Sistem eksternal clock bisa di sediakan pada pin XTAL 1 atau kristal butuh untuk di

    hubungkan melintasi pin-pin XTAL 1 dan XTAL 2. maksimum frekwensi serial clock

    (SCK) seharusnya di bawah 1/16 dari frekwesi kristal. Dalam osilator alat PLC skripsi

    Dengan clock osilator 11 Mhz, maksimum frekwensi SCK adalah 0,68 MHz.

  • 58

    Gambar 2.15 penyinaran memori dengan mode serial ISP

    Gambar 2.16 data mode serial ISP dalam bentuk gelombang

    Serial programming instruksi set bisa di lihat data sheet AT89S52.

  • 59

    Untuk karakteristik tegangan DCnya bisa di lihat pada tabel 2.8 berikut :

    Tabel 2.8 karakteristik tegangan DC

  • 60

    2.7 RS 232 Dan PIN Konfigurasi

    Gambar 2.17 konfigurasi PIN RS 232

    Gambar 2.18 diagram fungsional

  • 61

    Gambar 2.19 gambar fisik RS 232 DB 9

    Tabel 2.9 DB9 Cable Connections Commonly Used for EIA/TIAE-232E and V.24 Asynchronous Interfaces

    Gambar.2.17 diagram diatas merupakan bagian-bagian besar dari elemen-elemen

    dari RS232. Rangkaian diagramnyanya terbagi menjadi 3 bagian yaitu;

    pengganda tegangan dan pembalik nilai kutub tegangan , Dual transmitter, Dan Dual

    receiver. RS 232 diberikan tegangan masukan tunggal 5 V.

    dalam IC max 232input dan outputnya uda terlindungi dari ESD (electrostatic discharge

    shock).

  • 62

    Tabel 2.10. PIN DESCRIPTIONS RS 232

    No PIN Nama PIN Keterangan Fungsi PIN 1 C1 + Eksternal kapasitor (+) untuk internal pengganda tegangan

    2 V + Tegangan dalam yang digandakan menjadi 10 V

    3 C1 - Eksternal kapasitor (-) untuk internal pengganda tegangan

    4 C2 + Eksternal kapasitor (+) untuk internal pembalik nilai kutub

    tegangan

    5 C2 - Eksternal kapasitor (-) untuk internal pembalik nilai kutub

    tegangan

    6 V - Tegangan dalam 10 V yang diinvert menjadi - 10 V

    7 T2 out Transmitter RS 232 output ke 2, dengan tegangan 10V.

    8 R2 in Receiver RS 232 input ke 2 dengan impendasi 5k pull down

    resistor ke ground.

    9 R2 out Receiver 2 TTL / CMOS output

    10 T2 in Ransmitter 2 TTL / CMOS input dengan impendasi 400k

    pullup resistor ke VCC.

    11 T1 in Ransmitter 2 TTL / CMOS input dengan impendasi 400k

    pullup resistor ke VCC.

    12 R1 out Receiver 1 TTL / CMOS output

    13 R1 in RS 232 Receiver input ke 1 dengan impendasi 5k pull down

    resistor ke ground.

    14 T1 out RS 232 Transmitter 1 output 10V (typical)

    15 GND Supply Ground

    16 Vcc Positif Power supply + 5V 10 %

    fitur fitur dari IC RS 232 sebagai berikut;

    + membutuhkan power supply VCC sebesar 5 volt

    + mempunyai rangkaian menggandakan tegangan dan pembalik nilai tegangan

    + mempunyai 2 transmitter dan 2 receiver

  • 63

    + Receiver RS 232 meningkatkan noise Rejection.

    Gambar. 2.20 Receiver output enable and disable timing.

    Input Voltages;

    T1in,T2in bisa mendapat tegangan dari 0,3 V hingga 0,3 V

    R1in,R2in bisa mendapat tegangan hingga 30V

    Output Voltages;

    T1out,T2out bisa mengeluakan tegangan dari 0,3 V sampai 3 V

    R1out,R2out bisa mengeluarkan tegangan dari 0,3 V sampai 3 V

    [1]

  • 64

    Gambar. 2.21 Dual Charge Pump

    Dalam sirkuit yang equivalent bisa digambarkan dalam gambar 2.20 diatas.

