plasma polymers as surfaces of controllable chemistry

23
Plasma polymers as surfaces of controllable chemistry Morgan Alexander

Upload: vila

Post on 01-Feb-2016

42 views

Category:

Documents


0 download

DESCRIPTION

Plasma polymers as surfaces of controllable chemistry. Morgan Alexander. Functional composition Reducing adhesion Promoting adhesion Chemical gradients. Environment. water / adhesive resin / biological media. interface. Organic film. self assembled layers/ polymers. interface. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Plasma polymers as surfaces of controllable chemistry

Plasma polymers as surfaces of controllable chemistry

Morgan Alexander

Page 2: Plasma polymers as surfaces of controllable chemistry

• Functional composition

• Reducing adhesion

• Promoting adhesion

• Chemical gradients

Page 3: Plasma polymers as surfaces of controllable chemistry

Environment

Organic film

Surface

Components of a coating

• Functional composition

• Reducing adhesion

• Promoting adhesion

• Chemical gradients

Page 4: Plasma polymers as surfaces of controllable chemistry

Cold/non-equilibrium low pressure plasma apparatus

SUBSTRATE

PLASMA

(Situated within, or downstream of the plasma)

PLASMA DEPOSIT

VACUUM TIGHT VESSEL

• ENERGY SOURCE Capacitively or inductively coupled, to sustain the plasma after the initial ionisation event. =0 Hz(DC)-13.56 kHz(RF)- 2.45 GHz (MW).

• PUMPING Used to regulate the pressure in the reactor. Typically,

base pressure 1 Pa (10-2 torr)monomer pressure 40 Pa

• GAS INTRODUCTION SYSTEM Used to regulate the

introduction of monomer vapour and gases.

• Functional composition

• Reducing adhesion

• Promoting adhesion

• Chemical gradients

Page 5: Plasma polymers as surfaces of controllable chemistry

• Functional composition

• Reducing adhesion

• Promoting adhesion

• Chemical gradients

Kelly, J. M., Short, R. D. & Alexander, M. R. Experimental evidence of a relationship between monomer plasma residence time and carboxyl group retention in acrylic acid plasma polymers. Polymer 44, 3173-3176 (2003).

Page 6: Plasma polymers as surfaces of controllable chemistry

CH2 CH ~O

+ CO

O

CH2 CH ~

OH

PP d

epos

it

C

H2C=CH

OHO

COH

OPP d

epos

it

Exploration of plasma polymerised acrylic acid (ppAAc) Exploration of plasma polymerised acrylic acid (ppAAc) coatings to promote adhesion to aluminium: rationalecoatings to promote adhesion to aluminium: rationale

Environmental drive to remove chromates from processes.

• Functional composition

• Reducing adhesion

• Promoting adhesion

• Chemical gradients

Page 7: Plasma polymers as surfaces of controllable chemistry

Molecular structure of ppAAc: Static SIMS

m/z 71, 143, 215 and 287 H[CH2-CH(COOH)]n-CH=CH-C(=O)O-, where n=0 to 3.(cyclic structures are also possible)

150 200 250 300 350

m/z

250

200

150

100

50

400

215

289361

171157

287

261243229

189

387315301

Counts

0 50 100 150m/z

O

OH

CHC H

2

--

-

-

5971

732

4

6

8

10

12

14

x 10Counts

143145

125

99

x 35

41

113

4

P=2W P=20W

m/z=361 H[CH2-CH(COOH)]4-CH2-CH2-C(=O)O-

m/z=387 CH2=CH-[CH2-CH(COOH)]4-CH2-CH2-C(=O)O-

i.e. 6 monomer repeat units

• Functional composition

• Reducing adhesion

• Promoting adhesion

• Chemical gradients

Alexander, M. R. & Duc, T. M. The chemistry of deposits formed from acrylic acid plasmas. J. Mater. Chem. 8, 937-943 (1998).

Page 8: Plasma polymers as surfaces of controllable chemistry

C1s core level from ppAAc

P = 20 W

P = 2 W

C-OX

C(=O)-OX

C=O

C-C/CH

C-C(=O)-OX

• Functional composition

• Reducing adhesion

• Promoting adhesion

• Chemical gradients

Alexander, M. R. & Duc, T. M. The chemistry of deposits formed from acrylic acid plasmas. J. Mater. Chem. 8, 937-943 (1998).

