plant organ growth symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · plant...

175
Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 http://pogs2017.edu.umh.es @POGS2017Elche Covering the latest advances in the biology, modeling and automated phenotyping of root, leaf, shoot and reproductive growth and development

Upload: trancong

Post on 08-Feb-2018

233 views

Category:

Documents


10 download

TRANSCRIPT

Page 1: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

Plant Organ GrowthSymposium 2017

Elche (Spain)March 15-17th, 2017

http://pogs2017.edu.umh.es@POGS2017Elche

Covering the latest advances inthe biology, modeling and automatedphenotyping of root, leaf, shoot and

reproductive growth and development

Page 2: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering
Page 3: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

Plant Organ Growth Symposium 2017

15-17 March 2017

Centro de Congresos “Ciutat d’Elx” Elche, Spain

Page 4: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

2

Page 5: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

Committees and sponsors 3

Local Organising Committee

Prof. José Luis Micol Prof. María Rosa Ponce

Dr. David Wilson-Sánchez Dr. Raquel Sarmiento-Mañús

Scientific Committee

Prof. José Luis Micol (UMH, Elche, Spain) Prof. Dirk Inzé (VIB, Ghent, Belgium)

Dr. Nathalie Gonzalez (VIB, Ghent, Belgium)

Sponsors

Ayuntamiento de Elche Generalitat Valenciana

Instituto de Bioingeniería Universidad Miguel Hernández de Elche (UMH) VIB-UGent Department of Plant Systems Biology

Page 6: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

4

Page 7: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

Table of contents 5

Table of contents Program ........................................................................ 7

Talks, oral communications, and posters ................... 13

Abstracts .................................................................... 23

Author index ............................................................ 149

Participant list .......................................................... 159

Page 8: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

6

Page 9: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

Program

Page 10: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

8

Page 11: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

Program 9

Wednesday,March15th8:00-9:00Registration9:00-9:05WelcomeandintroductiontothemeetingbyJoséLuisMicolSession1:RootgrowthanddevelopmentChair:MalcolmBennett9:05-9:45MalcolmBennett,UniversityofNottingham,UK9:45-10:25AlexisMaizel,UniversityofHeidelberg,Germany10:25-11:05MasaakiUmeda,NaraInstituteofScienceandTechnology,

Japan11:05-11:35Coffeebreak11:35-13:30Shortpresentations

GregoryVert,InstituteforIntegrativeBiologyoftheCell,Paris,FranceIdanEfroni,TheHebrewUniversity,Rehovot,IsraelThomasBlein,InstituteofPlantSciences,Orsay,FranceNaokiTakahashi,NaraInstituteofScienceandTechnology,JapanJosSchippers,Rheinish-WestphalianTechnicalUniversityAachen,

GermanyBenjaminPéret,CNRSBiochimieetPhysiologieMoléculairedes

Plantes,Montpellier,FranceKrisVissenberg,UniversityofAntwerp,BelgiumKiflemarianY.Belachew,UniversityofHelsinki,FinlandJ.CarlosdelPozo,CentrodeBiotecnologíayGenómicadePlantas,

Madrid,Spain13:30-14:30LunchSession2:ReproductivegrowthanddevelopmentChair:EsthervanderKnaap14:30-15:10EsthervanderKnaap,UniversityofGeorgia,Athens,USA15:10-15:50LoïcLepiniec,InstituteJean-PierreBourgin,Versailles,France15:50-16:30JoseFeijó,UniversityofMaryland,USA16:30-17:00Coffeebreak17:00-18:15Shortpresentations

AntonioVera,UniversidadMiguelHernández,SantJoand’Alacant,SpainSamvanEs,WageningenUniversityandResearch,TheNetherlandsConstanceMusseau,UniversityofBordeaux,FranceFernandoPérez-Martín,UniversidaddeAlmería,SpainMartineLemaire-Chamley,UniversityofBordeaux,FranceMarcosEgea-Cortines,UniversidadPolitécnicadeCartagena,Spain

18:15-20:00Refreshmentsandposterviewing

Page 12: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

Program 10

Thursday,March16thSession3:LeafandshootgrowthanddevelopmentIChair:NeelimaSinha9:00-9:40JoséLuisMicol,UniversidadMiguelHernández,Elche,Spain9:40-10:20NeelimaSinha,UniversityofCalifornia,Davis,USA10:20-11:00HirokazuTsukaya,UniversityofTokyo,Japan11:00-11:30Coffeebreak11:30-13:00Shortpresentations

KatharinaBürstenbinder,LeibnizInstituteofPlantBiochemistry,Halle,Germany

SanderCorneille,VIB-UGentCenterforPlantSystemsBiology,BelgiumMariekeDubois,InstitutdeBiologieMoléculairedesPlantes,

Strasbourg,FranceSanderHulsmans,UniversityofLeuven,BelgiumBulelaniSizani,UniversityofAntwerp,BelgiumAlicjaKunkowska,Rheinish-WestphalianTechnicalUniversityAachen,

GermanyEnriqueRojo,CentroNacionaldeBiotecnología,Madrid,Spain

13:00-14:30LunchSession4:LeafandshootgrowthanddevelopmentIIChair:MarjaTimmermans14:30-15:10MarjaTimmermans,ColdSpringHarborLaboratory,USA,

andUniversityofTübingen,Germany15:10-15:50MiltosTsiantis,MaxPlankInstituteforPlantBreeding

Research,Köln,Germany15:50-16:20Coffeebreak16:20-17:10Shortpresentations

MiguelA.Blázquez,InstitutodeBiologíaMolecularyCelulardePlantas,Valencia,Spain

SaraFarahi-Bilooei,RoyalHollowayUniversityofLondon,UKBinishMohammed,JohnInnesCentre,Norwich,UKReidunnAalen,UniversityofOslo,Norway

KeynotelectureChair:JoséLuisMicol17:10-18:05DirkInzé,VIB-UGentCenterforPlantSystemsBiology,

Belgium18:05-20:00Refreshmentsandposterviewing

Page 13: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

Program 11

Friday,March17thSession5:ModelingandphenotypingChair:ThomasAltmann9:00-9:40ThomasAltmann,LeibnizInstituteofPlantGeneticsandCrop

PlantResearch,Gatersleben,Germany9:40-10:20NathalieWuyts,VIB-UGentCenterforPlantSystemsBiology,

Gent,Belgium10:20-11:00OlivierLoudet,InstituteJean-PierreBourgin,Versailles,

France11:00-11:30Coffeebreak11:30-12:45Shortpresentations

BeataOrman,UniversityofLiège,BelgiumUrsFischer,UmeåPlantScienceCentre,SwedenRadkaSlovak,GregorMendelInstitute,Vienna,AustriaChvanYoussef,UniversitédeLorraine,Champenoux,FranceJimMurray,CardiffUniversity,Wales,UKNuriaDeDiego,PalackýUniversity,Olomouc,CzechRepublic

12:45-13:00SymposiumadjournmentandannouncementofnextmeetingbyNathalieGonzalez

13:00-14:30Lunch

Page 14: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

12

Page 15: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

Index of talks, oral communications,

and posters

Page 16: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

14

Page 17: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

Talks, oral communications, and posters 15

SESSION 1: Root growth and development

New angles on root growth and development using systems & phenotyping based approaches Bennett, M.J. .......................................................................................................... 27 Auxin dependent cell remodelling during lateral root morphogenesis in Arabidopsis Maizel, A., Vilches-Barro, A., Bald, L., Schubert, M., Ruiz-Duarte, P., Vodermaier, V., Vermeer, J., Smith, J., and Doe, J. ................................................................... 28 Hormonal control of genome integrity in roots Umeda, M., and Takahashi, N. .............................................................................. 29 Brassinosteroid signaling-dependent root growth responses to prolonged elevated ambient temperature in Arabidopsis Martins, M., Montiel-Jorda, A., and Vert, G. ........................................................ 30 Roots regeneration activates an embryonic developmental sequence guided by antagonistic hormonal interactions Efroni, I., Mello, A., Nawy, T., Ip, P.L., DelRose, N., Rahni, R., Powers, A., Satija, R., and Birnbaum, K. ............................................................................................. 31 Ecotype-related long non-coding RNAs in environmental control of root growth Blein, T., Balzergue, C., Gabriel, M., Scalisi, L., Sorin, C., Christ, A., Nussaume, L., Hartmann, C., Gautheret, D., Desnos, T., and Crespi, M. ................................ 32 Brassinosteroids are involved in stem cell replenishment in Arabidopsis roots under DNA damage Takahashi, N., and Umeda, M. .............................................................................. 34 The N-end rule controls root meristem cell proliferation through a Myb-like transcription factor Krings, J., Schmidt, R., and Schippers, J.H.M....................................................... 35 Unravelling cluster root development in white lupin Péret, B. .................................................................................................................. 36 The auxin-regulated kinase ERULUS controls root hair growth through cell wall pectin modifications in Arabidopsis thaliana Schoenaers, S., Balcerowicz, D., Breen, G., Hill, K., Zdanio, M., Markakis, M.N., Mouille, G., Holman, T.J., Oh, J., Wilson, M.H., Swarup, R., Grierson, C.S., Bennett, M.J., and Vissenberg, K. ......................................................................... 37 Root and shoot traits for drought tolerance in faba bean (Vicia faba L.) Belachew, K.Y., Nagel, K.A., and Stoddard, F.L. ................................................. 39 Light and flavonols limits root growth and responses del Pozo, J.C., Silva-Navas, J., Moreno-Risueno, M.A., Manzano, C., Téllez-Robledo, B., Navarro-Neila, S., Carrasco, V., Pollmann, S., and Gallego, F.J. .... 41

SESSION 2: Reproductive growth and development

The role of OVATE Family Proteins in tomato fruit patterning Van der Knaap, E., Wu, S., Keyhaninejad, N., and Meulia, T. ............................. 45

Page 18: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

Talks, oral communications, and posters 16

Dissecting the conserved LAFL gene regulatory network that controls seed development Dubreucq, B., Baud, S., Boulard, C., Fatihi, A., Fiume, E., Kelemen, Z., Miquel, M., Thévenin, J., To, A., and Lepiniec, L. ............................................................ 46 Glutamate Receptor-Like (GLR) channels in plants: evolution and function on Ca homeostasis in sperm and male reproduction Feijó, J.A. .............................................................................................................. 47 The HUA-PEP ribonucleoproteins regulate ovule development in Arabidopsis via post-transcriptional control of D-function identity genes Rodríguez-Cazorla, E., Ortuño-Miquel, S., Ripoll, J.J., Candela, H., Bailey, L.J., Yanofsky, M.F., Martínez-Laborda, A., and Vera, A. .......................................... 48 How TCP5 keeps the Arabidopsis petal in good shape van Es, S.W., Rocha, D.I., Silveira, S.R., Bimbo, A., van der Wal, F., Martinelli, A.P., Dornelas, M.C., Angenent, G.C., and Immink, R.G.H. ................................ 50 Tomato MEDIATOR COMPLEX SUBUNIT 18 (MED18) plays a key role in pollen development: evidences from the functional analysis of pollen deficient 1 (pod1) mutant Pérez-Martín, F., Yuste-Lisbona, F.J., Giménez, E., Pineda, B., Capel, C., García-Sogo, B., Sánchez, S., Angosto, T., Capel, J., Moreno, V., and Lozano, R. ......... 51 A direct genetic strategy for identifying novel regulators of fruit tissue morphology in tomato Musseau, C., Jorly, J., Just, D., Lemaire-Chamley, M., Chevalier, C., Rothan, C., Gévaudant, F., and Fernandez, L. .......................................................................... 53 Tomato fruit locular tissue differentiation is regulated by a C2H2 transcription factor Viron, N., Jorly, J., Noilhan, B., Brès, C., Mauxion, J.P., Garcia, V., Wong Jun Tai, F., Rothan, C., and Lemaire-Chamley, M. ............................................................. 54 Identification of organ-specific clock structure and outputs of growth using artificial vision systems and Machine Learning processing Weiss, J., Perez-Sanz, F., Navarro, P.J., Terry, M.-I., and Egea-Cortines, M. ...... 55

SESSION 3: Leaf and shoot growth and development I

Role of DESIGUAL1 and auxin in bilateral symmetry of Arabidopsis leaves Wilson-Sánchez, D., Navarro-Cartagena, S., Lup, S.D., and Micol, J.L. .............. 59 Using gene networks to elucidate developmental processes Ichihashi, Y., Zumstein, K., Nakayama, H., Farhi, M., and Sinha, N. .................. 60 Cell proliferation and cell expansion in leaves Tsukaya, H. ............................................................................................................ 61 Calmodulin-binding IQD proteins are essential for cell plane selection and cell shape formation in Arabidopsis thaliana Bürstenbinder, K., Mitra, D., Abel, S., and Möller, B. .......................................... 62 Effect of higher ploidy levels on plant growth and biomass composition Corneille, S., Vanholme, B., and Boerjan, W. ....................................................... 63

Page 19: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

Talks, oral communications, and posters 17

The plant-specific CDK-inhibitory proteins SMR1 and SMR5 are regulated post-translationally and stabilized under water-limiting conditions to participate in cell cycle arrest and growth repression Dubois, M., Marrocco, K., Bach, L., Lamy, G., Granier, C., and Genschik, P. .... 64 Transient reconstitution of the plant cell cycle regulatory machinery in leaf mesophyll protoplasts to identify direct SnRK1 growth targets Hulsmans, S. , and Rolland, F. ............................................................................... 65 Increased leaf size of Arabidopsis plants missing multiple KRP genes is an indirect consequence of early seed abortion Sizani, B.L., Kalve, S., Nektarios, M.M., Domagalska, M.A., Stelmaszewska, J., Veylder, L.D., Gerth, S., De Vos, D., Schnittger, A., and Beemster, G.T.S. ........ 66 A transcriptional repressor complex controls ROS homeostasis during leaf growth Kunkowska, A.B., and Schippers, J.H.M. ............................................................. 67 IYO and RIMA are co-transported into the nucleus to activate cell differentiation González-García, M.P., Sanmartín, M., Contreras, R., Muñoz, A., Sánchez-Serrano, J.J., and Rojo, E. .................................................................................................... 68

SESSION 4: Leaf and shoot growth and development II

Small RNAs as mobile, morphogen-like signals in development Skopelitis, D., Benkovics, A., Husbands, A., and Timmermans, M. ..................... 71 The genetic basis for diversification of leaf form: from understanding to reconstructing Tsiantis, M. ............................................................................................................ 72 Auxin methylation is required for differential growth in Arabidopsis Abbas, M., Hernández-García, J., Pollmann, S., Samodelov, S.L., Kolb, M., Friml, J., Hammes, U., Zurbriggen, M., Alabadí, D., and Blázquez, M.A. ...................... 73 Control of leaf cellular proliferation, differentiation and growth by light: establishing and distinguishing the roles of hormonal- and sugar-signalling Farahi-Bilooei, S., Mohammed, B., Bogre, L., and Lopez-Juez, E. ...................... 74 Using spatial and temporal interferences to study leaf development Mohammed, B., Lopez-Juez, E., and Grieneisen, V.A. ......................................... 75 A CW-MBD protein, binding methylated DNA and chromatin with H3K4 methylation, controls leaf size in Arabidopsis by regulation of key genes involved in the transition from leaf cell proliferation to cell expansion Iversen, V., Nenseth, H.Z., Nateland, L., and Aalen, R.B. .................................... 76

KEYNOTE LECTURE

Plant Growth: The Final Frontier Inzé, D. ................................................................................................................... 79

Page 20: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

Talks, oral communications, and posters 18

SESSION 5: Modeling and phenotyping

Plant phenotyping reveals genetic and physiological factors of plant performance Altmann, T., Muraya, M., Chu, J., Zhao, Y., Junker, A., Tschiersch, H., Klukas, C., Reif, J.C., Riewe, D., Meyer, R.C., Jeon, H.J., Heuermann, M., Schmeichel, J., Seyfarth, M., Lisec, J., and Willmitzer, L. ............................................................. 83 Cell to whole-plant phenotyping in support of the integrative analysis of growth regulatory networks Wuyts, N. ............................................................................................................... 85 Natural variation for growth response to the environment in Arabidopsis thaliana Loudet, O. .............................................................................................................. 86 Rapid repression of lateral root formation under transient water deficit reveals a novel mechanism of ABA-mediated morphological plasticity in cereal species and Arabidopsis Orman, B., Lavigne, T., Parizot, B., Babé, A., Séverin, J.P., Xuan, W., Ligeza, A., Novak, O., Morris, E., Sturrock, C., Ljung, K., Rodriguez, P.L., Dodd, I.C., De Smet, I., Chaumont, F., Batoko, H., Périlleux, C., Bennett, M.J., Beeckman, T., and Draye, X. ................................................................................................................ 87 Cell divisions in columella initials trigger root cap abscission at a local auxin response minimum Dubreuil, C., Jin, X., Grönlund, A., and Fischer, U. ............................................. 89 An adenylate kinase regulates ribosome biogenesis, cell proliferation, cell size and natural variation in root growth Slovak, R., Setzer, C., Roiuk, M., Göschl, C., Jandrasits, K., and Busch, W. ...... 90 Assessing the variability of root growth components in poplar Youssef, C., Hummel, I., Bizet, F., Bastien, R., Legland, D., and Bogeat-Triboulot, M.B. ....................................................................................................................... 91 Cell-size dependent progression of the cell cycle creates both homeostasis and flexibility of plant cell size Jones, A.R., Forero-Vargas, M., Withers, S.P., Smith, R.S., Traas, J., Dewitte, W., and Murray, J......................................................................................................... 92 High-throughput screening of Arabidopsis shoot growth in multi-well plates De Diego, N., Fürst, T., Humplík, J.F., Ugena-Consuegra, L., Podlešáková, K., and Spíchal, L. .............................................................................................................. 93

POSTERS

The role of KNOX in shaping leaf forms Kierzkowski, D., Runions, A., Vuolo, F., Dello Ioio, R., and Tsiantis, M. ........... 97 Modeling secondary growth in the Arabidopsis root cambium Adibi, M., Smetana, O., Broholm, S., Smith, R.S., and Mähönen, A.P. ............... 98