    rangkaian ini terdiri dari dua bagian charge pumps dimana dalam clock internal ada

    bagian yang menghasilkan tegangan ganda sebesar 10 V,dan ada bagian yang

    menghasilkan nilai balik dari tegangan -10V, rangkaian ini memakai osilator

    berfrekwensi 16 Khz. Dalam bagian pertama bisa lihat pada gambar 3.5 kapasitor C1

    terisi dengan tegangan VCC dan ditambahkan atau di jumlahkan keVCC yang lain, di

    bagian V+ terhubung lagi dari VCC secara internal melalui RL 1 k ohm pull down

    resistor, yang menghasilkan sinyal yang akan melalui C2 di V+ sama dengan 2 kali

    VCC, di waktu yang sama C3 terisi 2VCC dan ketika di lalui ground dan VCC melalui

    C4 maka kutub nilai tegangannya jadi membalik menjadi 2 VCC.

    Tegangan VCCnya yang diterima sampai dengan 5.5V.

  • 65

    impedansi output dari bagian pengganda tegangan sekitar 200 ohm dan impendasi

    output dari bagian pembalik kutub nilai tegangan sekitar 450 ohm.

    Naiknya nilai C1 dan C2 akan merendahkan nilai impedansi dari pengganda tegangan

    dan pembalik kutub nilai tegangan dan menambah nilai dari kapasitor2, C3 dan C4

    mengecilkan ripple dari tegangan + V dan V.

    Transmitter

    Transmitter input dari rangkaian system minimum TTL / CMOS,yang ditransfer

    ke RS 232 melalui Transmitter output.

    input berlogika 1 ketika berada dalam tegangan -5 V sampai - 0,61 V dan berlogika 0

    berada dalam tegangan -0,6 V sampai dengan 5 V.

    Threshold sekitar 26% dari VCC = 5 V menjadi sebesar 1.3 V.

    Setiap transmitter input mempunyai resistor internal 400k ohm pull up,jadi setiap input

    yang tidak digunakan tetap tidak terhubung dan output kembali menjadi low state.

    Tegangan keluaran RS 232 sekitar 5 V dengan kondisi terburuk,kedua transmitter

    mempunyai minimum load impedansi sebesar 3 k ohm.

    Transmitter mempunyai batasan internal output slew rate kurang dari 30 V/ s.

    Hubungan singkat dari output di lindungi dan terhubung pasti dengan ground.

    Dimana schematicnya bisa di lihat pada gambar 3.1.5.e.

    Gambar 2.22 transmitter and slew rate definition

  • 66

    Receivers

    Receiver input menerima tegangan sampai dengan 3 0 V selagi bekerja, receiver

    membutuhkan impedansi input dari 3 k ohm sampai 7 k ohm sekalipun tegangan power

    supply mati ( Vcc = 0 V).

    Receiver mempunyai threshold input yang typical 1.3 V dimana batasan 3V, di kenal

    sebagai bagian transisi dari spesifikasi RS 232.

    Receiver berlogika 0 berada dalam tegangan 0,81 V sampai sebesar VCC, dan berlogika

    1 berada dalam tegangan -30 V sampai dengan 0,8 V. bisa dilihat pada gambar 2.23

    dibawah ini;

    Gambar. 2.23 Receiver dan Propagation delay definition

    Receiver input Threshold RS 232 mempunyai batasan pasti untuk Tegangan Threshold

    dari 0,8 V sampai 2,4 V yang memastikan saat berhubungan dengan ground output

    mendapat logika 1.

    5 k ohm tahanan input yang terhubung ke ground juga untuk memastikan output

    berlogika 1.

  • 67

    Pemilihan kapasitor

    Kapasitor 1 F yang dianjurkan jenis keramik,aluminium dan tantalum dan kapasitor 0,1

    F yang dianjurkan jenis keramik di electric.

    Gunakan kapasitor yang bernilai tinggi (up to 10 F) untuk mengurangi impendansi

    output pada tegangan V+ dan V, dimana sangat bagus untuk penyimpanan tegangan

    yang diambil dari V+ dan V.

    peningkatan nilai kapasitor dari charge pump membantu menjaga daya guna sewaktu

    power di ambil dari V+ dan V.

    Data rates

    Data rate transceiver bisa lebih dari 120 kbps. Kecepatan data juga di pengaruhi dari

    beban kapasitas dari keluaran Transceiver.

    Perlindungan terhadap ESD (Electrostatic Discharge Shock)

    Perlindungan terhadap semua pin dari lonjakan elektrostatik discharge yang di hadapi

    selama pemasangan dan perawatan.