Page 9: Plasma polymers as surfaces of controllable chemistry

C1s core level from TFE derivatised PAA

O O-CH2CF3

C

(CH2 CH)n

• Functional composition

• Reducing adhesion

• Promoting adhesion

• Chemical gradients

Alexander, M. R. & Duc, T. M. The chemistry of deposits formed from acrylic acid plasmas. J. Mater. Chem. 8, 937-943 (1998).

Page 10: Plasma polymers as surfaces of controllable chemistry

Full quantification of the functional and elemental composition

2 W 20 W [O]/ [C] 0.72 0.39

C(=O)OH 22 4 C(=O)O-C 5 11 C(=O)O-C 5 11 C-OH 0 0 C-O-C 0 0 C=O 1 3 CH2/C-C 66 74

• Functional composition

• Reducing adhesion

• Promoting adhesion

• Chemical gradients

Alexander, M. R. & Duc, T. M. The chemistry of deposits formed from acrylic acid plasmas. J. Mater. Chem. 8, 937-943 (1998).

Page 11: Plasma polymers as surfaces of controllable chemistry

Carboxylic acid concentration as a function of copolymer in feed

0

5

10

15

20

25

0.0 0.2 0.4 0.6 0.8

Proportion of 1,7 octadiene

[C(=

O)O

H]

As-deposited water rinsed hexane rinsed

• Functional composition

• Reducing adhesion

• Promoting adhesion

• Chemical gradients

CH2=CH-[CH2]5=CH2

Alexander, M. R. & Duc, T. M. A study of the interaction of acrylic acid/1,7-octadiene plasma deposits with water and other solvents. Polymer 40, 5479-5488 (1999).

Page 12: Plasma polymers as surfaces of controllable chemistry

The solubility of ppAAc

0

20

40

60

80

100

120

0 5 10 15 20P / W

Thi

ckne

ss /

Å

Overlayer thickness of ppAAc on aluminium after rinsing with water () and ethanol () versus plasma deposition power, P.

• Functional composition

• Reducing adhesion

• Promoting adhesion

• Chemical gradients

Alexander, M. R. & Duc, T. M. A study of the interaction of acrylic acid/1,7-octadiene plasma deposits with water and other solvents. Polymer 40, 5479-5488 (1999).

Page 13: Plasma polymers as surfaces of controllable chemistry

• Functional composition

• Reducing adhesion

• Promoting adhesion

• Chemical gradients

Plasma polymer chemical gradients combined with automated small spot XPS: An efficient method of investigating surface chemistry- adsorbate interactions

Whittle, J. D., Barton, D., Alexander, M. R. & Short, R. D. A method for the deposition of controllable chemical gradients. Chem. Comm., 1766-1767 (2003).

Page 14: Plasma polymers as surfaces of controllable chemistry

• Functional composition

• Reducing adhesion

• Promoting adhesion

• Chemical gradients

Immersed in a 5W octadiene-acrylic acid plasma

-drawer retracted and Oct-AAc ratio varied

Whittle, J. D., Barton, D., Alexander, M. R. & Short, R. D. A method for the deposition of controllable chemical gradients. Chem. Comm., 1766-1767 (2003).

Page 15: Plasma polymers as surfaces of controllable chemistry

• Functional composition

• Reducing adhesion

• Promoting adhesion

• Chemical gradients

Printed using CasaXPS

C 1s/17

290 288 286 284 282 280

Binding Energy (eV)

x 102

010

2030

4050

6070

CP

S

Distance/ 0.5 mm steps

XPS C1s core levels

0.7 mm

0.3

0.5 mm

1 mm (FWHM)

X-ray illumination

electronextractionarea

E =0.65eV mm-1

0.7 mm

0.3

0.5 mm

1 mm (FWHM)

X-ray illumination

electronextractionarea

E =0.65eV mm-1E =0.65eV mm-1

Whittle, J. D., Barton, D., Alexander, M. R. & Short, R. D. A method for the deposition of controllable chemical gradients. Chem. Comm., 1766-1767 (2003).