Page 21: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

Talks, oral communications, and posters 19

A developmental framework for adventitious root development in Arabidopsis thaliana Ibáñez, S., Sánchez-García, A.B., Fernández-López, M., Micol, J.L., and Pérez-Pérez, J.M. ............................................................................................................. 99 Hormonal signaling of adventitious root formation in tomato hypocotyls after wounding Alaguero, A., Villanova, J., Cano, A., Acosta, M., and Pérez-Pérez, J.M. ......... 100 Communication of loss: A novel peptide ligand-receptor pair is involved in root cap sloughing in Arabidopsis Shi, C., Herrmann, U., Wildhagen, M., and Aalen, R.B. ..................................... 101 A genome-wide association study identifies new loci for root formation after wounding Justamante, M.S., Ibáñez, S., and Pérez-Pérez, J.M. ........................................... 102 Characterization and diversity of rhizobia nodulating Lablab purpureus Benselama, A., Ounane, S.M., and Bekki, A. ...................................................... 103 Meiotic abnormalities during gamete formation in triploid Limonium algarvense (Plumbaginaceae) Conceição, S. , and Caperta, A.D. ...................................................................... 104 Patterns of Ser 10 phosphorylation of histone H3 and of tubulin during male sporogenesis in diploid and polyploid Limonium species (Plumbaginaceae) Conceição, S., Silva, N., and Caperta, A.D. ........................................................ 106 Antagonistic interaction between A and C floral homeotic activities is critical for ovule development in Arabidopsis Rodríguez-Cazorla, E., Ortuño-Miquel, S., Cruz-Valerio, M., Bailey, L.J., Yanofsky, M.F., Ripoll, J.J., Martínez-Laborda, A., and Vera, A. ..................... 107 PPD-KIX, a conserved protein repressor complex regulating leaf growth in dicots Baekelandt, A., Gonzalez, N., Pauwels, L., Swinnen, G., Doorsselaere, J.V., Jaeger, G.D. , Goossens, A., and Inzé, D. ........................................................................ 108 TCTP interacts with TIP to control cell proliferation and organ development in Arabidopsis thaliana Betsch, L., Pontier, G., Brioudes, F., Boltz, V., Tissot, N., Bendahmane, M., and Szécsi, J. ............................................................................................................... 110 Characterization of the regeneration process in plant´s wounds: from the nanostructure to the molecular processes Díaz, A.A., Floriach-Clark, J., Capellades, M., Fuentes, J., Laromaine, A., and Coll, N.S. ...................................................................................................................... 111 A novel role of PREFOLDIN in alternative splicing Esteve-Bruna, D., Carrasco-López, C., Blanco-Touriñán, N., Iserte, J., Perea-Resa, C., Calleja-Cabrera, J., Yanovsky, M.J., Blázquez, M.A., Salinas, J., and Alabadí, D. .......................................................................................................................... 112

Page 22: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

Talks, oral communications, and posters 20

Isolation and characterization of an albino T-DNA mutant shows that 1-deoxy-D-xylulose-5-phosphate synthase (DXS1) is essential during tomato plantgrowth and developmentGarcía-Alcázar, M., Giménez, E., Pineda, B., Capel, C., García-Sogo, B., Sánchez,S., Yuste-Lisbona, F.J., Angosto, T., Capel, J., Moreno, V., and Lozano, R. ..... 113 Arabidopsis DENTICULATA10 encodes FTSHI4, a chloroplast protein with a role in leaf dorsoventrality Gutiérrez-Nájera, N., Sarmiento-Mañús, R., Robles, P., Quesada, V., Ponce, M.R., and Micol, J.L. ..................................................................................................... 114 Rice matrix metalloproteinase 1 gene, a key regulator of cell shape and tissue development Kumar Das, P., and Kumar Maiti, M. .................................................................. 115 CW-MBD proteins may provide a link between methylated DNA, histone methylation and euchromatin Iversen, V., Nenseth, H.Z., Nateland, L., and Aalen, R.B. ................................. 116 Roles of epigenetic regulation in inducing endoreplication in plants Takatsuka, H., and Umeda, M. ............................................................................ 117 Arabidopsis CUPULIFORMIS genes: new players on the epigenetics scene Mateo-Bonmatí, E., Juan-Vicente, L., Cerdá-Bernad, D., and Micol, J.L. ......... 118 An analysis of the expression of CUPULIFORMIS genes Juan-Vicente, L., Mateo-Bonmatí, E., and Micol, J.L. ...................................... 119 The INCURVATA11-CUPULIFORMIS2 paralogous gene pair is essential and exhibits unequal functional redundancy Nadi, R., Mateo-Bonmatí, E., Juan-Vicente, L., and Micol, J.L. ........................ 120 The Arabidopsis RIBOSOMAL RNA PROCESSING7 nucleolar protein is required for 40S ribosome subunit biogenesis Micol-Ponce, R., Sarmiento-Mañús, R., Ruiz-Bayón, A., Mora-Navarro, E., and Ponce, M.R........................................................................................................... 121 Arabidopsis SMALL ORGAN4 encodes a nucleolar and nucleoplasmic protein required for 5.8S rRNA maturation Micol-Ponce, R., Sarmiento-Mañús, R., Fontcuberta-Cervera, S., and Ponce, M.R. ..................................................................................................................... 122 Genetic and physical interactions between CAX INTERACTING PROTEIN4 and MORPHOLOGY OF ARGONAUTE1-52 SUPPRESSED2 in Arabidopsis Aceituno-Valenzuela, U., Ruiz-Bayón, A., Sarmiento-Mañús, R., Micol-Ponce, R., and Ponce, M.R. ................................................................................................... 123 Characterization of the Arabidopsis MORPHOLOGY OF ARGONAUTE1-52 SUPPRESSED5 gene Cabezas-Fuster, A., Micol-Ponce, R., Senent-Valero, Y., and Ponce, M.R. ....... 124 The api7 mutant reveals a role for Arabidopsis ABCE proteins in leaf development and venation patterning Navarro-Quiles, C., Sosa-Domínguez, P., Mateo-Bonmatí, E., and Micol, J.L. 125

Page 23: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

Talks, oral communications, and posters 21

The ANGULATA7 gene encodes a DnaJ-like zinc-finger-domain protein involved in chloroplast function and leaf development in Arabidopsis Muñoz-Nortes, T., Pérez-Pérez, J.M., Ponce, M.R., Candela, H., and Micol, J.L......................................................................................................................... 126

Functions of chloroplast ribosome proteins revealed through characterization of the crd mutants of Arabidopsis Robles, P., Ferrández-Ayela, A., Núñez-Delegido, E., and Quesada, V. ........... 127 Functional characterization of the Arabidopsis mitochondrial transcription termination factors mTERF5 and mTERF9 Núñez-Delegido, E., Ferrández-Ayela, A., Robles, P., and Quesada, V. ........... 128 The characterization of the Arabidopsis mterf6-5 mutant reveals a role for the mTERF6 gene in organelle gene expression and plant development Quesada, V., Ferrández-Ayela, A., and Robles, P. .............................................. 129 Elucidating the interaction networks at work in the methyladenosine epitranscriptome Rodríguez-Alcocer, E., Gómez-Peral, N., Hernández-Cortés, C., Ruiz, E., Burillo, E., Jover-Gil, S., and Candela, H. ........................................................................ 130 Impaired maintenance of the dNTP pool causes leaf reticulation in the venosa4 mutants Sarmiento-Mañús, R., Ruiz-Ramírez, J., González-Bayón, R., Quesada, V., Ponce, M.R., and Micol, J.L. ........................................................................................... 131 Artificial microRNAs targeting paralogous genes reveal new roles for transcription factors in Arabidopsis leaf development Ruiz-Bayón, A., Jover-Gil, S., Aguilar-García, A.M., Micol, J.L., and Ponce, M.R. .............................................................................................................................. 132 How does CUC2 regulate leaf serration development in Arabidopsis? Zhang, Z., Ravanelli, S., and Tsiantis, M. ........................................................... 133 A functional link between DESIGUAL1 and cytokinins in early leaf development? Navarro-Cartagena, S., Wilson-Sánchez, D., Nicolás-Albujer, M., Muñoz-Díaz, E., Alcañiz-Pascual, L., and Micol, J.L. ................................................................... 134 Cytokinins regulate Pi homeostasis in Arabidopsis roots Silva-Navas, J., Navarro-Neila, S., Sáez, A., and del Pozo, J.C. ........................ 135 A conserved carbon-starvation response underlies bud dormancy in woody and herbaceous species Tarancón, C., González-Grandío, E., Oliveros, J.C., Nicolás, M., and Cubas, P. 136 Developing Universal Synthetic Promoters driving specific expression in the Arabidopsis and maize leaf Vercruysse, J., Van Bel, M., Storme, V., Nelissen, H., Vandepoele, K., Gonzalez, N., and Inzé, D. .................................................................................................... 137 Advances in the genetic dissection of tomato leaf development from an enhancer trap mutagenesis program Fonseca, R., Yuste-Lisbona, F.J., Pineda, B., Pérez-Martín, F., García-Sogo, B., Atares, A., Angosto, T., Capel, J., Moreno, V., and Lozano, R. ......................... 139

Page 24: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

Talks, oral communications, and posters 22

Simulation of whole-genome sequencing data to improve the design of mapping-by-sequencing experiments Wilson-Sánchez, D., Sarmiento-Mañús, R., Ponce, M.R., and Micol, J.L. ........ 141 Easymap: a program to ease mapping-by-sequencing of large insertions and point mutations Lup, S.D., Wilson-Sánchez, D., Andreu-Sánchez, S., and Micol, J.L. ............... 142 Cloning developmental genes using mapping-by-sequencing Ruiz, E., Rodríguez-Alcocer, E., Jover-Gil, S., and Candela, H. ....................... 143 Relating wheat root architecture to nitrate uptake efficiency using computer simulations of CT data Mellor, N., Griffiths, M., Wells, D., Schafer, E., Owen, M., and Bennett, M.J. . 144 Developing molecular tools for garlic breeding Parreño, R., Gallego, A., Rodríguez-Alcocer, E., Blasco-Espada, D., Gómez del Castillo, F., Castillo Martínez, P., and Candela, H. ............................................. 145 Growth and physiological responses of Globba schomburgkii Hook. f under soil and hydroponic conditions Phantong, P., Machikowa, T., and Muangsan, N. ................................................ 146 Synthesis of chiral alcohols; key intermediaries for the synthesis of bioactive molecules by Medlar; fruit grown in Algeria Zeror, S., and Bennamane, M. ............................................................................. 147

Page 25: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

Abstracts

Page 26: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

24

Page 27: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

SESSION 1: Root growth and development

Page 28: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

26

Page 29: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

SESSION 1: Root growth and development 27

Newanglesonrootgrowthanddevelopmentusingsystems&phenotypingbasedapproachesBennett,M.J.CentreforPlantIntegrativeBiology(CPIB)&HounsfieldFacility,UniversityofNottingham,UK(www.cpib.ac.uk).

Our understanding of root biology has accelerated over the last

decadeinlargeparttogeneticandgenomicapproachesinmodelplantssuchasArabidopsisandrice(reviewedin[1]).Researchershavestartedtostudy the mechanisms controlling root growth and development usingsystemsapproaches (reviewed in [2]).Modeling is set tobecomemuchmoreimportantasourknowledgeofrootregulatorypathwaysbecomesincreasingly complex and their outputs less intuitive. To relate rootgenotype to phenotypewemustmove beyond the network scales andemploymulti-scalemodelingapproachestopredictemergentpropertiesat the tissue, organ, organism and rhizosphere levels. The interplaybetweenscalesiscomplexandamulti-disciplinaryapproachisessentialtounderstandtheunderlyingbiologicalmechanisms.Toillustratethispoint,IwilldescribeexamplesrelatingtoregulationofrootangleinArabidopsisandrice.

Despitetheseadvancesinunderstanding,rootshaveremainedthe‘hiddenhalf’ofplantbiologyduetochallengesofnon-invasivelyvisualizerootsintheirnaturalsoilenvironment.AtNottingham,wehaveemployedaninterdisciplinaryresearchapproachtoimagerootsdirectlyinsoilusingX-rayCTbasedtechniques.Thishasenabledustodiscoverorcharacterisenovel root adaptivemechanisms [3,4]. Iwill concludebydescribing theHounsfieldFacility,arootphenotypingplatform,designedtostudyrootdevelopmentalandrhizosphereprocesses.

[1]Atkinson, J.A.,etal. (2014).Branchingout in roots: uncovering form, functionand

regulation.PlantPhysiol.166,538-550.[2] Benfey, P.N., et al. (2010). Getting to the root of plant biology: impact of the

Arabidopsisgenomesequenceonrootresearch.PlantJ.61,992-1000.[3]Bao,Y.,etal.(2014).Plantrootsuseapatterningmechanismtopositionlateralroot

branchestowardavailablewater.Proc.NatlAcad.Sci.USA111,9319-9324.[4]Hill,K.,etal.(2013).Rootsystemsbiology:integrativemodelingacrossscales,from

generegulatorynetworkstotherhizosphere.PlantPhysiol.163,1487-1503.

Page 30: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

SESSION 1: Root growth and development 28

AuxindependentcellremodellingduringlateralrootmorphogenesisinArabidopsisMaizel,A.1,Vilches-Barro,A.1,Bald,L.1,Schubert,M.1,Ruiz-Duarte,P.1,Vodermaier,V.1,Vermeer,J.2,Smith,J.1,andDoe,J.1,21CenterforOrganismalStudies(COS),UniversityofHeidelberg,Germany.2DepartmentofPlantandMicrobialBiology,UniversityofZürich,Switzerland.

Plants form new organs with patterned tissue organization

throughouttheirlifespan.Asplantscellsareencagedinarigidcellwallcellmigration is impossible. In consequence, plants rely on oriented celldivisions and anisotropic growth to shape their organs and preciselyorganisetheirtissues.

Lateralrootsareformedpostembryonicallyanddeterminethefinalshapeof the root system,adeterminantof theplantsability touptakenutrientsandwater. Lateral root formation commenceswhen founderscellslocatedinthepericycledivideandcreateadome-shapedlateralrootprimordium(LRP),whichhastocrossthreeoverlyingtissuestoemergeatthesurfaceoftheparentroot:theadjacentendodermis,thecortexandtheoutermostlayer,theepidermis.Inapreviouswork[1],wecombinedmodelling with empirical observations using light sheet microscopy ofwholeorgandevelopmenttoidentifytheprinciplesgoverninglateralrootformationinArabidopsis.Lateralrootsderivefromasmallpooloffoundercells,inwhichsometakeadominantroleasseenbylineagetracing.Thefirst division of the founders is asymmetric, tightly regulated, anddetermines the formation of a layered structure. Our recent resultsindicatethatauxinplaysacrucialroleinthecontrolofthisfirstessentialformativedivision.Topreservethestructuralandfunctional integrityoftheprimary root, it isnecessary to coordinategrowthandproliferationwithintheLRPandtheresponsesoftheoverlyingtissues.Auxinplaysapivotalroleincoordinatingtheseresponses.Ourresultsshowinparticularthatauxincontrolsthedynamicsofcorticalmicrotubulerearrangementswhichhasacriticalimpactonthecontrolofplaneofdivisionandtheabilityofcellstoaltertheirgeometry.

[1]vonWangenheim,D.,etal.(2016).Curr.Biol.26,439-449.

Page 31: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

SESSION 1: Root growth and development 29

HormonalcontrolofgenomeintegrityinrootsUmeda,M.1,2,andTakahashi,N.11GraduateSchoolofBiologicalSciences,NaraInstituteofScienceandTechnology,Nara630-0192,Japan.

2JST,CREST,Nara630-0192,Japan.

Cell division is usually suppressed in response to environmentalstress to minimize energy consumption in organ growth. Under suchcircumstances, plants control the cell cycle duration and the transitionfromthemitoticcellcycletotheendocycle,inwhichDNApolyploidizationoccurs without mitosis. DNA is constantly damaged during DNAreplication, and various internal and external stimuli also cause DNAdamage; for example, reactive oxygen species produced byphotosynthesis,highaluminumorboronlevelsinsoil,andpathogenattackare known to induce single- or double-strand DNA breaks. In animals,severeDNAdamagecausescelldeath,butwepreviouslyfoundthatplantspromote the endocycle onset, but not cell death, upon genotoxictreatments.ThismeansthatcelldeathisnotthecommonstrategytocopewithDNA stress in plants.However, stem cells and their daughters areexceptionalinthattheyundergocelldeathinresponsetoDNAdamage.InArabidopsisroots,deadstemcellsarereplacedbynewlygeneratedcellsprovided by QC cell division. This represents an elaborate mechanismpreservingstemcellsduringcontinuousrootgrowth.WeshallpresenthowtheseresponsestoDNAdamagearemediatedbyhormonalsignaling,andhowplantscontrolcelldivisionandcelldeathtomaintaingenomeintegrityinroots.

Page 32: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

SESSION 1: Root growth and development 30

Brassinosteroidsignaling-dependentrootgrowthresponsestoprolongedelevatedambienttemperatureinArabidopsisMartins,M.,Montiel-Jorda,A.,andVert,G. Institute for IntegrativeBiologyof theCell (I2BC),CNRS/CEA/Univ.ParisSud,UniversitéParis-Saclay,91198Gif-sur-Yvette,France.

As sessileorganisms,plantshave to copewithandadjust to their

fluctuatingenvironment.TemperatureelevationstimulatesthegrowthofArabidopsis aerial parts. This process is mediated by increasedbiosynthesis of the growth-promoting hormone auxin. How plant rootsrespondtoelevatedambienttemperatureishoweverstillelusive.Herewepresentstrongevidencethatprolongedtemperatureelevationimpingesonbrassinosteroidhormonesignalingtoalterrootgrowth.Weshowthatelevatedtemperatureleadsto increasedrootelongation, independentlyofauxinorfactorsknowntodrivetemperature-mediatedshootgrowth.Wefurtherdemonstratethatbrassinosteroidsignalingnegativelyregulateroot responses to elevated ambient temperature. Increased growthtemperaturespecificallyimpactsontheleveloftheBRreceptorBRI1ntheroot by ubiquitin-mediated endocytosis and degradation and thusdownregulates BR signaling to mediate root elongation. Our resultsestablish thatBRI1 integrates temperature andBR signaling to regulateroot growth upon long-term changes in environmental conditions andallowustoanticipateontheconsequencesofglobalwarming.

Page 33: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

SESSION 1: Root growth and development 31

Roots regeneration activates an embryonic developmentalsequenceguidedbyantagonistichormonalinteractionsEfroni, I.1,3,Mello,A.2,Nawy,T.2, Ip,P.L.2,DelRose,N.2,Rahni,R.2,Powers,A.3,Satija,R.2,3,andBirnbaum,K.21The Robert H. Smith Institute of Plant Sciences and Genetics inAgriculture,TheHebrewUniversity,Rehovot,Israel.

2Center for Genomics and Systems Biology, New York University, NewYork,USA.

3NewYorkGenomeCenter,NewYork,USA.

Plantrootscanregenerateafterexcisionoftheirtip, includingthestemcellniche,butitisnotclearwhatdevelopmentalprogrammediatessuchrepair.Weusedacombinationoflineagetracing,single-cellRNA-Seq,andmarker analysis to test different models of tissue reassembly.Weshowedthattheroottipregeneratesbyrecruitmentofcellsfrommultipleremnant tissues to formanewstemcellnichewhich thenorchestratesgrowth.Thetranscriptomicdynamicsofregeneratingcellspriortostemcell activation reveals rapid identity transitions in a developmentalsequencewhichresembledtheembryonicrootinitiation.Consistentwithare-activationofanembryonicprogram,regenerationdefectsweremoresevere in mutants defective in embryonic, rather than adult rootformation.Furthermore,thesignalingdomainsofthehormonesauxinandcytokininmirrored theirembryonicdynamics,andmanipulationofbothhormonescouldalterthepositionofnewtissuesandthestemcellnichewithin the regenerating root. Our findings suggest that plant organregeneration resembles the developmental stages of embryonicpatterning and is guided by spatial information laid down bycomplementaryhormonedomains.Iwilladdresstheseconclusionsinthecontextoftomatostem-bornerootformationasanewmodelsystemtostudyrootinitiation.

Page 34: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

SESSION 1: Root growth and development 32

Ecotype-related long non-coding RNAs in environmentalcontrolofrootgrowthBlein, T.1,2, Balzergue, C.3,4,5, Gabriel,M.6, Scalisi, L.1,2, Sorin, C.1,2,Christ, A.1,2, Nussaume, L.3,4,5, Hartmann, C.1,2, Gautheret, D.6,Desnos,T.3,4,5,andCrespi,M.11InstituteofPlantSciencesParisSaclayIPS2,CNRS,INRA,UniversitéParis-Sud,UniversitéEvry,UniversitéParis-Saclay,Batiment630,91405Orsay,France.