    Bagian keluaran dan receiver input mempunyai perlindungan ekstra dari lonjakan

    electrostatic sebesar 15 kv tanpa menyebabkan kerusakan.

    ESD bias terjadi pada saat : beroperasi normal,saat shut down atau saat listrik power

    dimatikan.

  • 68

    2.8 IC ULN 2803 Dan PIN Konfigurasi

    Logic diagram IC ULN 2803 And PIN Configuration

    Gambar. 2.24. PIN and Schematic Circuit ULN 2803

    Pada gambar 2.24 IC ULN 2803 ini memakai 8 pasang transistor darlington

    dimana transistor dengan difungsikan sebagai saklar, dimana jika ada arus basis maka

    saklar tertutup dan jika tidak ada arus basis maka saklar terbuka.

    arus keluaran bisa mencapai sampai 500 mA dan tegangan keluaran bisa mencapai

    sampai dengan 50 V. PIN output bisa di parallel .

    IC ULN 2803 berisi 8 transistor dengan common emitor yang terintegrasi dengan 8

    diode dengan common katoda berderet untuk induksi beban.

    Untuk setiap transistor mempunyai arus beban puncak dari 600 mA dan bisa bertahan

    lebih. Dalam IC ULN 2803 memiliki tahanan dalam sebesar 2,7 k ohm untuk TTL 5 V

  • 69

    dan CMOS,dan dikemas dalam 18 kaki PIN yang dibuat dengan timah tembaga dan

    dibuat mudah untuk ditaruh papan PCB.

    2.9 Optoisolator 4N25 Dan PIN Konfigurasi

    Gambar 2.25 PIN IC 4N25

    Gambar 2.26. Skematik dan Rangkaian Uji Opto coupler IC 4N25

    [13]

    Fitur-fitur dari optocoupler 4N25

    + Dioda yang dipakai menggunakan bahan gallium kemudian di infrakan yang

    bergandengan dengan phototransistor yang berjenis NPN.

    + memiliki arus transfer langsung yang tinggi

    + mempunyai perlindungan dari tegangan tinggi

  • 70

    + mempunyai frekwensi pergantian yang tinggi

    + mempunyai 6 kaki pin dengan berat fisik 0,52 gram

    + Maximum ratings pada suhu 25C

    + peak input to output voltage = 2,5 kv

    + VCE = 70 V

    + VEC = 7V

    + VEB = 7V

    + tegangan reverse dioda input = 3V

    + arus maju dioda input = 80 mA

    + peak arus maju dioda input (tw : 300 s, duty cycle 2%) = 3A

    2.10 Teori, Arti dan Pengertian Optocoupler

    opto copupler sangat berguna untuk pengiriman sinyal data kontrol maupun digital

    Dan siyal analog bisa dikirim melalui lebar pulsa modulasi.

    Optoisolator (optical isolator) atau optocoupler (photocoupler) adalah alat yang

    merupakan kombinasi dari alat sumber emisi cahaya (pancaran electron berupa cahaya)

    dan detektor fotosensitif yang terbungkus menjadi satu. Dalam optocoupler berisi foton

    yang berpasangan atau bergandengan, kopeling atau perangkai tercapai melalui sinar

    yang di bangkitkan pada satu sisi dari celah penyekat transparan dan di deteksi di sisi

    lain dari celah tanpa berhubungan dengan listrik dari kedua sisi tersebut. (mungkin ada

    sedikit dari kapasitas perangkai). [14]

    Dimana gambar fisiknya bisa di lihat pada gambar 2.27 berikut;

  • 71

    Gambar 2.27 Konstruksi Fisik Optocoupler

    Dimana keterangan nomornya sebagai berikut;

    1. Pandangan fisik luar.

    2. Pandangan fisik dalam.

    3. Ketebalan penyekat dan jarak ketebalan internal.

    4. Jarak udara dan ruang udara antara input dan output .

    Sumber cahaya yang menghubungkan dari LED ke transistor.