Page 16: Plasma polymers as surfaces of controllable chemistry

• Functional composition

• Reducing adhesion

• Promoting adhesion

• Chemical gradients

Co-plasma polymerisation of acrylic acid-octadiene

Printed using CasaXPS

C 1s/27

HO-C=o C H

C-OC=O

COORC-COOR

O 1

s

C 1

s

x 102

0

5

10

15

20

25

30

35

40

45

CP

S

300 290 280Binding Energy (eV)

Printed using CasaXPS

C 1s/117

O=CoH

CH

C-OXC=O

COOR C-COOR

O 1

s

C 1

s

x 102

0

10

20

30

40

50

60

70

CP

S

300 290 280Binding Energy (eV)

Acrylic acidOctadiene

Page 17: Plasma polymers as surfaces of controllable chemistry

• Functional composition

• Reducing adhesion

• Promoting adhesion

• Chemical gradients

Co-plasma polymerisation of acrylic acid-octadiene

Trifluoro ethanol derivatisation-stoichiometric reaction with carboxylic acid functionalities

C-C(=O)-OH + CF3-CH2-OH => C- C(=O)-O-CH2- CF3 + H2O

Printed using CasaXPS

C 1s/140

CH

C-OXC=O C-cOORC F3 O-C-cF3

x 102

5

10

15

20

25

30

35

40

CP

S

300 290 280

Binding Energy (eV)Printed using CasaXPS

C 1s/8

CH

C-OXC=OCOOR C-cOORC F3 O-C-cF3

x 102

10

20

30

40

50

60

70

80

CP

S

300 290 280

Binding Energy (eV)

Acrylic acidOctadiene

Page 18: Plasma polymers as surfaces of controllable chemistry

• Functional composition

• Reducing adhesion

• Promoting adhesion

• Chemical gradients

Co-plasma polymerisation of acrylic acid-octadiene

Trifluoro ethanol derivatisation-stoichiometric reaction with carboxylic acid functionalities

Acrylic acidOctadiene

0

1

2

3

4

5

6

0 2 4 6 8 10 12

Position/mm

[CO

OH

]

0

10

20

30

40

50

60

70

80

90

100

con

cen

trat

ion

of

C a

nd

O,

at%

Page 19: Plasma polymers as surfaces of controllable chemistry

• Functional composition

• Reducing adhesion

• Promoting adhesion

• Chemical gradients

Co-plasma polymerisation of acrylic acid-octadiene

Fluorine, chlorine and bromine substituted epoxides -reaction with carboxylic acid functionalities 

                    

0

0.1

0.2

0.3

0.4

0.5

0.6

0 2 4 6 8 10 12 14

Position / mm

Co

nc

en

tra

tio

n,

at%

F organic

Cl

Br

  

Alexander, M. R., Whittle, J. D., Barton, D. & Short, R. D. Plasma polymer chemical gradients for evaluation of surface reactivity: epoxide reaction with carboxylic acid surface groups. J. Mater. Chem. 14, 408-412 (2004).

Page 20: Plasma polymers as surfaces of controllable chemistry

• Functional composition

• Reducing adhesion

• Promoting adhesion

• Chemical gradients                     

  

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0 1 2 3 4 5 6

[COOH]

F, C

l, B

r co

nce

ntr

atio

n a

t%

F organic

Cl

Br

Co-plasma polymerisation of acrylic acid-octadiene

Fluorine, chlorine and bromine substituted epoxides -reaction with carboxylic acid functionalities

Page 21: Plasma polymers as surfaces of controllable chemistry

• Functional composition

• Reducing adhesion

• Promoting adhesion

• Chemical gradients

Summary

Gradients of controlled functional concentration can be deposited- carboxylic acid- amine

Immobilisation can be achieved though the carboxylic acid functionality- trifluoro ethanol (stoichiometric)- halogen substituted epoxides (indicative of reaction of epoxy with

carboxylic acid)

Applications

These gradients and uniform plasma polymer surfaces have be utilised in studies where cell attachment has been controlled and for structural adhesion control. A bibliography is provided on the next slide.