2InstituteofPlantSciencesParis-SaclayIPS2,ParisDiderot,SorbonneParis-Cité,Bâtiment630,91405,Orsay,France.

3CEA, Institut de Biologie Environnementale et de Biotechnologie,LaboratoiredeBiologieduDéveloppementdesPlantes, Saint-Paul-lez-Durance,F-13108,France.

4CNRS,UnitéMixtedeRecherche7265BiologieVégétale&MicrobiologieEnvironnementale,Saint-Paul-lez-Durance,F-13108,France.

5Aix-MarseilleUniversité,Saint-Paul-lez-Durance,F-13108,France.6I2BC, Institutefor IntegrativeBiologyof theCell,CEA,CNRS,UniversitéParisSud,1avenuedelaterrasse,91198GifsurYvette,France.

The plant root system is characterised by its high developmental

plasticity. This adaptability allows the plant to face constantly variableenvironments. In case of phosphate starvation, the adaptation of rootarchitecturevarieswidelybetweenspeciesbutevenbetweenecotypesofthesamespeciesdespitetheconservationoftheprotein-codingportionof the genome. Long non-coding RNAs (lncRNAs) have been shown toquantitatively regulate the expression of specific genes and hencemayplayrolesinthequantitativemodulationoftherootarchitecturebetweenecotypes. The Columbia (Col-0) and Landsberg erecta (Ler) ecotypesresponddifferentlytophosphatestarvation.Indeed,aftertransfertoa–Pmedium,primaryrootgrowthinLerremainsunchangedwhereasitstopsin the Col-0 ecotype. Using RNA sequencing, we compared completetranscriptional response (mRNAs, lncRNAs and small RNAs) of root tipsfromthesetwoecotypesduringearlyphosphatestarvationresponse.WeidentifiedthousandsofnewlncRNAslargelyconservedattheDNAlevel.However, in contrast to coding genes, many lncRNAs were specificallytranscribedinoneecotype.Theseecotype-specificlncRNAswerefurthercharacterizedbyanalysingtheirvariabilityamongsequencedArabidopsis

Page 35: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

SESSION 1: Root growth and development 33

ecotypesandtheirabilitytogeneratesiRNA.Incontrasttocodinggenes,amajorityoflncRNAsweredifferentiallyregulatedaccordingtogenotypethantophosphatestarvation,suggestingaroleinecotypeadaptation.Ouranalysisidentified746lncRNAswhoseexpressionisdifferentbetweenthetwoecotypesandmis-regulationoftwoecotype-specificlncRNAsaffectsprimary root growth. The non-coding genome may reveal novelmechanismsfortheadaptationofrootstothesoilenvironment.

Page 36: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

SESSION 1: Root growth and development 34

Brassinosteroids are involved in stem cell replenishment inArabidopsisrootsunderDNAdamageTakahashi,N.1,andUmeda,M.1,21Graduate School of Biological Sciences, Nara Institute of Science andTechnology,Takayama8916-5,Ikoma,Nara630-0192,Japan.

2JST,CREST,Takayama8916-5,Ikoma,Nara630-0192,Japan.

Maintenance of stem cells is crucial for guaranteeing continuousorgangrowthinplants.Inroots,quiescentcenter(QC)cellsareimportantfor maintenance of stem cells. QC cells divide at low frequency undernormalgrowthconditions.However,whenstemcellssurroundingtheQCare died in response toDNA damage,QC cell division is activated, andnewlygeneratedcellsreplacedeadstemcells,restoringthestemcellniche(SCN).However,ithasremainedunknownhowQCcelldivisionisactivatedunderDNAstressconditions.Hereweshowthatbrassinosteroids(BRs)arerequiredforQCcelldivisiontriggeredbyDNAdamage.Byacomprehensiveexpressionanalysis,wefoundthatexpressionofoneoftheBRreceptorswasinducedbytreatmentwithDNAdamagingagents.

Page 37: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

SESSION 1: Root growth and development 35

The N-end rule controls root meristem cell proliferationthroughaMyb-liketranscriptionfactorKrings,J.,Schmidt,R.,andSchippers,J.H.M.InstituteofBiology I,RWTHAachenUniversity,Worringerweg1,52074,Aachen,Germany.

Organ growth relies on the coordination of cell proliferation and

differentiation. Roots display indeterminate growth, which requiresmaintenance of the root meristem and allows plants to forage fornutrients.Howthesizeoftherootmeristemismaintainedandbalancedwiththerateofdifferentiationisstillonlypartiallyunderstood.

Here we show that the arginylation-branch of the N-end rulepathwayregulatescellproliferationintherootmeristemofArabidopsis.Thearginylation-branchcontrolsthelifetimeofpeptidesorproteinsthatcontainN-terminalAsp,GluoroxidizedCys.TorevealhowtheN-endrulemodulates rootmeristemcellproliferation,weaimedat identifying themoleculartargetsitcontrolsduringrootgrowth.Interestingly,wefoundaMyb-liketranscriptionfactorthatcontainsadestabilizingN-terminalCysresidue and represents a novel target of the N-end rule pathway.Furthermore,thetranscriptionfactoractsasanegativeregulatorofcellproliferation as loss of function mutants display an increased rootmeristemsize,whereasoverexpressionresultsinanoppositeeffect.

AsthereisnosinglewaytocauseoxidationofCysresidues,wesetouttounderstandthegradientsofreactiveoxygenandnitrogenspecieswithin the root meristem. Based on our analysis and follow-upexperiments we propose a novel role for one of these species in theregulationofrootmeristemcellproliferation,whichpotentiallyislinkedtotheregulationofthestabilityofthehereidentifiedMyb-liketranscriptionfactorthroughtheN-endrule.

Page 38: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

Unravellingclusterrootdevelopmentinwhitelupin

Péret,B.

Centre National de la Recherche Scientifique, Biochimie et PhysiologieMoléculairedesPlantes,MontpellierSupAgro,2PlacePierreViala,34060Montpellier,France.

Plants show a strong level of developmental plasticity that iscontrolled by a complex combination of perception, integration andresponse.Rootsystemsareafantastictooltostudythisplasticitysincethenumberandpositionoflateralrootsisdeeplyalteredbytheenvironment.We are trying to understand the fundamental mechanisms governinglateralrootdevelopmentanditscontrolbytheenvironment.Ourresearchfocuses on two main biological systems: the model plant Arabidopsisthaliana andwhite lupin (Lupinusalbus).Ournewproject (ERCStartinggrantLUPINROOTS)aimsatunderstandingtheformationofclusterrootsinwhite lupin. These roots are specific lateral roots that are dedicatedtowardsefficientphosphateacquisitionandareproducedasaresponsetoits deficiency. From a developmental point of view, they consist in theinductionofnumerous rootletprimordia thatwill emerge toproducea“bottlebrush”-likestructure.Webelievethatstudyingtheseextraordinarystructureswillhelpusunderstandplantorganformationasaresponsetotheirenvironment.

Wegeneratedandstartedtoscreenamutagenizedpopulation.Wehave identified constitutive cluster root mutants that are now beingamplifiedforconfirmationoftheirphenotype.Inparallel,wewillsequencethe genome of white lupin, a diploid species (2n=50) andwill performdetailedtimecoursetranscriptomicsanalysisbyRNAseq.Wealsoperformhistology approaches to study cluster root development and we aredeveloping genetic transformation to generate markers and tools forfunctionalanalysis.

Moreinformationatwww.plasticity.fr

SESSION 1: Root growth and development 36

Page 39: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

SESSION 1: Root growth and development 37

Theauxin-regulatedkinaseERULUScontrolsroothairgrowththroughcellwallpectinmodificationsinArabidopsisthalianaSchoenaers, S.1, Balcerowicz, D.1, Breen,G.2, Hill, K.3, Zdanio,M.1,Markakis,M.N.1,Mouille,G.4,Holman,T.J.3,Oh,J.3,Wilson,M.H.3,Swarup,R.3,Grierson,C.S.2,Bennett,M.J.3,andVissenberg,K.1,51Integrated Molecular Plant Physiology Research, Biology Department,University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen,Belgium.

2School of Biological Sciences, University of Bristol, BS8 1UG, UnitedKingdom.

3Centre for Plant Integrative Biology, University of Nottingham, SuttonBoningtonCampus,LoughboroughLE125RD,UnitedKingdom.

4INRA Centre de Versailles-Grignon, Route de St-Cyr (RD10), 78026Versailles,France.

5UASC-TEI, Plant Biochemistry & Biotechnology Lab, Dept. Agriculture,SchoolofAgriculture,Food&Nutrition,Stavromenos,Heraklion,Crete,Greece.

Root hairmorphogenesis is an auxin-regulated process ultimately

dependentonlocalizedsynthesis,secretionandmodificationoftheapicalcell wall. However, (1) direct RH-specific targets for auxin-mediatedtranscriptional regulation are still lacking, (2) the RH cell wall is poorlyunderstoodand(3)thelinkbetweenauxinandcellwalldynamicsremainselusive.

Twomicroarraydatasetsonroothairelongationmutantsidentified151 genes that are positively correlated with root hair growth inArabidopsis thaliana. A reverse genetics approach identified erulus, amutantinaputativecellwallsensingreceptor-likekinasewithastrikingroothair(RH)phenotype.Eruroothairsareoftenswollenatthetip,exhibita 69% length reduction and showed irregular and slower growth. ERUtranscriptionisconfinedtotrichoblastcellfilesonlyandoccursjustbeforethevisibleoutgrowthofbulges.InvivospinningdiscconfocalmicroscopyofERUp::ERU-GFPshowedthatERUisdeliveredbyvesiclestotheapicalplasmamembranethroughoutRHdevelopment.

In silico analysis revealed several ARF transcription factor-bindingsites in the ERU promoter, suggesting auxin-dependent transcription.Micro-arraydataofcontrolandarf7/arf19mutantrootstreatedwithauxin

Page 40: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

SESSION 1: Root growth and development 38

confirmed this hypothesis. Furthermore, ChIP-qPCR confirmed that thepromoterofERUisadirecttargetofARF7andARF19.Inaddition,severalwell-studied core RH genes upstream of ERU were found to be auxin-inducible in an ARF7/ARF19-dependentmanner, suggesting that ERU isbothdirectlyandindirectlyregulatedbyauxin.

ERU belongs to the family of putative cell wall sensing CrRLK1Lproteins. Micro-Fourier Transform-Infrared (FT-IR) microscopy revealedcompositional cell wall changes in eru mutant RH. Whole mountimmunolocalizationofcellwallcomponents,invivovisualizationofpectinCa2+ egg-box oscillations and enzymatic determination of pectinmethylesterase activity lead to the conclusion that ERU exerts its tip-growth control through modulation of cell wall pectin dynamics bynegatively regulating pectin methylesterase activity. In addition, ERUexpression was specifically reduced in pectin-perturbed mutants,suggestingacloserelationshipbetweenERUandpectin. We conclude thatERU,asa first, providesadirect linkbetweenARF7/ARF19-mediatedauxinsignalingandpectincellwalldynamicsduringRHmorphogenesis.Moreover, our results highlight the underestimatedcomplexitybywhichauxinregulatesRHdevelopment.

Page 41: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

SESSION 1: Root growth and development 39

Rootandshoottraitsfordroughttoleranceinfababean(ViciafabaL.)Belachew,K.Y.1,Nagel,K.A.2,andStoddard,F.L.31DepartmentofAgriculturalSciences,ViikkiPlantScienceCentre,UniversityofHelsinki,Helsinki,Finland.

2IBG-2:PlantSciences,ForschungszentrumJülichGmbH,52425Jülich,Germany.

3DepartmentofFoodandEnvironmentalSciences,ViikkiPlantScienceCentre,UniversityofHelsinki,Helsinki,Finland.

[email protected]

Fababean(ViciafabaL.)isanimportantlegumecropthroughouttheworld.Itisusedforbothfoodandfeed,anditsuseincroprotationshasenvironmental benefits. It is considered relatively sensitive to waterdeficit, and in the era of climate change and increased temperature,droughtposesagreatchallengetothesustainableproductionofthecrop.Manyaccessionsshowleafwiltingsymptomsevenatmoderatesoilwaterpotential,andyieldgapandinstabilityarethemainproblemsofthecropindrought-affectedareas.

Inearlierwork,200accessions fromdrought-affected regionsand200 from seldom droughted regions were screened in glasshouseconditions.Forthiswork,thesenumberswerereducedto50+50onthebasisofrecordeddifferencesincanopytemperaturedepression,countryof origin and availability of seeds. These 100 were grown again in theglasshouseinspring2016and8wereselectedforfurtherinvestigationonthebasisofcontrastsinstomatalconductance,canopytemperature,rootand shoot dry weight, and root to shoot dry weight ratio. In order toidentifyroottraitsassociatedwithdroughttoleranceinfababean,these8accessionsweregrowninpeat-basedpottingmediuminGROWSCREEN-Rhizo boxes under well watered and water-limited conditions. Theexperimentwasarrangedinasplit-plotdesignwithtreatmentasthemainplot and accession as the subplot, in 4 replications, and ran from 24January to 20 February 2017 at the Forschungszentrum Jülich GmbH,GermanyincollaborationwithJülichPlantPhenotypingCenter(JPPC).Keymeasurements were the lengths of tap, lateral and tertiary roots, rootsystemdepthandwidth,stomatalconductance,chlorophyllconcentrationandleafnumber.

Page 42: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

SESSION 1: Root growth and development 40

The genotype by treatment interactionwas significant in primaryandtertiaryrootlengths,butnotinotherrootmeasurements.AccessionDS70622 showed the maximum value of all root measurements in allconditions,andwasthebestatmaintainingitsrootlengthwhenexposedto water deficit. It combined these traits with maximum chlorophyllconcentrationandleafcount,soit isavaluablenewsourceofpotentialdrought avoidance by water uptake. The lowest values of root length,depthandwidthwerefoundineitherMélodie/2orWS99501.TotalrootlengthofDS70622wasalmostfourtimesthatofMélodie.ThemaximumsetbackofrootlengthduetodroughtwasinDS74573,althoughitisfromadrought-affectedzone.

Useof theGROWSCREEN-Rhizoboxesalloweddetectionofusefuldifferencesinrootresponsetowaterdeficitinfababean.Drought-tolerantaccessionsmaintained their primary and tertiary root lengths, reducedtheirstomatalconductanceandincreasedleafchlorophyllcontent.Thesephenotypic markers will be associated with the genotyping data beinggeneratedinparallelwork.

Page 43: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

SESSION 1: Root growth and development 41

LightandflavonolslimitsrootgrowthandresponsesdelPozo,J.C.1,Silva-Navas,J.1,Moreno-Risueno,M.A.3,Manzano,C.1,Téllez-Robledo,B.1,Navarro-Neila,S.1,Carrasco,V.3,Pollmann,S.3,andGallego,F.J.21CentrodeBiotecnologíayGenómicadePlantas(CBGP).InstitutoNacionalde Investigación y Tecnología Agraria y Alimentaria. Campus deMontegancedo,PozuelodeAlarcón,28223Madrid,Spain.

2Dpto. de Genética, Facultad de Biología, Universidad Complutense deMadrid,Madrid28040,Spain.

3Centro de Biotecnología y Genómica de Plantas (CBGP). UniversidadPolitécnicadeMadrid.CampusdeMontegancedo,PozuelodeAlarcón,28223Madrid,Spain.

Rootsnormallygrowindarkness,buttheymaybeexposedtolight.

However,inthelabwenormallycultivaterootsinpresenceoflight.Wehave demonstrated that root illumination is a stress that affects rootgrowthandresponses.Lightincreasesthelevelofseveralmetabolitesinroots.Amongthem,flavonolsaccumulatedtohighlevelsalongtheroot.Dark-grownroots,afterperceivinglight,bendtoescapefromillumination(rootlightavoidance).Inthisresponse,flavonolsrapidlyaccumulateattheside closer to light in the transition zone. This accumulation promotesasymmetrical cell elongation and causes a differential growth betweenbothsides, leading to rootbending. If the illuminationpersists, flavonolcontent increasedtohigh levelsandrootgrowth is retarded.Wefoundthat high level of flavonols diminishes root growth and cell division byreducing auxin signaling, PLETHORA gradient and superoxide radicalcontent in the root meristem. In other hand, cytokinin and hydrogenperoxide, which promote root differentiation, induce flavonolaccumulationintheroottransitionzone,decreasingrootmeristemsize.We propose that flavonols function as positional signals, integratinghormonalandROSpathwaystoregulaterootgrowthdirectionandrateinresponsetolight.

Page 44: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

42

Page 45: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

SESSION 2: Reproductive growth and development

Page 46: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

44

Page 47: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

SESSION 2: Reproductive growth and development 45

TheroleofOVATEFamilyProteinsintomatofruitpatterningVanderKnaap,E.1,2,Wu,S.1,Keyhaninejad,N.1,2,andMeulia,T.11TheOhioStateUniversity,WoosterOH44691,USA.2UniversityofGeorgia,AthensGA30602,USA.

The final shape and size of fruits result from coordinated cellproliferationandexpansionalongdifferentaxesofgrowth.Theshapeofmany elongated and pear-shaped tomato varieties is controlled by anaturallyoccurringprematurestopmutationinOVATE,amemberoftheOvate Family Proteins (OFPs) class. Histological analyses demonstratedthat themutationresults inelongatedshapeassociatedwithanalteredcelldivisionpattern.Mappingofthesuppressorsoftheovate(sov)ledtothe identification of another member of the family, SlOFP20, as thecandidate gene underlying sov1. A synergistic interaction was foundbetweenovateandsov1incontrollingfruitelongation,whichsuggeststhatOVATE and SlOFP20 are involved in the same pathway. Yeast 2 HybridexperimentsshowedthatOVATEandSlOFP20interactwithmembersofaprotein complex that regulates the formationofpreprophasebandandorganizationof corticalmicrotubulearray.Transientco-expression inN.benthamianaresultedinrelocalizationofOVATEandSlOFP20.OurfindingsarestartingtoshedlightontheroleofOFPsinproximal-distalpatterningof fruit and provide insights into fundamental aspects of plant organgrowth.

Page 48: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

SESSION 2: Reproductive growth and development 46

Dissecting the conservedLAFLgene regulatorynetwork thatcontrolsseeddevelopmentDubreucq,B.,Baud,S.,Boulard,C.,Fatihi,A.,Fiume,E.,Kelemen,Z.,Miquel,M.,Thévenin,J.,To,A.,andLepiniec,L.IJPB,INRA-AgroParisTech-CNRS,UniversitéParis-Saclay,France.

GeneticandmolecularanalyseshavedemonstratedthekeyroleofArabidopsis “LAFL”transcription factors in controlling seeddevelopmentand maturation. LEAFY COTYLEDON 1 (LEC1), ABSCISIC INSENSITIVE 3(ABI3),FUSCA3(FUS3),andLEC2encodeahomologoftheNF-YBproteinand three transcriptional regulators of the “B3-domain”family,respectively.

TheLAFLfactorshavepleiotropicandpartiallyoverlappingfunctioninseedmaturation.Forinstance,LEC2inducesthegenescodingforseedstorage proteins and proteins of the oil bodies (e.g. OLEOSIN1), orregulatory genes such asWRINKLED1 (WRI1) andMYB118. WRI1 is amember of the AP2 family that controls glycolytic and fatty acidbiosynthetic genes and oil accumulation. MYB118 represses thematurationprogramduringearlyendospermdevelopment.