    Gambar 2.28 Diagram Skema Optoisolator

  • 72

    Bisa dilihat pada gambar 2.28 diatas, Sewaktu sinyal input masuk ke input optoisolator

    maka LED menyala dan mengeluarkan sinar, dan sinar yang dibangkitkan oleh infra

    merah LED (Light Emitting Diode), melewati batas isolasi optocoupler ke foto detektor

    yang dimana listrik tidak bisa lewat dan detektor sinar tersebut menggunakan foto

    transistor kemudian sinyal output keluar dari foto transistor, sinar LED masuk ke basis

    foto Transistor melalui udara, banyaknya arus yang di terima oleh basis foto transistor

    tergantung intensitas sinar LED nya. Emiter dari transistor di hubungkan dengan sumber

    tegangan Vcc. Dan foto transistor bekerja sebagai saklar dan outputnya diambil pada

    kaki emitter dimana jika ada sinyal masukan pada basis maka output terhubung dengan

    ground, jika tidak ada sinyal masukan pada basis maka output mengeluarkan tegangan..

    Puncak sensitif dari material silikon terletak pada panjang gelombang emisi dari LED,

    memberikan sinyal maksimum kopeling. Semuanya ada dan bekerja pada sebuah

    optocoupler atau optoisolator. Semua IC optocoupler bekerja dalam frekwensi tertentu.

    Umumnya sebuah IC optocoupler dengan single output phototransistor dapat

    mempunyai bandwidth sinyal frekwensi dari 200 300 khz. IC optocoupler pada

    umumnya yang dipakai mempunyai 4 kaki pin, optocoupler bisa bertahan sampai

    ratusan volt.

  • 73

    Parameter Opto-Isolator

    Tegangan kolektor - emiter

    Yang dipakai tegangan VCE cut off dalam keadaan basis tidak di aliri tegangan dan arus

    kolektor saturasi disaat basis foto transistor di sinari dari LED.

    Jarak Creepage

    Secara fisik seberapa jauh percikan tegangan dapat berjalan mengelilingi bagian luar

    bungkusan optocoupler. Jika sampai ter kontaminasi berikan resistor output yang lebih

    kecil.

    Arus maju

    Arus yang di berikan oleh LED, secara khas opto coupler membutuhkan arus min 5mA

    untuk menggerakkan foto transistor.

    Tegangan Maju

    Tegangan yang masuk melewati LED sampai mrnyala, untuk mulai menggerakkan LED

    diberikan tegangan 0.7V, dan secara khas LED diberi tegangan diatas 1V.

    Arus gelap kolektor

    Arus yang dapat mengalir melewati output foto transistor sewaktu dalam keadaan mati.

    Arus elektroda yang mengalir kalau tidak ada arus penyinaran jatuh kepada foto

    transistor, kuat arus itu bergantung kepada suhu

    Tegangan saturasi kolektor - emiter

    Tegangan antara kolektor dengan emiter waktu output transistor dalam keadaan penuh

    (saturasi / jenuh).

  • 74

    Tahanan Isolasi

    Tahanan dari bagian input terhadap bagian output. Dan seharusnya nilai tahanannya

    sangat tinggi.

    Waktu respon

    Waktu bangkit dan waktu jatuh adalah waktu tegangan keluaran dari 0 sampai

    maksimum. Waktu bangkit sangat tergantung pada beban resistor, sejak di tarik keluar

    Minimal tahanannya 100 ohm. Frekwensi Cutoff

    Frekwensi ini merupakan frekwensi tertinggi dari gelombang segi empat yang bisa di

    berikan melalui opto isolator. Benar benar frekwensi dimana tegangan keluaran

    (output) hanya diayunkan setengah amplitudo dari level tegangan DC (- 3 db = setengah)

    oleh karena itu ada hubungan antra waktu bangkit dengan waktu jatuh.

    Current Transfer Ratio (CTR)

    Rasio ini dari seberapa besar arus kolektor dalam keluaran (output) transistor yang bisa

    memberikan nilai pasti dari arus maju dalam bagian input LED. Ini sangat di pengaruhi

    dari seberapa dekat LED dengan foto transistor dalam optocoupler, seberapa efesien dari

    dua alat tersebut, dan faktor lainnya. Dalam kenyataan tidak konstan tapi bervariasi

    sesuai dengan arus maju LED.

    Gambar diagram Blok konfigurasi optocoupler bisa di lihat pada gambar 2.26 berikut;

  • 75

    Gambar 2.27 Konfigurasi Diagram Blok Optocoupler

    jadi input dari optocoupler adalah Dioda LED yang berguna sebagai penerima data, dan

    outputnya bisa berupa transistor, foto dioda, foto transistor dan foto IC yang berguna

    sebagai pengirim data,

    karakteristik input akan sama, dimana karekteristik bisa dilihat pada gambar 2.27

    dibawah ini;

  • 76

    Gambar 2.29 Karekteristik Dioda LED

    Threshold arus bias maju mendekati 1 Volt, dan arus bertambah secara eksponen. Arus

    IF (Arus dioda forward) mulai naik antara 1 mA sampai 100 mA dikirim pada tegangan

    VF di antara 1.1 sampai 1.3 Volt. . Arus IR (Arus dioda reverse) mulai naik antara 1 mA

    sampai 100 mA dikirim pada tegangan VR di antara 13 sampai 14.2 Volt.