Page 22: Plasma polymers as surfaces of controllable chemistry

Selected publications (involving MR Alexander) on plasma polymers and cells1. Zelzer, M., Albutt, D., Alexander, M. & Russell, N. The Role of Albumin and Fibronectin in the Adhesion of Fibroblasts to Plasma Polymer Surfaces. Plasma Processes and Polymers 8 (2012).2. Zelzer, M. & Alexander, M. Nanopores in Single- and Double-Layer Plasma Polymers Used for Cell Guidance in Water and Protein Containing Buffer Solutions. Journal of Physical Chemistry B 114, 569–576 (2010).3. Majani, R., Zelzer, M., Gadegaard, N., Rose, F. R. & Alexander, M. R. Preparation Of Caco-2 Cell Sheets Using Plasma Polymerised Acrylic Acid As A Weak Boundary Layer. Biomaterials 31, 6764-6771 (2010).4. Zelzer, M., Majani, R., Bradley, J. W., Rose, F. R. A. J., Davies, M. C. & Alexander, M. R. Investigation of cell–surface interactions using chemical gradients formed from plasma polymers. Biomaterials 29, 172–184 (2008).5. Dehili, C., Lee, P., Shakesheff, K. & Alexander, M. Comparison of primary rat hepatocyte attachment to collagen and plasma polymerised allylamine on glass. Plasmas Processes and Polymers 3, 474–484 (2006).6. Barry, J., Silva, M., Shakesheff, K., Howdle, S. & Alexander, M. Using Plasma Deposits to Promote Cell Population of the Porous Interior of Three-Dimensional Poly(D,L-Lactic Acid) Tissue-Engineering Scaffolds. Advanced Functional Materials 15, 1134-1140 (2005).7. Alexander, M. R., Whittle, J. D., Barton, D. & Short, R. D. Plasma polymer chemical gradients for evaluation of surface reactivity: epoxide reaction with carboxylic acid surface groups. J. Mater. Chem. 14, 408-412 (2004).

Selected publications (involving MR Alexander) on structural applications of plasma polymers1. Pinson, S. J. M., Collins, J., Thompson, G. E. & Alexander, M. R. in Aluminium Surface Science and Technology. 448-453 (ATB Metallurgie, Brussels).2. Dartevelle, C., McAlpine, E., Thompson, G. E. & Alexander, M. R. Low pressure plasma treatment for improving the strength and durability of adhesively bonded aluminium joints. Surface and Coatings Technology 173, 249-258 (2003).3. Pinson, S. J. M., Collins, J., Thompson, G. E. & Alexander, M. R. Atmospheric pressure plasma cleaning of aluminium. Finishing 26, 40-44 (2002).4. Dinelli, F., Leggett, G. J. & Alexander, M. R. Nanowear in scanning force microscopy: Information on deposits formed in and downstream of a hexane plasma. Journal of Applied Physics 91, 3841-3846 (2002).5. Beake, B. D., Zheng, S. & Alexander, M. R. Nanoindentation testing of plasma-polymerised hexane films. Journal of Materials Science 37, 3821-3826 (2002).6. Beake, B. D., Leggett, G. J. & Alexander, M. R. Characterisation of the mechanical properties of plasma- polymerised coatings by nanoindentation and nanotribology. Journal of Materials Science 37, 4869-4877 (2002).7. Pinson, S. J. M., Collins, J., Thompson, G. E. & Alexander, M. R. Atmospheric pressure plasma cleaning of aluminium. Transactions of the Institute of Metal Finishing 79, 155-159 (2001).8. Grunkemeier, J. M., Tsai, W. B., Alexander, M. R., Castner, D. G. & Horbett, T. A. Platelet adhesion and procoagulant activity induced by contact with radiofrequency glow discharge polymers: Roles of adsorbed fibrinogen and vWF. J. Biomed. Mater. Res. 51, 669-679 (2000).9. Alexander, M. R., Zhou, X., Thompson, G. E., Duc, T. M., McAlpine, E. & Tielsch, B. J. Functionalized plasma polymer coatings for improved durability of aluminium-epoxy adhesive joints: fractography. Surf. Interface Anal. 30, 16-20 (2000).

Page 23: Plasma polymers as surfaces of controllable chemistry

Acknowledgements

• Graham Leggett, The University of Sheffield.

• Robert Short, The University of Sheffield.

• Tran Minh Duc, BIOPHY Research

• Graham Beamson, RUSTI, Daresbury.

• Neal Fairley, CasaXPS.

• Eoghan McAlpine, Alcan International, Banbury Laboratory.

• George Thompson, CPC, UMIST.

• Funding: EPSRC & EU Marie Curie.