Wewill illustrate recent progressmade in the characterization ofthese LAFL proteins, their regulation, partners, target genes andevolutionary conservation among angiosperms. Last, we will show theinterest of investigating further the environmental and epigeneticregulationofthisnetworkforthecomingyears

Page 49: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

SESSION 2: Reproductive growth and development 47

GlutamateReceptor-Like (GLR) channels inplants: evolutionand function on Ca2+ homeostasis in sperm and malereproductionFeijó,J.A.Department of Cell Biology and Molecular Genetics, University ofMaryland,CollegePark,Maryland,USA.

IwillreportonadvancesonthebiologyofGlutamate-ReceptorLike

(GLR)Ca2+-channels.Agrowingbodyofliteraturepublishedinrecentyearshas demonstrated that GLRs act as Ca2+ channels in plant cells, and areinvolvedinvariousfundamentalphysiologicalfunctions,fromreproductiontostressandpathogenresistance.Inpollen,wherewedescribedtheirfunctionforthefirsttime,theywerehypothesizedtoparticipateonCa2+homeostasis.IwillpresentdatasuggestinganevolutionaryconservationofthesechannelsrelatedtoamalereproductivefunctioninPhyscomittrelapatens(Pp).DoubleGLRKOplantsofPpshownovisibledefectsonsomaticdevelopment,butarealmoststerile.Wehavegeneticallydeterminedthatsterilityiscarriedbythemale gamete lineage. We thus designed a sperm navigation assay anddeterminedthatchemotaxisisaffectedintheKOsperm.InaccordancetoaroleinCA2+homeostasis,KOspermhaslowerlevelsofcytoplasmicCa2+.Wefully characterized the patch-clamp electrophysiology of the GLR onprotoplastsandheterologousmammalianexpression,andshowthat,despitechloride and strong cation non-selective conductances, PpGLRs do have adefinedCa2+conductivityassociated.Surprisingly,on the rareevents thatfertilization occurs on the KO plants, the sporophyte does not developnormallyoratall, onwhat seems likeanextra checkpoint for fertilizationdependentonGLRfunction.Wehavequeriedourtranscriptomicdatabases,andfoundthattheBELL2transcriptionfactor,whichisfundamentalforthehaploidtodiploidtransitioninChlamydomonas,isalmosttotallyrepressedonthe double KO. We hypothesized that the sporophyte development isdependentonBELL2,andgeneratedcomplementation linesof thedoubleGLRKOwithBELL2underatheGLR2promoter,whichisspecificallyexpressedduring gamete formation. The complemented line rescued thephenotypethusconfirmingthedependencyofBELL2fortransitiontodiploidstatus.Ourwork revealed an unexpected dependency of GLR formale reproduction,leadingustosuggestthisroleasthemajorselectivepressuretoconservethisfamilyofgenesthroughoutterrestrialplantevolution.

Page 50: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

SESSION 2: Reproductive growth and development 48

TheHUA-PEPribonucleoproteinsregulateovuledevelopmentin Arabidopsis via post-transcriptional control of D-functionidentitygenesRodríguez-Cazorla,E.1,Ortuño-Miquel,S.1,Ripoll,J.J.2,Candela,H.3,Bailey,L.J.2,Yanofsky,M.F.2,Martínez-Laborda,A.1,andVera,A.11ÁreadeGenética,UniversidadMiguelHernández,CampusdeSantJoand’Alacant,SantJoand’Alacant,Alicante,Spain.

2DivisionofBiologicalSciences,SectionofCellandDevelopmentalBiology,UniversityofCaliforniaSanDiego,LaJolla,CA,USA.

3Instituto de Bioingeniería, Universidad Miguel Hernández, Campus deElche,03202Elche,Alicante,Spain.

Ineukaryotes,correctgeneexpressionreliesontheproductionof

functional transcripts, which requires a complex interplay betweentranscriptionandRNAprocessingactivities.RNA-bindingproteins(RBPs)playkeyrolesastheyassembleintomultifunctionalcomplexesonnascenttranscripts[1].Co-transcriptionalRNAmodificationsaresurveilledbythecarboxyl-terminaldomain(CTD)oftheRNApolymeraseII(RNAPII)largesubunit, securing the fidelity of the operation. In this regard, the CTDphosphorylationstateiscrucialforthefinaloutputofgeneexpression[2].

InArabidopsis,HUA1,HUA2,HEN4,FLKandPEP(collectivelynamedHUA-PEPactivity)encodeasetofinteractingRBPsthatregulatetheMADS-boxfloralhomeoticgeneAGAMOUS(AG).HUA-PEPproteinsaffectflowerorganidentitybymaintainingthefloralC-functionviaaccurateprocessingof theAG largesecond intron.Otherwise,non-functionalAG transcriptsretainingintronsequencesaccumulateimpairingcorrectflowerpatterning[3].

Arabidopsis ovule identity is specified by the D-function genesSHATTERPROOF1(SHP1),SHP2,andSEEDSTICK(STK),closelyrelatedtoAG[4].Here,weshowthatmutationsintheHUA-PEPactivitygenesleadtohomeotic transformation of ovules into flower organ-like structures.Accordingly,hua-pepmutantsexhibitreducedexpressionofD-genesandaccumulate aberrant transcripts that retain intron sequences, stronglysuggesting post-transcriptional misregulation of ovule identity D-genes.Our transcriptomic data and the ability of PEP and HUA1 proteins tointeract with the RNAP II CTD regulator C-TERMINAL DOMAINPHOSPHATASE-LIKE1(CPL1)furthersupportourcurrentmodel.

Page 51: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

SESSION 2: Reproductive growth and development 49

[1]Bentley,D.L.(2014).Nat.Rev.Genet.15,163-175.[2]Hsin,J.P.,andManley,J.L.(2012).GenesDev.26,2119-2137.[3]Rodriguez-Cazorla,E.,etal.(2015).PLoSGenet.11,e1004983.[4]Pinyopich,A.,etal.(2003).Nature424,85-88FundedbytheSpanishMinistryofEconomyandCompetitiveness(GrantBIO2014-56321-P)toAVandAML.

Page 52: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

SESSION 2: Reproductive growth and development 50

HowTCP5keepstheArabidopsispetalingoodshapevanEs,S.W.1,Rocha,D.I.2,Silveira,S.R.3,Bimbo,A.1,vanderWal,F.1,Martinelli, A.P.3, Dornelas, M.C.2, Angenent, G.C.1, and Immink,R.G.H.11PlantDevelopmental Systems (PDS),WageningenUniversity andResearch,Radix building 107, Droevendaalsesteeg 1, 6708 PB Wageningen, TheNetherlands.

2Departamento de Biologia Vegetal, Instituto de Biologia, UniversidadeEstadualdeCampinas,Campinas,SaoPauloCEP13083–862,Brazil.

3Laboratório de Biotecnologia Vegetal, Centro de Energia Nuclear naAgricultura,UniversidadedeSãoPaulo,Piracicaba,SPCEP:13416-000,Brazil.

We studied the functioning of theCIN-typeTCP5-like genes during

floralorgandevelopmentandperformedmutantanalyses,detailedspatialandtemporalexpressionstudies,andproteincomplexisolations.

WefoundthatTCP5regulatespetalsize;overexpressionofTCP5 inepidermalcellsresultsinsmallerpetals,whereastheknock-outgrowswiderpetalswithanincreasedsurfacearea.ComprehensiveexpressionstudiesoflossoffunctionandgainoffunctionmutantsbyRNA-seqsuggests,besidestheobservationofdifferentialexpression incellcycle,growthregulation,developmental processes and organ growth related genes, a role forethylene biosynthesis and signalling in petal differentiation. Ethylene isknown to influence cell elongation in petals and other tissue and theethylenebiosynthesisgenes1-amino-cyclopropane-1-carboxylatesynthase2(ACS2)andACCoxidase2(ACO2)arefoundtobedifferentiallyregulatedinourmutantsinadditiontoseveralETHYLENERESPONSEFACTOR(ERFs).

Detailedinvestigationofthecellshape,size,andstructurerevealedinterestingalterationsinthecellsatthedistalendoftheadaxialsideofthepetalintcp5-likemutantbackgrounds.Thedistalendofapetalishometoconical cells that reflect UV light to attract pollinators. In our mutantshowever, in both overexpressor and knock-out lines conical celldevelopmentisdisturbed,apparentbylossofadome-shapedstructureandanincreaseincellsizeduetoincreasedcellelongation,anddisorganizationofthecuticularridges.

OngoingresearchisfocussingondirecttranscriptionaltargetsofTCP5andthefunctionofitsphysicalinteractionpartners,aswellasconfirmingtheroleofTCP5inethylenebiosynthesisandsignallingduringpetalgrowth.

Page 53: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

SESSION 2: Reproductive growth and development 51

TomatoMEDIATORCOMPLEXSUBUNIT18(MED18)playsakeyrole in pollen development: evidences from the functionalanalysisofpollendeficient1(pod1)mutant Pérez-Martín, F.1, Yuste-Lisbona, F.J.1, Giménez, E.1, Pineda, B.2,Capel, C.1, García-Sogo, B.2, Sánchez, S.2, Angosto, T.1, Capel, J.1,Moreno,V.2,andLozano,R.11Centro de Investigación en Biotecnología Agroalimentaria (BITAL).UniversidaddeAlmería,04120Almería,Spain.

2Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC),UniversidadPolitécnicadeValencia.46022Valencia,Spain.

Pollendevelopmentisakeystepinthelifecycleofangiospermsand

itdependsonacoordinatedspatio-temporalregulationofgeneexpressionat early stages of reproductive development. An appropriate pollenformationisessentialforthemaintenanceofbiologicaldiversityaswellastheproductionoffruitsandseedinagronomicalimportantcropspecies.Furthermore,infleshyfruitplantsliketomato(SolanumlycopersicumL.),defects in pollen ontogeny produces parthenocarpic (seedless) fruits,whichareconsideredtobeofgreatimportancesincetheyguaranteedfruityieldunderunfavorableconditionsandalsohaveahighcommercialvalue.

Inthisstudy,wedescribedthetomatoenhancertrapT-DNAmutantpollen deficient 1 (pod1) that displayed abnormalities in pollendevelopment,whichleadstoproductionofparthenocarpicfruits.Analysisof thegenomicT-DNAflankingsequencesdisplayedthatasingleT-DNAcopywasinsertedinanintergenicregionofchromosome6betweenZINCFINGERHIT-type(ZF-HIT)andMEDIATORCOMPLEXSUBUNIT18(MED18)genes. Expression analysis and characterization of silencing linesdemonstrated that the pod1 mutant phenotype relies on the tomatoMED18gene(POD1/SlMED18),whichencodesamemberoftheMediatormulti-protein complex involved in the regulation of RNA polymerase IItranscription. A detailed histological characterization of antherdevelopmentindicatedthatmicrosporesweredegeneratedatthetetradstage,althoughtapetumtissuedevelopednormally.Expressionofpollenmarkergenes confirmed thatPOD1/SlMED18 is required for theproperpollenformationandfruitdevelopment.

Additionally, we demonstrated that MED18 homologs sharefunctionalhomologyinArabidopsisandtomatospeciesasPOD1/SlMED18

Page 54: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

SESSION 2: Reproductive growth and development 52

isabletorescuethefloweringtimeandfloralorganidentityabnormalitiesoftheArabidopsismed18mutant(Zhengetal.,2013).Nevertheless,ourresultsindicatedthatSlMED18hasevolvedtoacquireanovelfunctionintomato,whichisthegeneticcontrolofmalegametogenesis.

Page 55: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

SESSION 2: Reproductive growth and development 53

A direct genetic strategy for identifying novel regulators offruittissuemorphologyintomatoMusseau,C.1, Jorly, J.2, Just,D.2, Lemaire-Chamley,M.2, Chevalier,C.2,Rothan,C.2,Gévaudant,F.1,andFernandez,L.21UniversityofBordeaux,UMR1332BiologieduFruitetPathologie, INRABordeauxAquitaine,CS20032,F-33882Villenaved’Ornoncedex,France.

2INRA,UMR1332BiologieduFruitetPathologie,INRABordeauxAquitaine,CS20032,F-33882,Villenaved’Ornoncedex,France.

Tissue morphogenesis and overall fruit growth depend on complex

cellular and molecular interactions that affect the balance between celldivision and cell expansion. The molecular control of fruit tissuemorphogenesis and growth remain largely underexplored and only fewregulators have been already identified. Forward genetics appears as themostpowerfulapproachtodecipher theseprocessesandtheir regulation,becausenaturalandartificially-inducedgeneticvariabilityoffers invaluableresourcesfordiscoveringnewphenotypesandnewallelicvariants.Thankstothe availability of tomato genomic sequence and deep sequencingtechnologies,linkinggenotypicvariationstoassociatedphenotypicchangesisnowmoreaccessibleforfleshyfruit.

Thewholestrategy,basedontoolscurrentlyavailablewillbedescribed,fromthephenotypicscreeningoftomatomutants,fromourEMScollection,totheidentificationofthecausalmutationbymapping-by-sequencinganditsvalidationbyCRISPRtechnologies.Thephenotypiccharacterizationoftwelvemutants revealed two additional modules controlling fruit growth thatcoordinateeitherthegrowthofthewholefruitorthatofpericarp,througheitherisotropicoranisotropiccellexpansion.

Whole-genome-sequencing and polymorphism analysis of fourrepresentativemutantsallowedustodemonstratethatthosemoduleswerenotrelatedtogenesandprocessespreviouslydescribed.Furthermore,werecentlydeveloped themapping-by-sequencingapproach [1] thatwill giveaccess to the identification of a novel regulator coding for the GuanylateBindingProtein (GBP).Mutant alterations suggest a roleof this protein incytoskeletalorganizationandcellwallmodificationswithobviousimpactontissuemorphologyandfruitgrowth.

[1]Garcia,V.,etal.(2015).RapididentificationofcausalmutationsintomatoEMSpopulations

viamapping-by-sequencing.Nat.Protoc.11,2401-2418.

Page 56: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

SESSION 2: Reproductive growth and development 54

Tomato fruit locular tissue differentiation is regulated by aC2H2transcriptionfactorViron,N.1,2,Jorly,J.1,2,Noilhan,B.,Brès,C.1,2,Mauxion,J.P.1,2,Garcia,V.1,2,WongJunTai,F.1,2,Rothan,C.1,2,andLemaire-Chamley,M.1,21INRA, UMR 1332 de Biologie du fruit et Pathologie, F-33140 Villenaved'Ornon,France.

2Univ. Bordeaux,UMR1332deBiologie du fruit et Pathologie, F-33140Villenaved'Ornon,France.

Intomato,loculartissueorgeldifferentiatesfromthefruitcentral

axisa fewdaysafterovulefertilization.Cells fromthe loculartissuearethenundergoingsuccessiveprocessesofcelldivisionandcellexpansionwhichleadtotheformationofagelatinoustissuesurroundingtheseeds.

AsaconsequenceoftomatotransformationusingaRNAiconstruct,weisolatedatransgenic linewithafruitgel lessphenotype.Fruitsfromhomozygousplantswereindeedcharacterizedbyatotalabsenceofloculartissue,achangeinseedshapeandanincreaseoffruitfirmness.Accordingtomoleculardata,wedemonstratedthatthisphenotypewaslinkedtoaninsertionintomatogenome.UsingacombinationofgeneticmappingandNGSmapping,wewereabletoidentifythemutationastheinsertionofaTy1/copiaretrotransposoninthecodingsequenceofaC2H2ZincFingergene.ThegenerationofKOlinesbyCRISPR/Cas9allowedustoconfirmthefunctionofthisC2H2inloculartissuedifferentiation.

Theexpressionprofileofthisgeneintomatoorgansandduringfruitdevelopmentwasconsistentwiththespecificphenotypesobserved[1].In-depthmolecularandphysiologicalstudyofthegellessmutantlineswillbeconductedtoevaluatetheconsequencesofgellessmutationontomatofruitqualityandtoelucidatetheimplicationofthisC2H2inloculartissuedifferentiation.

[1]Weng,L.,Zhao,F.,Li,R.,Xu,C.,Chen,K.,andXiao,H.(2015).PlantPhysiol.167,931-

949.

Page 57: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

SESSION 2: Reproductive growth and development 55

Identificationoforgan-specificclockstructureandoutputsofgrowth using artificial vision systems andMachine LearningprocessingWeiss, J.1, Perez-Sanz, F.1, Navarro, P.J.2, Terry, M.-I.1, and Egea-Cortines,M.11Genética, InstitutodeBiotecnologíaVegetalUniversidadPolitécnicadeCartagena30202Spain.

2Tecnología Electrónica, Escuela Técnica Superior de Ingeniería deTelecomunicaciones,UniversidadPolitécnicadeCartagena30202Spain.

Theplant circadian clock is involved in the integrationof external

cues such as light and temperature, and controls growth, primary andsecondarymetabolismorplantorganmovementamongothertraits.Thecurrentparadigm,basedonArabidopsisleavesandseedlingsisthatduetothetranscriptionalrepressionandactivationofthegenescomprisingtheclock,mutationsaffectvia increaseordecrease in theclockspeed.Thisresultsinearlyordelayedoutputsdependingonthemutation

WehaveperformedacomprehensiveanalysisofthePetuniaclockinleavesandforthefirsttimewecharacterizedthepetalclock.ThePetuniacircadian clock comprises additional paralogs compared to ArabidopsiswithduplicatedcopiesofPRR7,PRR5andGIGANTEA.Thetranscriptionalstructureoftheleafandpetalclockdifferedinthetimingofseveralgenesaswellaswhatappearstobeanorganspecificexpressionoftheparalogs.

Using artificial vision systems and aMachine Learning process toextractimageinformationwefoundthatknockdownofPaxilZTLbyRNAcausedearlygatingofgrowthofthestemandearlychangesintheflowerangle.Surprisingly,flowergrowthwasdelayed.Ourdataindicatesthatthegating of clock outputs maybe organ specific. This may be caused bydifferencesinthelocalcircadianclocktranscriptionalstructure.

Page 58: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

56

Page 59: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

SESSION 3: Leaf and shoot growth and development I

Page 60: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

58

Page 61: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

SESSION 3: Leaf and shoot growth and development I 59

Role of DESIGUAL1 and auxin in bilateral symmetry ofArabidopsisleavesWilson-Sánchez,D.,Navarro-Cartagena,S.,Lup,S.D.,andMicol,J.L. Instituto de Bioingeniería, Universidad Miguel Hernández, Campus deElche,03202Elche,Alicante,Spain.

Most living organisms exhibit some form of symmetry; however,

thereisadearthofmutationsaffectingbilateralsymmetryinallbiologicalsystems.Thislackofmutationshashamperedgeneticanalysisofbilateralsymmetry inmulticellularorganisms,particularlyplants.Toexaminetheregulation of symmetry and other aspects of leaf development, wescreened 19,850 Arabidopsis lines from the Salk homozygous T-DNAcollection and found 706 leaf mutants. Only one of these mutantsexhibiteddefectsinbilateralsymmetry;wenamedthismutantdesigual1-1(deal1-1).

Arabidopsis has bilaterally symmetric leaves with interspersedmarginal lobes and indentations along themargin. Several overlappingregulatory pathways establish thesemarginal features; these pathwaysinvolve feedback loops of auxin, the PIN-FORMED1 (PIN1) auxin effluxcarrier, and the CUP-SHAPED COTYLEDON2 (CUC2) transcriptionalregulator.