    Contoh Gambar rangkaian elektronika sederhana dengan menggunakan optocoupler

    4N25 sebagai berikut;

  • 77

    Gambar 2.30. Rangkaian Sederhana dengan Menggunakan Opto 4N25

    Dari gambar 2.30 diatas jenis optoisolator diatas menggunakan foto transistor sebagai

    keluaran. Merupakan optoisolator termurah dan tentunya mempunyai kekurangan.

    waktu bangkit sinyal gelombang output optocoupler lebih lambat dari waktu jatuh sinyal

    gelombang output karena sinyal tegangan sebelum ke output melewati 4K7 pull up

    transistor, jika waktu sinyal bangkit output ingin di percepat maka nilai tahanan resistor

    ini bisa dikurangi.

    Waktu LED terlewati arus 10mA, maka LED akan nyala dan menyinari ke foto

    transistor dan kemudian menghasilkan sinyal output. Yang menghasilkan 0 V atau sama

    dengan ground. Ada sisa-sisa elektron dari LED yang tidak bisa di kirimkan ke foto

    transistor. Optocoupler bisa juga mengirim sinyal PWM (pulse width modulation).

    Untuk menghasilkan output yang diinginkan, oleh karena sinar LED hanya mengenai

    basis foto transistor maka bagian emitter foto transistor di berikan tegangan 12 V.

  • 78

    2.11.1 Relay

    Relay adalah sebuah saklar yang beroperasi secara elektrikal dengan elektromagnet yang

    mengatur hubungan buka atau tutup dari rangkaian elektronika luar.

    Arus yang mengalir melalui lilitan dari relay membuat medan magnet dimana menarik

    terdapat dua posisi saklar yang berbeda. Jika nyala maka lilitan dialiri listrik sehingga

    besi yang dililiti menjadi magnet.

    Waktu arus mengalir melalui lilitan, menghasilkan medan magnet yang menarik armatur

    (material fero magnet yang di gunakan untuk mengkoneksikan kutub kutub magnet)

    secara mekanik yang terhubung dengan besi penggerak.dan besi itu bergerak. Waktu

    arus tidak nyala lagi pada lilitan, gerakan armatur di kembalikan oleh gaya, kira kira

    setengah se keras dengan gaya magnet dalam posisi keadaan tenang. Biasanya ini adalah

    per atau pegas. Kebanyakan relay beroperasi dengan cepat. Menggunakan catu daya

    yang rendah, mengurangi kebisingan dan mengurangi terjadi percikan listrik.

    Jika lilitan di aliri tegangan DC, biasaya dioda di pasang pada lilitan dengan melintasi

    sebuah relay, untuk membuang energi dari kegagalan medan magnet dalam keadaan

    tidak aktif, yang bisa membangkitkan percikan tegangan yang mungkin bisa merusak

    komponen pada sirkuit. Jika lilitan di rancang untuk bisa di bangkitkan dengan tegangan

    AC, cincin tembaga kecil dapat berkerut pada ujung kumparan solenoid (kalau dialiri

    arus menjadi elektromagnet). Cincin pembuat bayangan ini membuat arus kecil dalam

    fase yang berbeda beda, dimana menambah tarikan minimum pada armatur dalam

    perptaran tegangan AC. [15]

    Sangat banyak macam jenis relay, yang di pakai pada skripsi PLC ini relay yang

    ber jenis solid state relay

    Solid-state relay

  • 79

    Gambar.2.31. Solid State Relay

    Solid State Relay (SSR) ini merupakan komponen elektronik yang beberbentuk

    zat padat yang memberikan fungsi yang serupa pada sebuah relay elektromekanik yang

    tidak mempunyai armatur atau benda benda yang bergerak. Menambah masa tahan uji.

    Solid State Contactor Relay

    Solid state contactor ini merupakan solid state relay yang mempunyai fungsi

    lebih berat, termasuk penenggelaman panas, di gunakan sebagai penggantian panas

    elektrik, motor elektrik yang kecil dan pembebanan