The deal1 mutants have randomly asymmetric leaves that fail toacquiresymmetryintheearlystagesofleafprimordiumdevelopment,butinstead formectopic lobesand sinuses. In the leavesofdeal1mutants,improper regulation of cell division (simultaneous over- and under-proliferation)alongtheorganmarginsaltersbilateralsymmetryintheleafprimordium stage. Auxin maxima are mislocalized at the margins ofexpandingdeal1leavesandthisasymmetrycanbeenhancedbytreatmentwith thepolar auxin transport inhibitor 1-N-naphthylphthalamic acidoralleviatedbytreatmentwiththesyntheticauxin1-naphthaleneaceticacid.Among other defects, deal1 mutants show aberrant recruitment ofmarginalcellsexpressingproperlypolarizedPIN1,resulting inmisplacedauxinmaxima. Normal PIN1 polarization requires CUC2 expression andCUC2geneticallyinteractswithDEAL1;DEAL1alsoaffectsCUC2expressionin the leafprimordiummargin.DEAL1,aproteinofunknownmolecularfunction,localizestotheendoplasmicreticulummembraneandfunctionsintheleaf,actingpartiallyredundantlywithitstwoclosestparalogs.

Page 62: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

SESSION 3: Leaf and shoot growth and development I 60

UsinggenenetworkstoelucidatedevelopmentalprocessesIchihashi,Y.1,2,Zumstein,K.1,Nakayama,H.1,Farhi,M.1,andSinha,N.1 1DepartmentofPlantBiology,UniversityofCalifornia,Davis,USA.2Riken,Yokohama,Japan.

Howmorphologicaldiversityhasarisenisakeyquestioninbiology.Angiospermsexhibitagreatdiversityinleafshapeandleafdevelopmenthasbeencharacterizedinseveralspecies,makingleavesidealtargetstounderstand the mechanism behind morphological natural variation.Leavesarealsofunctionallysignificantforgeneratingbiomassandleadingtoagriculturalyield.WeperformedcomparativetranscriptomicsutilizingthreeSolanumspeciesshowingdifferentleafdevelopmentcharacteristics.Weutilizedgenenetworkconstructionto identifykeynetworkmodulesthatplayaroleinleafdevelopment.Superself-organizingmapclustering,whichcanaccountformultiplefactorsbyusingaseparateweightedlayerforeveryfactor,identifiesmajorinterspecificchangesofgeneexpressionpatternsinleafdevelopment.Ouranalysessuggestthatnotonlymassivedifferential gene expression but also changes in the system-levelregulation of gene expression pattern differentiate leaf developmentbetween the species.Wehaveused differential correlation interactions(DiffCorr)betweengenes in theGeneRegulatoryNetwork (GRN) acrossspecies to detect GRN rewiring and identify genes that play a role ingeneratingdevelopmentaldifferencesbetweenthesespecies.

Page 63: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

SESSION 3: Leaf and shoot growth and development I 61

CellproliferationandcellexpansioninleavesTsukaya,H.1,21Grad.Sch.Sci.,Univ.Tokyo,7-3-1,Hongo,Bunkyo-ku,Tokyo113-0033,Japan.

2OkazakiInstituteforIntegrativeBioscience,YamateBuild.#3,East-9F,5-1,Higashiyama,Okazaki,Aichi444-8787,Japan.

Therelationshipbetweencellsizeandploidylevelisnotassimpleas

hasbeenbelieved.Whileepidermalcellsizeshowsagoodcorrelationwithploidylevelthatisunderthecontrolofendoreduplication,ashasbeenwellknown,parenchymatouscellsizedoesnot. Interestingly,thecorrelationchanges if ATML1, a transcription factor for epidermal identity, isectopically expressed in the parenchymatous tissue, indicating that thecorrelationisgovernedbysomegeneticpathways.Ontheotherhand,ourmeta-dataanalysisrevealedsomeinterestingtendencybetweentheeffectof excess endoreduplication on average cell size. More careful re-examination on the linkage between endoreduplication and cell sizeappearstobeneededtounderstandthemechanismsofleafsizecontrol.

Ontheotherhand,spatialdeterminationofmeristematicactivityinleafprimordiaisalsokeytoregulateleafsize.Aswehavealreadyreported,AN3/AtGIF1,atranscriptionalco-activator,canmovebetweencelllayersinleafprimordia,enablingsynchronizedcellproliferationinleafprimordia.ThusitisveryplausiblethatAN3canmovealsoalongthelongitudinalaxis,consideringthatthespatialdistributionofthemeristematicactivityinleafprimordia is much wider than the AN3-mRNA expression domain andshowsalongitudinalgradient.Unexpectedly,wefoundthatthespeedofintercellularmovementofsolubleproteininleafprimordiaisbiased:itismorerapidinthedistalareasthanintheproximalareas.Detailedanalysesindicatedthatthebiasiscausedbydifferedcellsizesalongthelongitudinalaxisoftheprimordia.Amathematicalmodelbeautifullyreproducedthespatial distribution of meristematic cells by considering the biasedintercellularmovementsofAN3protein,stronglyindicatingthattheAN3isthekeyfactorinregulatingthespatialpatterningofleafmeristems.[1]Katagiri,Y.,etal.(2016).Development143,1120-1125.[2]Kawade,K.,etal.(2013).Curr.Biol.23,788-792.[3]Kawade,K.,etal.,submitted.

Page 64: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

SESSION 3: Leaf and shoot growth and development I 62

Calmodulin-bindingIQDproteinsareessentialforcellplaneselectionandcellshapeformationinArabidopsisthalianaBürstenbinder,K.1,Mitra,D.1,Abel,S.1,andMöller,B.21Department of Molecular Signal Processing, Leibniz Institute of PlantBiochemistry,06120Halle(Saale),Germany.

2InstituteofComputerScience,MartinLutherUniversityHalle-Wittenberg,06120Halle(Saale),Germany.

Calcium ions (Ca2+) act as universal second messengers in all

eukaryotes, and play important roles in the control of plant growth.ChangesinintracellularCa2+levelsareperceivedbyCa2+bindingproteins,such as calmodulins (CaM), which transduce Ca2+ signals into cellularresponses by regulation of diverse target proteins. We previouslyidentifiedIQ67-domainproteins(IQDs)asnovelplant-specificCaMtargets,which are encoded by multigene families (23-67 members) in tomato,maize, soybean, rice and Arabidopsis. Despite their large family sizes,modesofIQDaction,however,arestilllargelyelusive.

To study IQD functions, we initiated a comprehensivecharacterizationofthe33-memberedArabidopsisIQDfamilyusingreversegenetics approaches. We showed, by analysis of the subcellularlocalizationoftranslationalGFPfusionproteins,thatmostArabidopsisIQDmemberslocalizetomicrotubules,wheretheyrecruitCaMCa2+sensors.Important functions at microtubules are further supported by alteredmicrotubuleorganizationandplantgrowthin IQDgain-of-functionlines.ToidentifyIQDswithpotentiallyoverlappingfunctionsandtogaininsightinto spatio-temporal expressionpatterns of IQD genes,we generated acellularexpressionmapoftheArabidopsis IQDfamily.Promoteractivitywaslargelyrestrictedtomeristematicandactivelyelongatingtissues,e.g.intherootandshootmeristem,orduringembryodevelopment.Molecularand functional analysis of loss-of-function lines revealed defects in leafepidermalcellshape,andinpositioningofthecellplateduringcytokinesis.Together, we hypothesize that IQDs function during cell division andelongationtocontrolcellshapeandorgangrowth,possiblybylinkingCaMCa2+signalingtotheregulationofthemicrotubulecytoskeleton.

Page 65: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

SESSION 3: Leaf and shoot growth and development I 63

Effect of higher ploidy levels on plant growth and biomasscompositionCorneille,S.1,2,Vanholme,B.1,2,andBoerjan,W.1,21Bio-energy and bio-aromatics, VIB-UGent Center for Plant SystemsBiology,VIB,Ghent,Belgium.

2Bio-energy and bio-aromatics, Department of Plant Biotechnology andBioinformatics,GhentUniversity,Ghent,Belgium.

Improvingplantproductionisanecessitytoguaranteefoodsecurity

in the face of a rapidly growing world population. In addition, plantbiomass is currently the only available renewable feedstock to replacepetro-based chemicals. In order to increase the use of lignocellulosicbiomass as a sustainable source for the bio-economy, both biomassproductionandcompositionneedtobeoptimized.

Polyploidization or whole genome duplication can play a role inachievingthesegoals.Theincreaseinbiomassyielduponpolyploidizationiswellknown,buttheeffectonbiomasscompositionislesswellstudied.To get additional insights into the effects of polyploidization on plantgrowthandbiomasscomposition,wedecidedtostudythegrowth,yield,andbiomasscompositionofaseriesofautopolyploidArabidopsisthalianaplants, including tetraploids, hexaploids and octaploids. Besides anelaboratephenotypicanalysiswherebydifferentgrowthparametersweredetermined, we performed a thorough cell wall characterization andperformedsaccharificationexperimentsonthedrybiomass.

It is to our knowledge the first time that trends in growth andbiomasscompositionwerequantifiedinasetofplantswhichdifferonlyintheir degree of ploidy. Besides the fundamental insights, our researchshowsthatpolyploidycouldpotentiallyplayaroleinbreedingprogramstoobtaineconomicallyvaluableplantsthatcouldbeusedasafeedstockforthebio-economy.

Page 66: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

SESSION 3: Leaf and shoot growth and development I 64

Theplant-specificCDK-inhibitoryproteinsSMR1andSMR5areregulated post-translationally and stabilized under water-limitingconditionstoparticipateincellcyclearrestandgrowthrepressionDubois,M.1,Marrocco,K.1,2,Bach, L.2, Lamy,G.1,Granier,C.2, andGenschik,P.21Institut de BiologieMoléculaire des Plantes (IBMP), CNRS, Strasbourg,France.

2Laboratoired'EcophysiologiedesPlantessousStressEnvironnementaux(LEPSE),INRA,Montpellier,France.

Thecellcycleofplantsistightlyregulated,integratingendogenous

cues and environmental signals to adapt plant growth to changingconditions.Underdrought,celldivision inyoung leaves isblockedasanactivemechanismtosaveenergyresources.WhilethemolecularfunctionofCDK-inhibitoryproteins(CKI)inregulatingthecellcyclehasalreadybeenextensivelystudied,very little isknownaboutthemechanismstoarrestthecellcycleunderdrought.Inthisstudy,weshowthatamongtheknownCKIs,SMR1andSMR5transcriptsarestronglyandquicklyinducedundermoderate drought in Arabidopsis leaves. Functional characterization ofthesegenesfurtherrevealthatSMR1andSMR5inhibitcelldivisionandaffectmeristem structure, thereby restricting the growth of leaves androots.Importantly,wedemonstratethatSMR1andSMR5areshort-livedproteins, which are degraded by the 26S proteasome after beingubiquitinylatedbyaRING-typeE3-ligaseandputativelyphosphorylatedbyCDKA.Supportingthis,stablelinesoverexpressingnon-degradableSMR1-alleleshavemuchstrongerphenotypesthanSMR1-overexpressingplants.Undermoderate drought, the SMR1 protein turn-over is slowed down.Accordingly, smr1 mutants are slightly more tolerant to drought,suggesting thatSMR1,and likelyalsoSMR5,participate in thecell cyclearrest under drought stress. Surprisingly, not the classical droughthormone ABA but rather the growth-repressive hormone ethylene is agood candidate for acting upstream of transcriptional and post-translationalaccumulationofSMR1.Theseresultsfitwithintheemergingview of mild drought response in young Arabidopsis leaves, placingethylene in the centerof an activedecision to arrest the cell cycle anddecreasegrowth.

Page 67: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

SESSION 3: Leaf and shoot growth and development I 65

Transient reconstitution of the plant cell cycle regulatorymachinery in leaf mesophyll protoplasts to identify directSnRK1growthtargetsHulsmans,S.,andRolland,F.LaboratoryofMolecularPlantBiology,BiologyDepartment,UniversityofLeuven-KU Leuven, Kasteelpark Arenberg 31, 3001 Heverlee-Leuven,Belgium.

As sessile and autotrophic organisms, plants are significantly

challengedbythechangingenvironmentandcontinuouslyneedtoadjusttheirgrowthandmetabolismtoresourcesupplies.Thecellularcarbonandenergy status functions as an important point of integration of bothdevelopmental and environmental signals. The SnRK1 (SNF1-relatedkinase1)kinaseactsasacellularfuelgauge,thatisactivatedinresponseto diverse energy-depleting stress conditions to maintain energyhomeostasisforoptimalgrowthandsurvival.AlthoughalterationofSnRK1activitycanhavedramaticeffectsonplantdevelopment,whetherandhowSnRK1directlyaffectsgrowth-controllingprocesses,suchascelldivisionandcellexpansion,isstillunclear.

WestartedexploringArabidopsisleafmesophyllprotoplastsasatoolto study possible molecular interactions with the cell cycle regulatorymachinery. Interestingly, both application of sugars and hormones andreconstitution of the upstream regulatory pathways by transient over-expressioneffectivelyinducedS-andM-phasespecificgeneexpressionindifferentiatedleafcells.Co-expressionwiththeSnRK1catalyticαsubunit(KIN10) now enables identification of direct targets. One reported linkbetween energy availability and cell division is the transcriptionalregulation of the G1/S phase transition-specific D-type cyclins by sugaravailability.TheuseofPrCYCD3;1::LUCreporterconstructsandtransientexpression of tagged proteins in protoplasts reveals both repression ofCYCD3;1expressionandenhancedproteasome-mediateddegradationoftheCYCD3;1proteininresponsetoincreasedSnRK1activity.

Inconclusion,leafmesophyllprotoplastscanbeusedtoidentifyanddissect molecular mechanisms linking metabolic status to growth anddevelopment,althoughinteractionsneedtobeconfirmedinmeristematictissueinplantaandbygenetics.

Page 68: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

SESSION 3: Leaf and shoot growth and development I 66

IncreasedleafsizeofArabidopsisplantsmissingmultipleKRPgenesisanindirectconsequenceofearlyseedabortionSizani, B.L.a,†, Kalve, S.a,1,†, Nektarios, M.M., Domagalska, M.A.,Stelmaszewska,J.d,Veylder,L.D.e,Gerth,S.b,DeVos,D.a,Schnittger,A.c,andBeemster,G.T.S.a,*aDepartment of Biology,Molecular Plant Physiology and Biotechnology,UniversityofAntwerp,Groenenborgerlaan171,2020Antwerp,Belgium.

bDepartmentofDevelopmentalBiology,UniversityofFürth,Germany.cDepartmentofDevelopmentalBiology,UniversityofHamburg,Germany.dDepartmentof Reproduction andGynecological EndocrinologyMedicalUniversityofBialystok,Bialystok,Poland.

eDepartmentofPlantSystemsBiology,VIB,9052Ghent,Belgium.1Current address: Department of Plant and Soil Sciences, Institute forAgricultural Biosciences, Oklahoma State University, 3210 Sam NobleParkway,Ardmore,OK73401,USA.

†Theseauthorscontributedequallytothiswork.*Correspondingauthor.

Possiblydue to redundancy, lossof functionof individualKRPcellcycle inhibitor genes does not have a significant effect on plantdevelopment.However,weobservedaprogressive increaseof leaf sizewhen multiple KRP genes are simultaneously down regulated. DownregulationofthreeKRPgenes(krp4/6/7)hadthemostpronouncedeffect,increasingmatureleafareabyupto10%.Remarkably,kinematicanalysisrevealedthattheincreasedleafphenotypeofkrp4/6/7triplemutantwasalready established prior to the time frame covered by the analysis,suggestingthattheincreasedleafphenotypewasalreadypredeterminedintheseed.Consistently,seedsizeanalysisshowedastrongcorrelationbetweenseedsizeandleafareainthewild-typeandthekrp4/6/7mutant.Furthermore,seedsofequalsizeofCol-0andkrp4/6/7mutanthadnearlyequal leafphenotype.Noticeably, siliquesof thekrp4/6/7mutantwereslightly shortened with less seeds than that of the wild-type. Wehypothesisethattheabortionofapproximately30%of theseeds inthekrp4/6/7 mutant, increases seed size in the krp4/6/7 mutant due toreduced competition for of resources. Altogether these results suggestthat the enlarged leaf area of the krp4/6/7 triplemutant is an indirectconsequenceofseedabortioninthepreviousgeneration.

Page 69: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

SESSION 3: Leaf and shoot growth and development I 67

AtranscriptionalrepressorcomplexcontrolsROShomeostasisduringleafgrowthKunkowska,A.B.,andSchippers,J.H.M.InstituteofBiology I,RWTHAachenUniversity,Worringerweg1,52074,Aachen,Germany.

Leaf growth starts with an undifferentiated populations of cells

which through proliferation and expansion determine final organ size.Although both processes underlie strict genetic control, specifictranscriptionalnetworkshaveremainedelusive.

Previously,weidentifiedtheMyb-liketranscriptionfactorKUODA1(KUA1)asaspecificregulatorofcellexpansionduringleafgrowthbydirectrepression of class III peroxidases (POXs). Members of this class aresecreted to the cell wall where theymodulate reactive oxygen species(ROS) homeostasis. POXs can both produce and breakdown ROS. Theformationofhydrogenperoxide(H2O2)causesstiffeningofthecellwall,restricting cell expansion. Conversion of H2O2 into the hydroxyl radical,whichcausescellwalllooseningthroughcleavageofxyloglucan,promotescell expansion. KUA1-regulated POXs increase apoplastic H2O2 level,thereforeKUA1positivelyregulatesleafgrowthbyremaininglowlevelsofH2O2intheapoplast.Interestingly,hereweshowthatKUA1interactswithmembers of the TOPLESS/TOPLESS-RELATED (TPL/TPR) family ofcorepressorproteins.Wedemonstratethattheyarehighlyexpressedatthebeginningof theexpansionphase. Inaddition, the tpl phenotype iscomplementary to kua1, while tpr mutants effect cell proliferation.AlthoughTPL/TPRproteins interactwithKUA1, theydonot all seem tocontributetotheregulationofcellexpansionduringleafgrowth.

AsKUA1controlsROShomeostasis,wedecidedtodetermineiftpl,tpr2andtpr4havean impactonROS levels.AllmutantsshowdifferentROS levels during leaf growth as the wild type. Moreover, chemicalinhibitionofPOXactivityintpl,tpr2andtpr4mutantsresultedindifferenteffects on leaf growth. This observation suggests that the differentTPL/TPR proteins modulate the level of different POXs that eitherstimulateorrestrictgrowth.Takentogether,werevealnovelinsightintothetranscriptionalnetworkregulatingcellexpansionthroughthecontrolofROShomeostasis.

Page 70: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

SESSION 3: Leaf and shoot growth and development I 68

IYOandRIMAareco-transportedintothenucleustoactivatecelldifferentiationGonzález-García, M.P., Sanmartín, M., Contreras, R., Muñoz, A.,Sánchez-Serrano,J.J.andRojo,E.1Centro Nacional de Biotecnología-CSIC, Cantoblanco, E-28049 Madrid,Spain.

The transcriptional regulator MINIYO (IYO) is essential and rate-

limitingforinitiatingcelldifferentiationinArabidopsisthaliana.Moreover,IYO moves from the cytosol into the nucleus in cells at the meristemperiphery,possibly triggeringtheirdifferentiation.However, thegeneticmechanismscontrollingIYOnuclearaccumulationwereunknownandtheevidencethatincreasednuclearIYOlevelstriggerdifferentiationremainedcorrelative.Wehave identifiedan IYO-interactingproteinnamedRIMA,whichishomologoustoproteinslinkedtonuclearimportofselectivecargoinyeastandmammals.ThedevelopmentalphenotypesandtranscriptomicchangescausedbyIYOorRIMAknockdownareverysimilar,supportingaclose functional relationship between the proteins. Indeed, RIMAknockdown reduces the nuclear levels of IYO and prevents its pro-differentiation activity, supporting that RIMA-dependent nuclear IYOaccumulation triggers cell differentiation in Arabidopsis. We are nowtestingthehypothesisthatIYOandRIMAremainincomplexafterbeingtransferred into the nucleus, where they would directly regulatetranscriptiontoactivatecelldifferentiation.

Page 71: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

SESSION 4: Leaf and shoot growth and development

II

Page 72: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

70

Page 73: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

SESSION 4: Leaf and shoot growth and development II 71

SmallRNAsasmobile,morphogen-likesignalsindevelopmentSkopelitis,D.1,Benkovics,A.1,Husbands,A.1,andTimmermans,M.1,21ColdSpringHarborLaboratory,1BungtownRd,ColdSpringHarbor,NY11724,USA.

2Center for Plant Molecular Biology, University of Tuebingen, Auf derMorgenstelle32,72076Tuebingen,Germany.

Adaxial-abaxial(top-bottom)polaritydrivestheflattenedoutgrowth

andpatterningof leaves,andrepresentsanimportant innovationintheevolutionof landplants.Patterningof this axis isdrivenbyan intricategene regulatory network. Integral to this network are two sets ofconservedtranscriptionfactorsthatpromoteeitheradaxialorabaxialfate,andareexpressedincomplementarydomainsonthetoporbottomsideofthe leaf,respectively.Thepositional informationneededtodelineatethesedomainsisprovidedinpartbythesmallRNAsmiR166andtasiR-ARF.WehaveshownthatthesesmallRNAsmoveoutsidetheirdefineddomainof biogenesis and formopposing gradients across the leaf that polarizeexpressionofkeyadaxial-andabaxial-promotingtranscriptionfactors,HD-ZIPIIIandARF3/4,respectively.Ourobservations,whichwillbepresented,indicate thatmobile smallRNAshave the inherentcapacity togeneratesharpgeneexpressionboundaries,andfunctionasmorphogen-likesignalsindevelopment.TheirpatterningpropertiespresentsmallRNAsandtheirtargets as highly portable regulatorymodules through which to createpattern,andprovideacompellingbasisfortheextensiveconservationandrepeated co-option of developmentally important small RNA-targetmodules.

Page 74: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

72

The genetic basis for diversification of leaf form: fromunderstandingtoreconstructingTsiantis,M. MaxPlanckInstituteforPlantBreedingResearch,Carl-von-Linné-Weg10,50829Köln,Germany.

A key challenge in biology is to understand how diversity in

organismal form is generated. Genetic analyses inmodel systems haveidentifiedkeyregulatorsthatsculptthebodyplansofmetazoaandseedplants.However, less isknownabouthowtheactionofsuchregulatorsproduces particular organ shapes, or how the balance of conservationversus divergence of such form regulating pathways generated thetremendous morphological diversity of multicellular eukaryotes. Oneimpediment to answering these questions is the relative paucity ofexperimental platforms where genetic tools can be utilized tounambiguouslystudymorphogenesisanditsevolutioninagenome-wide,unbiased fashion. To circumvent this problem we developed theArabidopsisthalianarelativeCardaminehirsutaintoaversatilesystemforstudyingmorphological evolution.Weaim tounderstand themolecularmechanisms through which leaf morphology evolved in these species,resulting in simple,undivided leaves inA. thaliana anddissected leaveswith distinct leaflets in C. hirsuta. This presentation will discuss ourprogresstowardsunderstandingthemorphogeneticpathwaysthatspecifydissectedversusentireleafshapesandthatregulatethenumber,positionandtimingofleafletproduction.ItwillalsodetailhowstudiesinC.hirsutahave helped understand to what degree pathways underlyingmorphologicalvariationbetweenandwithinspeciesoverlap.

Page 75: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

73

Auxin methylation is required for differential growth inArabidopsisAbbas,M.1,2,Hernández-García,J.1,Pollmann,S.3,Samodelov,S.L.4,Kolb,M.4,Friml,J.2,Hammes,U.5,Zurbriggen,M.4,Alabadí,D.1,andBlázquez,M.A.11InstitutodeBiologíaMolecularyCelulardePlantas(CSIC-UPV),Spain.2InstituteofScienceandTechnology,Austria.3CentrodeBiotecnologíayGenómicadePlantas(UPM-INIA),Spain.4InstituteofSyntheticBiology,Germany.5SpemannGraduateSchoolofBiologyandMedicine,Germany.

Auxin gradients are instrumental for the differential growth thatcauses organ bending upon tropic stimuli and curvatures during plantdevelopment. It has been shown that local differences in auxinconcentrationsaremainlyachievedbypolarizedcellulardistributionofPINauxintransporters,butitisnotclearifothermechanismsinvolvingauxinhomeostasis are also relevant for the formationof auxin gradients.Wehave found that auxin methylation is required for asymmetric auxindistribution across the hypocotyl, in particular during its response togravity. In particular, loss-of-function mutants in the Arabidopsis IAACARBOXYLMETHYLTRANSFERASE1 (IAMT1) gene prematurely open theapicalhook,andtheirhypocotylsareimpairedingravitropicreorientation.ThisdefectislinkedtoanincreasedpolarauxintransportandtothelackofasymmetricdistributionofPIN3intheiamt1mutant,whichpresumablycauses the accumulation of auxin on either side of the gravistimulatedhypocotyl.Partialinhibitionofpolarauxintransportintheiamt1mutantresulted in the restoration of normal gravitropic reorient¬ation. WeproposethatIAAmethylationisnecessarytorestrictpolarauxintransportwithintherangeofauxinlevelsthatallowdifferentialresponses.

Page 76: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

74

Control of leaf cellular proliferation, differentiation andgrowth by light: establishing and distinguishing the roles ofhormonal-andsugar-signallingFarahi-Bilooei,S.1,Mohammed,B.2,Bogre,L.1,andLopez-Juez,E.11RoyalHollowayUniversityofLondon,EghamHill,Egham,Surrey,TW200EX.

2JohnInnesCentre,ColneyLane,Norwich,NR47UH,U.K.

Lightactivatestheshootapicalmeristemtoinitiatetheproductionofleafprimordiaandeventuallyleaves,butthisprocessisarrestedinthedark.Lightenergyis itselfrequiredfor leafgrowth.Wehaveinthepastobserved that thearrestedmeristemandprimordia in thedark showastrong response to auxin.Wenow report that they also showa strong“starvation”geneexpression.Thesesignaturesarerapidlyturnedbylightinto cytokinin-responsive and strong “feast”gene expression. Bothcoincidewith ribosomal protein gene expression and simultaneous cellproliferation,keycomponentsofleafinitiation.Theleafprimordiatransferto dark leads to disappearance ofmitotic reporter activity but thiswillreappear in the light.Ourdata suggest that the seedlingmeristemandyoungleafprimordiamayspecificallyexperienceactivecarbonstarvationinthedark,thisbeingquicklyrepressedwhentransferredtothelight.

Plants’ transfer fromlow light (LL) tohigh light (HL)alsoresults inextraproliferationandgrowth.AleafgrowninHLiscomposedofseverallayersoflargercells.TransferfromLLtoHLleadstothegrowthoflargerlamina.Thusbothmultiplelayers,andalargerlaminacomposedofmorecellsintwodimensions,occurinHL.Fromthoseobservations,weproposethat energy signalling processes are also central to leaf growth undernatural,varyinglightconditions.

Our work currently aims to identify the exact location of theobserved gene expression responses of Arabidopsismeristems and leafprimordiaindarkandlight,usingcytokininandauxinreporters,investigatethe signallingpathwayof the starvation/feast responseofmeristematicactivity,confirmbothcontrolmechanismsandunderstandwhethertheyhavedifferentroles,andtesttheirfurtherinvolvementintheresponsetodifferentlightquantities.

Page 77: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

75

Using spatial and temporal interferences to study leafdevelopmentMohammed,B.1,Lopez-Juez,E.2,andGrieneisen,V.A.11JohnInnesCentre,ColneyLane,Norwich,NR47UH,U.K.2RoyalHollowayUniversityofLondon,EghamHill,Egham,Surrey,TW200EX.

Spatio-temporalpatternscoordinateleafdevelopment.Cellsatthe

basalzonedivideandtransitiontoamaturetip-regionofexpansionandovertime determine a leaf of terminal size and shape. To study thiscoordination, quantifying cell shape, size and number can help unravelwhetherthereisatrade-offbetweencelldivisionroundsandthecapacityofcellexpansion.Ihaveperturbedthesystembystallingmitoticdivisionsinveryyoungleavesforacertaintime-windowbybringingyoungseedlingsfrom light to dark and conversely observed that a shift back to lightreintroducesmitoticdivision12-24hlater,inasynchronizedfashion.Doesthisinterferenceimpactthefinalsizeandshapeoftheleaf?Ifitdoesnot,how is such compensation established at the level ofmodified cellularbehaviour?Currently, Iamusingpseudo-Schiff-PIstainingtocapture,atdifferentdevelopmentalpoints,detailsofthetissue.TheresultsarebeinganalysedusingcurrentmethodsintheJIClab(incollaborationwithStanMareeforadvancedimageanalysis).

Finally, after their last divisions, pavement cells (PCs) developmultiple fronts of growth, with an interdigitating pattern in relation totheirneighbouringcells.Underlyingtheircomplexshapeareintracellularplayers, the Rho of Plants (ROPs). I have chosen to work on these tounderstandmore about the polarity andpatterningmechanismswithinsingle cells as well as to the coordination of these patterns betweenadjacent cells. To date, most genetic analysis of ROPs and theirdownstreamtargetshasfocusedonentireorganismshowingthatPCslosetheirlobedness.However,tobeabletoassessthecontributionofcell-cellcommunicationversusintercellularpatterningintheshapeacquisitionofthesecells,Iaminsteadusingclonalanalysisbyheat-shockingplanttissuetoinducesectorsofmutantcells.Howmutantcellsshapeincontactwithoneanotherincomparisontohowtheyshapeincontactwithnon-mutantcells will really help answer to what extent and how cell-to-cellcommunicationislinkedinmorphingcellularinterfaces.

Page 78: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

76

ACW-MBDprotein,bindingmethylatedDNAandchromatinwith H3K4methylation, controls leaf size in Arabidopsis byregulationofkeygenesinvolvedinthetransitionfromleafcellproliferationtocellexpansion Iversen,V.,Nenseth,H.Z.,Nateland,L.,andAalen,R.B.DepartmentofBiosciences,UniversityofOslo,Norway.

DNA-methylation and epigenetic marks on histone tails areimportant for organ growth and development, as illustrated by theseverely diminished organ size of the Arabidopsis ashh2 mutant (aliasefs/sdg8).ASHH2catalyzeH3K36me3,andhas inadditionaCWdomainthatreadsH3K4me[1].TheCWdomainispresentalsoinasmallMethyl-CpG-bindingDomain(MBD)protein.cw-mbdmutantsshowincreasedleafsize.Toelucidatethemechanismsbehindthisprotein’sinfluenceonleafdevelopmentwehaveinvestigatedthechromatinbindingpreferencesandgeneregulatorypropertiesandofCW-MBD.

MBDproteins,devoidoftheCWdomain,resideinheterochromatin.Incontrast,thesubnuclearlocalizationofCW-MBD-GFPfusionproteinisin euchromatin. Using Microscale Thermophoresis, we show CW-MBDbindingtomethylatedDNAandnucleosomeswithnativehistonesinaCW-dependent manner. Purified CW-MBD protein efficiently pull downchromatin enriched in Histone H3K4 monomethylation, an epigeneticmarkpreferablyfoundingenebodies,whereitcanco-residewithDNA-methylation. Genes with these characteristics were enriched amongstputativetargetgenesidentifiedbyCW-MBDChromatinpulldown(ChroP)seq.RNAseqidentifiedafewhundreddifferentiallyexpressedgenesincw-mbd mutant leaves that mainly belong to gene clusters important forchloroplastdifferentiationandphotosynthesis, and the switch fromcellproliferationtocellexpansionduringleafdevelopment.Genesencodingtranscriptionfactors,includingbHLH,MYBandkeyfactorsregulatingthecircadianclock,arealsoamongstCW-MBDregulatedgenes.

ModelsforCW-MBDfunctionwillbediscussed.[1]Hoppmann,V.,Thorstensen,T.,Kristiansen,P.E.,Veiseth,S.V.,Rahman,M.A.,Finne,K.,Aalen,R.B.,Aasland,R.(2011).TheCWdomain,anewhistonerecognitionmoduleinchromatinproteins.EMBOJ.30,1939-1952.

Page 79: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

KEYNOTE LECTURE

Page 80: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

78

Page 81: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

KEYNOTE LECTURE 79

PlantGrowth:TheFinalFrontierInzé,D.VIB-UGentCenterforPlantSystemsBiology,Belgium.

Plantandplantorgangrowthdependsonanexceedinglycomplexinterplay of many genes and their interaction with the ever changingenvironment. The long-term goal of our research is to obtain a holisticunderstandingof thecellularandmolecularenginesdrivingplantorgangrowth.Numerousgenesofwhichthemodifiedexpressionenhancesplantorgangrowthhavenowbeenidentifiedandadetailedstudyoftheirmodeofactionhasunraveledfivedifferentprocessesthatgovernorgangrowth.Furthermore,evidenceobtainedbothinthemodelplantArabidopsisandin maize, demonstrated that the combination of multiple growthenhancing genes can have very profound effects on organ sizes. Fieldexperiments with transgenic maize also demonstrates that genesenhancingleafgrowthhaveprofoundeffectsonbiomassproductivityandseedyield.

Tremendous progress has also been made in understanding howenvironmentalcues, suchasmilddroughtstress,negativelyaffectplantgrowth.Inunpredictableenvironments,growthreductionenablesplantstoredistributeandsaveresources,ensuringreproduction.However,whenthe episode of stress does not threaten plant survival, and from theagricultural point of view, growth reduction can be seen as counter-productive, leading tounnecessaryyield loss. Limitinggrowth reductionmay thus provide a strategy to boost plant productivity under stress.Recentinsightsshowthatmilddroughtstressaffectsboththegrowthrate,aswellasthegrowthduration,usingmaizeleavesasmodel.Theextentatwhichthesetwotraitsareaffected,isgenotypedependent.

I will discuss how our insights open up new perspectives for theidentificationofoptimalgrowthregulatorynetworksthatcanbeselectedby advancedbreeding, or forwhichmore robust variants (e.g. reducedsusceptibility to drought) can be obtained through genetic engineering.Theabilitytoimprovegrowthofmaizeand,inanalogyothercereals,couldhaveamajorimpactinprovidingfoodsecurity.

Page 82: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

80

Page 83: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

SESSION 5: Modeling and phenotyping

Page 84: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

82

Page 85: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

SESSION 5: Modeling and phenotyping 83

PlantphenotypingrevealsgeneticandphysiologicalfactorsofplantperformanceAltmann,T.1,Muraya,M.1,2,Chu,J.1,Zhao,Y.1,Junker,A.1,Tschiersch,H.1, Klukas, C.1,3, Reif, J.C.1, Riewe, D.1, Meyer, R.C.1, Jeon, H.J.1,Heuermann, M.1, Schmeichel, J.1, Seyfarth, M.1, Lisec, J.4, andWillmitzer,L.41Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Gatersleben,Germany.

2ChukaUniversity,Kenya.3LemnaTecGmbH,Germany.4Max-Planck-InstituteofMolecularPlantPhysiology,Germany.

Knowledgeof thestructuralandfunctionalgeneticarchitectureofagricultural traits is a prerequisite for the systematic exploration andutilizationofplantgeneticresourcesincropimprovementstrategies.Touncovermechanisticlinksbetweengeneticvariation,physiologicalfactorsandwholeplantperformancestrategies,Arabidopsis,maize,andrapeseedare investigated by integrating genotyping, transcript and metaboliteprofiling, and plant phenotyping. The three facilities at IPK supportautomatedwholeplantphenotypingforsmall,medium,andlargeplantsincludingcultivation,transport(plant-to-sensor)andimagingofplantsinclimatecontrolledphytotron/glasshousecabins.Theyareequippedwithcamera and illumination systems for visible, fluorescence, and nearinfrared imagingusing topviewandsideviews,with3D laser scanners,with LED panels and CCD cameras for functional (kinetic) chlorophyllfluorescencedetection,andwithabroadrangeofenvironmentalsensors.Thevalueofrepeatednon-invasivemonitoringoflargeplantpopulationsishighlightedbyresultsoftheanalysisofacollectionof261maizedentlines characterized for growth / biomass accumulation and waterconsumption, and thus, forwateruseefficiency. Throughgenome-wideassociationtestingwith50kSNPs,QTLofthesetraitsandofthegrowthdynamicswereidentified.Thedetected12maineffectbiomassQTLand6pairs of epistatic interactions displayeddifferent patterns of expressionthrough time. Some also showed significant effects on relative growthratesindifferentintervals.Usingnonparametricfunctionalmappingandmultivariate mapping approaches, 4 additional QTL affecting growthdynamicsweredetected.Thisdemonstratesthecomplexityoftheplant

Page 86: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

SESSION 5: Modeling and phenotyping 84

biomassaccumulationtraitbeinggovernedbymanysmalleffectlocimostofwhichactatcertainrestricteddevelopmentalphases.Ithighlightstheneed to detect and investigate stage-specific growth control genesoperatingatdifferentdevelopmentalphasesandtolinktheiractivitywithphysiological parameters such as photosystem II (PS II) efficiency andarchitecturaltraits,whichhavebeenshowntovarystronglyinacollectionof366maizeaccessionsoftheIPKGenbank.

Integrated metabolome analysis and whole plant phenotypingperformedinArabidopsisrevealeddirectlinksbetweenapromoterInDelpolymorphismoftheFUM2gene,itsmRNAexpression,fumaraseenzymeactivity,andfumaratetomalateratioinleavesofArabidopsisCol-0/C24RILsandILs.Itwasalsosignificantlyassociatedwiththefumaratetomalateratio,withmalateandfumaratelevels,andwithdryweightin174naturalaccessionsat15daysaftersowing(DAS)andwithbiomassproductioninanother set of 251 accessions (at 22 DAS). This supports a role of thecytosolicFUM2,whichspecificallyoccursinBrassicaceae,indiurnalcarbonstorageandpointstoagrowthadvantageofaccessionscarryingtheFUM2Col-0allelepreferentiallyoccurringincolderclimates.

Page 87: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

SESSION 5: Modeling and phenotyping 85

Celltowhole-plantphenotypinginsupportoftheintegrativeanalysisofgrowthregulatorynetworksWuyts,N.1,21VIB-UGentCenter forPlantSystemsBiology,VIB,Technologiepark927,9052Gent,Belgium.

2DepartmentofPlantBiotechnologyandBioinformatics,GhentUniversity,Technologiepark927,9052Gent,Belgium.

Measurementofgrowthacrossscales,fromthewhole-planttothe

organ,tissueandcellularlevels,isessentialintheidentificationofmutantphenotypes,andtheelucidationofmoleculargrowthregulatorynetworks.Moreover,asitbecomesclearthatcellularlevelprocessesofproliferationand expansion are affected by development- and environment-inducedsignalling, the design of sampling strategies for molecular analysescapturing these effects requires comprehensive phenotyping that fullyaccountsfortheplant’sgrowthconditionsanditsdevelopmentaltiming.Plant phenotyping systems in growth chambers and greenhouseconditionsremainthereforeimportantastheyallow‘toknowhowplantsgrow’, and the identification of associated growth processes. High-throughputgreenhousesystemsenablethephenotypingofcropsbeyondthe seedling stage, providing growth traits beyond early leaf and shootdevelopment, and plant functioning-related traits important for theintegrativeanalysisofgrowthanddevelopment.

Page 88: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

SESSION 5: Modeling and phenotyping 86

NaturalvariationforgrowthresponsetotheenvironmentinArabidopsisthalianaLoudet,O.TheVASTLab:www.inra.fr/vastInstitutJean-PierreBourgin,INRA,AgroParisTech,CNRS,UniversitéParis-Saclay,78000Versailles,France.

Followingalonghistoryofquantitativegeneticsincropplants,itis

nowquitepopularaswelltousenaturally-occuringvariationcontainedinArabidopsis thaliana accessions as the source of quantitative genomicsapproaches,designedtomapQTLsandtryandresolvethematthegenelevel.Apartfrombeingabletoexploit–inmultiplegeneticbackgrounds–allelicvariationthatcannotbeeasilyretrievedfromclassicalmutagenesis,the success of the QTL studies has often been because of the use ofquantitativephenotyping,asopposedtothequalitativescalesoftenusedintypicalmutantscreens.Theobjectiveofourworkistoapplygenome-wide quantitative molecular genetics to both, a very integrative andclassical quantitative trait (shoot growth) and amolecular trait a priorimoredirectlylinkedtothesourceofvariation(geneexpressionundercis-regulation), in both cases studied in interaction with the abioticenvironment (especiallydrought stress).Weareusingacombinationofouruniquehigh-troughputphenotypingrobot(thePhenoscope),RNA-seq,fine-mapping, complementationapproachesandassociationgenetics topinpoint a significant number ofQTLs and eQTLs to the gene level andidentifycausativepolymorphismsandthemolecularvariationcontrollingnatural diversity. Exploiting these strategies at an unprecedented scalethankstothePhenoscopeshouldallowtoresolveenoughquantitativelocito start drawing a more general picture as to how and where in thepathways adaptation is shaping natural variation. I will present recentresults obtained when trying to decipher the genetic architecture ofdynamicgrowthresponsetotheenvironment,toillustrateourstrategiesandresearch.

Page 89: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

SESSION 5: Modeling and phenotyping 87

Rapid repression of lateral root formation under transientwater deficit reveals a novel mechanism of ABA-mediatedmorphologicalplasticityincerealspeciesandArabidopsis Orman, B.1,2,3,*, Lavigne, T.1, Parizot, B.2,3, Babé, A.1, Séverin, J.P.1,Xuan, W.2,3, Ligeza, A.1, Novak, O.4,5, Morris, E.6,7, Sturrock, C.6,7,Ljung,K.4,Rodriguez,P.L.8,Dodd,I.C.9,DeSmet,I.2,3,6,7,Chaumont,F.10, Batoko, H.10, Périlleux, C.11, Bennett,M.J. 6,7, Beeckman, T.2,3,andDraye,X.11EarthandLifeInstitute,UniversitécatholiquedeLouvain,B-1348Louvain-la-Neuve,Belgium.

2DepartmentofPlantBiotechnologyandBioinformatics,GhentUniversity,B-9052,Ghent,Belgium.

3DepartmentofPlantSystemsBiology,VIB,B-9052,Ghent,Belgium.4DepartmentofForestGeneticsandPlantPhysiology,UmeåPlantScienceCentre(UPSC),SLU,SE-90183Umeå,Sweden.

5CentreoftheRegionHanáforBiotechnologicalandAgriculturalResearch,Laboratory of Growth Regulators, Palacký University and Institute ofExperimental Botany AS CR, Šlechtitelů 11, CZ-78371 Olomouc, CzechRepublic.

6DivisionofPlantandCropSciences,SchoolofBiosciences,UniversityofNottingham,LeicestershireLE125RD,UnitedKingdom.

7CentreforPlantIntegrativeBiology,SchoolofBiosciences,UniversityofNottingham,SuttonBonington,LE125RD,UnitedKingdom.

8InstitutodeBiologíaMolecularyCelulardePlantas,ConsejoSuperiordeInvestigacionesCientificas-UniversidadPolitecnicadeValencia,ES-46022Valencia,Spain.

9TheLancasterEnvironmentCentre,LancasterUniversity,LA14YQ,UK.10InstitutdesSciencesdelaVie,UniversitécatholiquedeLouvain,B-1348Louvain-la-Neuve,Belgium.

11InBioS - PhytoSYSTEMS, Laboratory of Plant Physiology, University ofLiège,ChemindelaVallée4,B-4000,Liège,Belgium.

*Presentaddress:InBios-PhytoSYSTEMS,LaboratoryofPlantPhysiology,UniversityofLiège,ChemindelaVallée4,B-4000Liège,Belgium.

Soilexplorationpatternscanbeseenastheadditionofglobaland

local trends defined, respectively, by the growth and development ofseminalandshoot-borneroots,ontheoneside,andbytheformationand

Page 90: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

SESSION 5: Modeling and phenotyping 88

growth of postembryonic lateral roots (LR), on the other side. As rootsexpandinheterogeneoussoil,theabilityoftherootsystemtoeffectivelycoordinaterootbranchingwithlocalsoilconditionsprovidesthemeanstoexploit different spatial and temporal soil niches and has a profoundimpactonthecaptureofsoilresources.WehavepreviouslyreportedincerealsthattransientwaterdeficitinaeroponicsirreversiblyrepressesLRinitiation, however the mechanisms involved in this response and theevolutionarysignificanceremaintobeelucidated.

Herewedemonstratethat incerealcrops,therootenteringasoilmacropore(largeairspace)rapidlyrespondstothelossofsoilcontactbylocallyrepressingLRformationaslongastherootremainsinsidethepore.This response was visualised by using X-ray microscale computedtomographyandobservedintrenchsoilprofile.GeneexpressionanalysisduringtransientwaterdeficitinaeroponicsrevealedtheroleofAbscissicacid(ABA)andweusedacombinationofexogenousABAtreatmentsandauxinprofilingincerealswithageneticanalysisinArabidopsistoaddressthe intrinsic signalling pathway triggering LR repression.We found thatexogenousABAtreatmentcanmimictheinhibitoryeffectofwaterdeficiton LR formation in barley (Hordeum vulgare), maize (Zea mays) andArabidopsis.WedemonstratedthattransientABAtreatmentrepressesLRinitiationbyblockingtheearlieststagesofprebranchsiteformation.

TheseresultsindicatethatanABAresponsepathwayallowsaquickadjustment of root branching to local variations in soil structure andpresumably, soil water content. The conservation of this process inmonocotsanddicotssuggeststhatthismechanismofrootplasticitywasanancestraladaptationtoterrestrialplantlife.

Page 91: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

SESSION 5: Modeling and phenotyping 89

CelldivisionsincolumellainitialstriggerrootcapabscissionatalocalauxinresponseminimumDubreuil,C.1,Jin,X.1,Grönlund,A.2,andFischer,U.11Umeå Plant Science Centre, Department of Forest Genetics and PlantPhysiology,SwedishUniversityofAgriculturalSciences,UmeåSE-90183,Sweden.

2Umeå Plant Science Centre, Department of Plant Physiology, UmeåUniversity,UmeåSE-90187,Sweden.

The root cap protects the meristem and directs growth by sensing

environmental cues. A tight balance between cell division, differentiation andseparationensuresthattherootcapcanfulfillitsprotectiveroleoveraprolongedperiodoftime.Eventhoughtherootcapisasimpleandeasilyaccessiblemodelpositionalandtemporalcuescoordinatingrootcapdevelopmentareonlypoorlyunderstood.

With the help of live-cell tracking over a period of several days weestablishedatimelineofArabidopsisrootcapdevelopment.Priortotheseparationoftheoutermostcelllayerasinglecelldivisiontookplaceinthecolumellainitials.Induction of columella cell divisions resulted in an increased rate of cell layerseparation, whereas inhibition of initial divisions decreased the frequency ofabscission.Thissuggeststhatinitialdivisionactivityisco-regulatedwiththerateofabscissioninordertokeepabalancebetweenself-renewalandsizehomeostasisoftherootcap.Intriguingly,theauxinresponsegradientwithamaximumintheoutermostcolumellalayerbeforetheonsetofcellseparationwasinvertedduringcellseparationtoagradientwithalocalminimuminthedetachingcolumellalayer.Inhibitionofpolarauxintransportabolishedtheauxinresponsegradient,cellwallremodelinginthedetachingcelllayerandabscissionoftherootcap.Auxineffluxcarriers were not expressed in the two outermost layers of the columella,supposedly diminishing transporter-mediated auxin flux from the main auxinsource in the quiescent center to the separating root cap layer. A dynamicmathematicalmodelindicatesthatasteady-stateauxingradientcanbeachievedsolelyandrapidlyonthebasisofauxindilutionbycelldivisionandexpansionandthatsuchagradientcanrobustlypredictthesiteofcellseparation.

Thecombinationoflive-celltracking,pharmacologicalmanipulationofrootcapdevelopmentandmathematicalmodelingallowedustoidentifycelldivisionsin the columella initials together with an auxin gradient as regulators of cellseparation.

Page 92: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

SESSION 5: Modeling and phenotyping 90

An adenylate kinase regulates ribosome biogenesis, cellproliferation,cellsizeandnaturalvariationinrootgrowthSlovak, R.1, Setzer, C.1, Roiuk,M.2, Göschl, C.1, Jandrasits, K.1, andBusch,W.11GregorMendel Institute (GMI), Austrian Academy of Sciences, ViennaBiocenter(VBC),Dr.-Bohr-Gasse3,1030Vienna,Austria.

2Max F. Perutz Laboratories, Vienna Biocenter (VBC), Dr.-Bohr-Gasse 9,1030Vienna,Austria.

Cell proliferation and cell size fundamentally impact the growth of

organs.Organgrowthisparticularlyhighlyrelevantforroots,asrootgrowthand length determine the ability of roots to explore the soil to acquirenutrientsandwater,aswellastoanchortheplant.Whilemanyregulatorswithmajor qualitative effects on root growth are known,we set out toidentifygenesthatquantitativelyregulategrowth.Forthis,wesampledthevariation in root growth of 253 Arabidopsis thaliana accessions andconducted genome wide association studies (GWAS). We subsequentlyidentifiedagenomicregionspanninganadenylatekinase(AK)gene.Loss-of-functionofthisgeneleadstosignificantlyslowerrootgrowth,resultinginshorterroots.Complementationoftheloss-of-functionmutantwithanallelefromfastergrowinghaplotypeledtosignificantlyfasterrootgrowthcomparedtocomplementationwithanallelefromslowerhaplotype.Thisdemonstrates thatnaturalgeneticvariation in theAK gene is involved indeterminingrootgrowthinArabidopsisaccessions.Unexpectedly,theloss-of-functionmutantdisplaysslightly longercells in therootmeristemandsignificantly longer mature cells than wild type. This is accompanied byincreased levels of endoreplication. The short root phenotype despiteincreased cellular length strongly suggests that AK regulates cellproliferationintherootmeristem.Surprisingly,lossofAKincreasesnumberofcellsinG2/Mphase,thereforewearecurrentlytestingthedurationofG2/Mphaseinmutantandwildtypeseedlings.Atthemolecularlevel,AKisinvolved in ribosome biogenesis and the loss of AK function leads toaccumulationof80S-likeribosomes,suggestingalinkbetweenrootgrowthcontrol and ribosome biogenesis. Overall, utilizing genetic variation ofnaturalalleles,weuncoveredanovelgrowthregulatorthatlinksribosomebiogenesis,cellcycle,andcellsizecontrolintheArabidopsisthalianaroot.

Page 93: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

SESSION 5: Modeling and phenotyping 91

AssessingthevariabilityofrootgrowthcomponentsinpoplarYoussef, C.1, Hummel, I.1, Bizet, F.2, Bastien, R.3, Legland,D.4, andBogeat-Triboulot,M.B.11EEF,INRA,UniversitédeLorraine,54280,Champenoux,France.2PIAF,INRA,UniversitéClermontAuvergne, 63178,Aubière,France.3DepartmentofCollectiveBehaviour,MaxPlanckInstituteforOrnithology,UniversityofKonstanz,Konstanz,Germany.

4Biopolymers,InteractionsandAssemblies,INRA,44316,Nantes,France.

Organ growth results from the coupling of cell production and cellexpansion.Thesetwoprocessesbeingspatiallymostlyseparatedintherootapex,thisorganappearswellsuitedtodeciphertheircontributiontogrowthrate.Kinematicsisapowerfulframeworktoaccesstogrowthdeterminantssuchas cell stretchingcapacity, cellproliferation rate, sizeof thegrowthzone,etc[1].Automatictrackingalgorithmshaveenhancedparticleimagevelocimetry,openingthewayforthescreeningofgrowthvariability.

Taking advantage of the high adventitious rooting capacity of thePopulusgenus,weinvestigatedthevariabilityofgrowthanditsunderlyingcomponentsunderoptimalconditions.Rootgrowthratewasquantifiedtogether with elemental elongation rate (EER), cell production rate,growthzonelengthandmeristemlength.Wetestedwhetherrootgrowthratewasassociatedwithgrowthzone lengthorcell stretchingcapacity.Poplar cuttings of 8 genotypeswere grown in hydroponics. Rootswereimaged under infrared light, growth was monitored by time lapsephotographyandkinematicanalyseswereconductedwithKymoRod[2].

Fifty-sevenrootswerephenotypedrevealingalargerangeofgrowthrate (0.1 to 1.3 mm h-1). While a special attention was given to thehomogeneityofmaterialandgrowthconditions,thisrangereflectsinter-individualrootvariability.Nocorrelationwasfoundbetweenrootgrowthrate and rootdiameter.Onegenotype, Flevo,differed from theothers,showinga significantlyhighergrowth rate.Rootgrowth ratewashighlycorrelated with the elongation zone length (r2=0.93) and, to a lesserextent,tothemaximalEER(r2=0.59).EERmaxintherootapexco-variedwithgrowthratebutnetherexceeding40%h-1, suggesting thiswasanintrinsiclimitofcellstretching.

[1]Bizet,F.,etal.(2015) J.Exp.Bot.66,1387-1395.[2]Bastien,R.,etal.(2016).PlantJ.88,468-475

Page 94: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

SESSION 5: Modeling and phenotyping 92

Cell-sizedependentprogressionofthecellcyclecreatesbothhomeostasisandflexibilityofplantcellsizeJones,A.R.1,Forero-Vargas,M.1,Withers,S.P.1,Smith,R.S.2,Traas,J.3,Dewitte,W.1,andMurray,J.11CardiffSchoolofBiosciences,CardiffUniversity,Cardiff,WalesCF103AX,UK.

2Max Planck Institute for Plant Breeding Research, 50829 Cologne,Germany.

3LaboratoiredeReproductiondedéveloppementdesplantes,INRA,CNRS,ENSLyon,UCBLyon1,UniversitédeLyon,Lyon,France.

Mean cell size at the point of división in plant cells is generally

constant for specific conditions and cell types, but the mechanismscoupling cell growth and cell cycle control with cell size regulation arepoorlyunderstoodinintacttissues.Hereweshowthatthecontinuouslydividing fields of cells within the shoot apical meristem of Arabidopsisshowdynamicregulationofmeancellsizedependentondevelopmentalstage,genotypeandenvironmentalsignals.Weshowcellsizeatdivisionandcellcycle lengthcanbeeffectivelypredictedusingan iterativetwo-stage cell cycle model linking cell growth and two sequential cyclindependentkinase(CDK)activities.Asinglephasemodelcannotpredicttheobserved effects of alterations in G1/S and G2/M kinsae activities asdeterminedbyusingmutantandoverexpressiongenotypes.ExperimentalresultsconcurinshowingthatprogressionthroughbothG1/SandG2/Misflexibleinresponsetobothgenotypeandenvironmentalconditionsandthat both transitions are size dependent. We conclude that the cell-autonomous co-ordination of cell growth and cell division previouslyobserved inunicellularorganismsalsoexists in intactplant tissues, andthatobservedcellsizeingrowingtissuesmaybeanemergentratherthandirectlydeterminedpropertyofcells.

Page 95: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

SESSION 5: Modeling and phenotyping 93

High-throughput screening of Arabidopsis shoot growth inmulti-wellplatesDeDiego,N.1,Fürst,T.1,Humplík,J.F.1,2,Ugena-Consuegra,L.1,Podlešáková,K.1,andSpíchal,L.11DepartmentofChemicalBiologyandGenetics,CentreoftheRegionHanáforBiotechnologicalandAgriculturalResearch,FacultyofScience,PalackýUniversity,Šlechtitelů27,Olomouc,CZ-78371,CzechRepublic.

2LaboratoryofGrowthRegulators,CentreoftheRegionHanáforBiotechnologicalandAgriculturalResearch,FacultyofScience,PalackýUniversity,andInstituteofExperimentalBotanyASCR,Šlechtitelů27,OlomoucCZ-78371,CzechRepublic.

High-throughput plant phenotyping platforms provide new

possibilities forautomated, fastscoringofseveral traitsofplantgrowthanddevelopmentfollowedoveratime-courseusingnon-invasivesensors.In this studywe report development of high-throughputArabidopsis invitrobioassayestablishedatourOloPhenplatformsuitableforanalysisofshoot growth in multi-well plates. This method allows combinatorialtestingofhighnumberofcompoundsand/orgenotypes,invariousgrowthconditionslimitingplantgrowthinlargescalecountingwithwiderangeofconcentrationsoftestedcompoundsandconditions,respectively.Severaltraitssuchaschangesintheshootarea,relativegrowthrate,survivalrateand homogeneity of the population are scored using automated RGBimagingandsubsequentimageanalysis.Theassaycanbeappliedforfastscreening of biological activity of chemical libraries, phenotypes oftransgenic or recombinant inbred lines, or to search for potentialquantitativetraitloci.Itisespeciallyadvantageousforaselectionofstress-tolerantgenotypesorcompoundsthatimprovestresstolerance.

Page 96: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

94

Page 97: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

POSTERS

Stuart
Texto escrito a máquina
Page 98: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

96

Page 99: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

POSTERS 97

TheroleofKNOXinshapingleafformsKierzkowski,D.,Runions,A.,Vuolo,F.,DelloIoio,R.,andTsiantis,M.Department of Comparative Development and Genetics, Max PlanckInstitute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829Cologne,Germany.

Altered gene expression of key developmental regulators

contributes to organ shape diversity. It is, however, unclear how thesegenetic changes translate into divergent morphologies. Here weinvestigate this problem by comparing leaf development in two closelyrelatedspecies,A.thaliana,whichhassimpleleaveswithserrations,andC.hirsutawith compound leaves subdivided into individual leaflets.Weshow that cellular differentiation is delayed in leaflets compare toserrationscoincidingwithprolongedgrowth.ThiseffectdependsonclassI KNOTTED-like homeobox (KNOX) gene called SHOOTMERISTEMLESS(STM).Specifically,ectopicexpressionofSTMintheA.thalianaleafshiftsthe developmental patterns of serrations toward those observed inleaflets. We further explore how STM influences expression of thePINFORMED1auxineffluxcarrierwhichisrequiredforformationofleafletprimordiaalongthe leafmargin.Ourwork indicatesthatKNOXproteinscontribute to morphological diversity by delaying differentiation,prolonginggrowthandinfluencingorganogenicactivityoftheleafmargin.

Page 100: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

POSTERS 98

ModelingsecondarygrowthintheArabidopsisrootcambiumAdibi,M.1,Smetana,O.2,Broholm,S.2,Smith,R.S.1,andMähönen,A.P.21MaxPlanckinstituteforplantbreedingresearch,Cologne,Germany.2InstituteofBiotechnology,UniversityofHelsinki,Helsinki,Finland.

Secondary root growth in plants is marked with continuousproductionofvasculartissuesandradialthickeningofplantorgans.Thisprocess is essential for various aspects of plant growth andphysiology,such aswater transport and response tomechanical stress. Analysis ofclonalsectorsofvascularcells,inducedattheonsetofsecondarygrowth,hasrevealedthatthebulkofthetissueproducedduringsecondarygrowthis comprised of the descendants of procambial cells in contact withprimaryxylem. Intriguingly, thesizeof thesesectorscorrelateswiththenumberof secondary xylemvessels formed in each sector. Additionallydata reveals that rapid cell expansion associatedwith vessel formationappearstoresultincompressionanddislocationofneighboringcells.Theabilityofvasculartissuetoaccommodatethefastgrowingxylemvesselswhile maintaining overall tissue form, requires detailed regulation ofgrowthandcellmechanics.

Inordertoinvestigatethepatternsoftissuegrowthandmechanicsduringsecondarygrowth,wedevelopedaphysically-basedgrowingmodelofatransversesectionofrootvasculature.Oursimulationresultssuggestthat regulation of cellular pressure plays a central role in regulatingsecondary growth; model results are consistent with xylem expansiondrivenbyelevationofcellularpressure.Resultsalsosuggestthatpressureregulation isameanbywhichthecellsadjacent toanexpandingxylemresistsmajordeformations,otherwisecausedbyincreasingpressureintheexpandingxylemvessels.Overall,modelsimulationsshowthatregulationof cellular pressure can account for xylem formation and how xylemexpansionsubsequentlyimpactsoveralltissuearrangement.

Page 101: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

POSTERS 99

A developmental framework for adventitious rootdevelopmentinArabidopsisthalianaIbáñez,S.,Sánchez-García,A.B.,Fernández-López,M.,Micol,J.L.,andPérez-Pérez,J.M.InstitutodeBioingeniería,UniversidadMiguelHernándezdeElche,Avda.delaUniversidads/n,03202Elche,Spain.

As Adventitious roots (ARs) are ectopic roots that arise either

naturallyorinresponsetostressfromvariousplanttissues,suchasstemsandleaves;theymayalsobeinducedbymechanicaldamageorfollowingin vitro tissue culture regeneration. The formation of ARs is a complexgeneticprocessregulatedbybothenvironmentalandendogenousfactors,amongwhichtheplanthormoneauxinplaysacentralrole.

UsingArabidopsisthalianaexcisedleavesasamodelfordenovorootorganogenesis,we characterized both at the histological andmolecularlevelthedifferentstagesduringARformation.Ourresults indicatethat,shortlyafterexcision,alocalizedauxinmaximumisestablishedonasubsetof vascular cells near the wound. Then, cytokinin-dependent cellproliferationleadstocallusformationinthisregionwhichwilllateracquirerootidentitymarkers.

ToidentifyadditionalgenefunctionsrequiredforARdevelopmentwepreviouslyscreenedtheArabidopsisthalianaunimutantcollectionwithavisibleleafphenotype.Here,wepresentnewdataonasubsetofthesemutantsselectedonthebasisoftheirdefectiveARformationfromexcisedleaves.

WorkfundedbyMINECO/FEDER(AGL2012-33610andBIO2015-64255).

Page 102: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

POSTERS 100

HormonalsignalingofadventitiousrootformationintomatohypocotylsafterwoundingAlaguero,A.1,Villanova,J.1,Cano,A.2,Acosta,M.2,andPérez-Pérez,J.M.11InstitutodeBioingeniería,UniversidadMiguelHernándezdeElche,Avda.delaUniversidads/n,03202Elche,Spain.

2DepartamentodeBiologíaVegetal(FisiologíaVegetal),UniversidaddeMurcia,30100Murcia,Spain.

Adventitiousroots(ARs)areformedfromnon-roottissues,suchas

stems or leaves, in response to some stresses (i.e. flooding) or afterwounding.Tomatoisanattractivemodeltostudythegeneticbasisofdenovoadventitiousorganformation,sincethereisaconsiderablenaturalgeneticvariationforthistraitamongwildrelatives.

Our results indicate that active polar auxin transport through thehypocotylleadstoalocalizedauxingradientrequiredforARformationinthehypocotylbase.QuantitativehistologyallowedustodefinethecellulardynamicsduringtheearlystagesofARinitiation.GeneexpressionprofilingatdifferentstagesofARformationhavebeenanalyzed.ARformationhasbeen analyzed on a number of tomato mutants affected in hormonalsignaling and a model for wound-induced organ regeneration fromhypocotylexplantsinthisspecieswillbepresented.

TheidentificationofthegeneticnetworksinvolvedinARformationwillcontributetoourbasicunderstandingofthemoleculareventsleadingtothiscomplexdevelopmentalresponse.

WorkfundedbyMINECO/FEDER(AGL2012-33610andBIO2015-64255).

Page 103: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

POSTERS 101

Communicationofloss:Anovelpeptideligand-receptorpairisinvolvedinrootcapsloughinginArabidopsisShi,C.,Herrmann,U.,Wildhagen,M.,andAalen,R.B.DepartmentofBiosciences,UniversityofOslo,Norway.

Peptide ligands are playing important roles in plant growth anddevelopmentalprocesses.INFLORESCENCEDEFICIENTINABSCISSION(IDA)encodesapeptide ligandrequiredforfloralorganabscissionand lateralrootemergenceinArabidopsis,signalingthroughitsreceptor-likekinases(RLK),HAESA(HAE)andHAESA-LIKE2(HSL2).

IDA-LIKE1(IDL1),closelyrelatedtoIDA,isexpressedinthetheoldestcolumella cells and neighbouring lateral root cap (LRC) cells in theoutermostlayeroftherootcapatthetipoftheprimaryroot,whileHSL2is most strongly expressed in the youngest LRC layers. Enhancedexpressionof IDL1 (EnhIDL1) from itsownpromoter,usingan inducibletwo-componentsystem,resultsinanincreasednumberofdetachedrootcaps;however,withoutareduction in thenumberofattachedrootcaplayers.Theincreasedfrequencyofrootcapsloughingcannotbeinducedin hsl2 mutant background. By using different root reporters, we areexploring the role of IDL1 and HSL2 in the sloughing process and inmaintenanceofthehomeostaticbalancebetweenlossandgenerationofnewrootcaplayers.

Page 104: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

POSTERS 102

Agenome-wideassociationstudyidentifiesnewlociforrootformationafterwoundingJustamante,M.S.,Ibáñez,S.,andPérez-Pérez,J.M.InstitutodeBioingeniería,UniversidadMiguelHernándezdeElche,Avda.delaUniversidads/n,03202Elche,Spain.

Weareinterestedtocontributetotheidentificationofsomeofthe

geneticdeterminantsinvolvedindenovoorganformationafterwoundingusingArabidopsisthalianaasamodelorganism.Wehaveanalyzedlateralandadventitiousrootformationinresponsetowoundingonacollectionof120naturalaccessionsofArabidopsis.Genome-wideassociationstudieshavebeenperformedtoidentifysomeofthegenomicregionsthatmaybeinvolvedinthephenotypicvariationforsomeofthestudiedtraits.

Wefoundstatisticallysignificantassociationsbetweenthenumberof lateral rootsafterwoundingand severalpolymorphicmarkersat thecodingregionofsomegenesonchromosomes1,3and5.Likewisewehavefound somemarkers associated with lateral root density and with thetiming of lateral root primordial initiation. However, we found nosignificantassociationbetweenthenumberofadventitiousrootsandthestudied molecular markers. Our results suggest some specificity in thegenetic mechanisms that regulate the formation of lateral andadventitious roots after wounding. Subsequent studies will allow us toconfirm whether the polymorphisms identified contribute to thephenotypicdifferencesobservedinthestudiedaccessions.

WorkfundedbyMINECO/FEDER(AGL2012-33610andBIO2015-64255).

Page 105: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

POSTERS 103

CharacterizationanddiversityofrhizobianodulatingLablabpurpureusBenselama,A.1,2,Ounane,S.M.2,andBekki,A.31LaboratoryofBiologyofSoil.UniversityofScienceandTechnologyHouariBoumedienneUSTHBAlgiers.

2LaboratoryofAmeliorationIntegrativeofProductionVegetal(AIPV).3LaboratoryofBiotechnologyofRhizobiaandAmeliorationofPlant.Universityd’Oran-Es-SeniaAlgeria.

Theobjectiveofthisstudyistoinvestigatethegeneticdiversityof20

isolates fromourcollectionnodulatingLablabpurpureus in threesoilofAlgeria, These isolates havebeen authenticatedby seedling inoculationgrowninjarscontainingsand.Theresultsobtainedaftertwomonthsofculturehaverevealedthatthe20isolates(100%oftheisolates)areabletonodulatetheirhostplants.

Thedeterminationofthetaxonomicpositionofthese isolatesandevaluation of the level of approximation or divergence between thesestrainsandthereferencestrainsbelongingtodifferentgeneraofrhizobia.Amplificationoftheribosomal16SrDNAgene(PCR/RFLPof16SrDNA)wasdigestedwithfourdifferentrestrictionenzymes:Msp I,HinfI,Hha IandTaqI.

The results of different electrophoretic profiles of fragmentsobtainedshowntheselectionofthemostdiscriminatingenzymesMspIandHinfI.Inaddition,lengthpolymorphismoftherestrictionfragments(RFLP)analysisofPCRamplified16SrDNAwerecomparedwiththoseofreferencestrains.Numericalanalysisofmolecularcharacteristicsshowedthat20strainsstudiedfallintothreedistinctgroups,wenotedthatthreeisolates only Lablab purpureus have a high level of similarity with thereferencestrain"Bradyrhizobium",while17isolatesdidnotexhibitprecisetaxonomicstatusandthereforetheirexactphylogeneticclassificationtobedetermined.

Page 106: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

POSTERS 104

MeioticabnormalitiesduringgameteformationintriploidLimoniumalgarvense(Plumbaginaceae)Conceição,S.,andCaperta,A.D.LinkingLandscape,Environment,AgricultureandFood(LEAF),InstitutoSuperiordeAgronomia(ISA),UniversidadedeLisboa,TapadadaAjuda,1349-017Lisboa,Portugal.

The induction of polyploidy (i.e. genome doubling) in flowering

plants has been consideredoneof themain drivers of plant speciation[1,2].Amajorrouteofpolyploidizationrelyonalterationsofthemeioticcell cycle involving gametic nonreduction ormeiotic nuclear restitutionduring micro- and megasporogenesis, originating unreduced gametes[3,4]. Triploid taxa canbeused as a naturalmodel to investigate thesecellularphenomenatoinferthepolyploidstatusofthespeciesunderstudy(auto-orallopolyploidy)[5].

L. algarvense Erben is a poor known triploid species (2n=3x=25chromosomes) [6]belonging to theLimoniumMill. genus,which iswelldistributedincoastalareasandsalinesteppeswithagreatdiversityintheMediterranean region [7]. Few information regarding cytogeneticvariabilityandreproductivebiologyofthisspeciesisavailable.Thepresentstudyaimedtocharacterizemalesporogenesisandgametogenesisofthisspecies. Micro-sporogenesis was analysed through cytology usingsquashesstainedwithDAPIandwithaceto-carmine.Callosedetectionandgamete viability testswere also performed. The results showed severalabnormalities during male gametes formation such as chromosomesbridges and laggard chromosomes, First and Seconddivision restitutionnuclei, as well as cytomixis. These anomalies led to the formation ofnonreducedpollengrainswithdifferentmorphologywithlowviabilityandgerminationrates.

TheresultsindicatethatL.algarvenseisanallopolyploidsincethereappears to be a lack of homology in some meiosis stages and also apossible intergenomicrecombination.Besidesthis, theresultsonpollengrainwithlowfertilityandseedwithhighcapacityofgerminationindicatethatthisspeciesmightreproducethroughapomixis.

[1]Ramsey,J.,andSchemske,D.W.(1998).Pathways,mechanisms,andratesofpolyploidformationinfloweringplants.Annu.Rev.Ecol.Syst.29,467-501.

Page 107: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

POSTERS 105

[2]Adams,K.L.,andWendel,J.F.(2005).Polyploidyandgenomeevolutioninplants.Curr.Opin.PlantBiol.8,135-141.

[3]Bretagnolle,F.,andThompson,J.D.(1995).GameteswiththeStomaticChromosomeNumber:Mechanismsof Their Formation andRole in the EvolutionofAutopolypoidPlants.NewPhytol.129,1-22.

[4]DeStorme,N.,andMason,A.(2014).Plantspeciationthroughchromosomeinstabilityandploidychange:Cellularmechanisms,molecularfactorsandevolutionaryrelevance.Curr.PlantBiol.1,10-33.

[5]Lavia,G.I.,Ortiz,A.M.,Robledo,G.,Fernández,A.&Seijo,G.(2011).OriginoftriploidArachis pintoi (Leguminosae) by autopolyploidy evidenced by FISH and meioticbehaviour.Ann.Bot.108,103-111.

[6] Erben, M., (1993). LimoniumMill. In: Castroviejo S, Aedo C, Cirujano S, Lainz M,Montserrat P,Morales R, Garmendia FM, Navarro C, Paiva J, Soriano C [eds.] FloraIberica3,2-143,RealJardínBotánico,CSIC,Madrid.

[7]Kubitzki,K. inFloweringPlantsDicotyledonsSE -62 (eds.Kubitzki,K.,Rohwer, J.&Bittrich,V.)2,523-530(SpringerBerlinHeidelberg,1993).

Page 108: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

POSTERS 106

Patterns of Ser 10 phosphorylation of histone H3 and oftubulin during male sporogenesis in diploid and polyploidLimoniumspecies(Plumbaginaceae) Conceição,S.,Silva,N.,andCaperta,A.D.11LinkingLandscape,Environment,AgricultureandFood(LEAF),InstitutoSuperiordeAgronomia(ISA),UniversidadedeLisboa,TapadadaAjuda,1349-017Lisboa,Portugal.

Unreducedgameteformationisconsideredtobethemainsourceof

polyploidy (genome doubling) in nature [1,2]. The main cytologicalmechanisms responsible for meiotic non-reduction in plants are Firstdivision restitution (FDR) or Second division restitution (SDR) [3].LimoniumMill. (Plumbaginaceae) is a genus of halophytes with ploidylevelsspanningdiploidstooctoploidsandaneuploidy[4]. Inthepresentstudy,malesporogenesiswasstudiedbycytologyusingimmunostainingof phosphorylated histone H3 at serine-10 (H3S10ph) and α-tubulin indiploid and polyploid species. Our results showed differences indistributionpatternsofbothantibodiesassociated to theproductionofunreducedmalegametes.[1]Tayalé,A.,andParisod,C.(2013).Cytogenet.GenomeRes.140,79-96. [2]Ramsey,J.,andSchemske,D.W.(1998).Annu.Rev.Ecol.Syst.29,467-501. [3]DeStorme,N.,andGeelen,D.(2013).NewPhytol. 198,670-684. [4]Róis,A.S.,etal.,(2016).Ann.Bot.117,37-50.

Page 109: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

POSTERS 107

Antagonistic interaction between A and C floral homeoticactivitiesiscriticalforovuledevelopmentinArabidopsisRodríguez-Cazorla,E.1,Ortuño-Miquel,S.1,Cruz-Valerio,M.1,Bailey,L.J.2,Yanofsky,M.F.2,Ripoll,J.J.2,Martínez-Laborda,A.1,andVera,A.11ÁreadeGenética,UniversidadMiguelHernández,CampusdeSantJoand’Alacant,SantJoand’Alacant,Alicante,Spain.

2DivisionofBiologicalSciences,SectionofCellandDevelopmentalBiology,UniversityofCaliforniaSanDiego,LaJolla,CA,USA.

Plantovulesareessentialforreproductivesuccess.Ovulesdevelop

insidethegynoecium,housingthefemalegametophyteandgivingrisetotheseedsafterfertilization.InArabidopsis,ovuleidentityisredundantlyconferred by the D-function genes SHATTERPROOF1 (SHP1), SHP2, andSEEDSTICK(STK),encodingMADS-boxtranscriptionfactorscloselyrelatedtothefloralhomeoticgeneAGAMOUS(AG)1.HUA1,HUA2,HEN4,FLKandPEP (collectively, theHUA-PEPgeneactivity)encodeasetof interactingribonucleoproteinsthatregulateAG,thusaffectingflowerorganidentityanddeterminacy2.

AtenetoftheclassicABCmodelforflowerpatterningisantagonismbetweenAandCactivities,representedbyAPETALA1(AP1)andAGgenes,respectively.Here,wereportthatmutationalperturbationoftheHUA-PEPgene function leads to homeotic transformation of ovules into flowerorgan-like structures. Accordingly, hua-pep mutants exhibit reducedexpressionofD-classgenes.Unlikeprevious studies inwhichconvertedovules were reported to resemble carpeloid structures1,3, transformedovulesinhua-pepmutantbackgroundsdisplayobvioussepaloidfeatures.Transformed ovules also show AP1 ectopic expression likely due tosimultaneousfallofAG.Indeed,lossofAP1orincreaseofAGgenedosagerescue ovule identity in hua-pep mutants and favor the appearance ofcarpeloidtraits.TheseresultssuggestthatproperovuledevelopmentmayrequiretheexclusionoffactorssuchasAP1fromthosetissuestopreventtheadoptionofalternativecellfates.Overall,ourfindingsareinlinewiththeclassicA-CantagonismandstronglysuggestthattheinterplaybetweenAandC(+D)functionsiscriticalforovuledevelopment.

Page 110: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

POSTERS 108

PPD-KIX, a conserved protein repressor complex regulatingleafgrowthindicotsBaekelandt, A.1,2, Gonzalez, N.1,2, Pauwels, L.1,2, Swinnen, G.1,2,Doorsselaere,J.V.3,Jaeger,G.D.1,2,Goossens,A.1,2,4,andInzé,D.1,2,41CenterforPlantSystemsBiology,VIB,Technologiepark927,9052Ghent,Belgium.

2DepartmentofPlantBiotechnologyandBioinformatics,GhentUniversity,9052Ghent,Belgium.

3VIVESUniversityCollege,Wilgenstraat32,8800Roeselare,Belgium.4Theseauthorscontributedequallytothiswork.

Finalleafsizeisregulatedbyamultitudeofpathways,amongwhichcelldivisionplaysapivotalrole.Indicots,alargefractionofepidermalcellsis derived from the stomatal lineage. In this lineage, stem cell-likeprecursor cells, called meristemoids, undergo asymmetric divisionsgenerating pavement cells adjacent to two guard cells constituting astoma.PEAPOD2(PPD2)isatranscriptionalregulatorknowntonegativelyregulatemeristemoiddivision inArabidopsis thaliana (Arabidopsis).WefoundthatPPD2interactswithKIX8andKIX9,actingasadaptorproteinstorecruittheco-repressorTOPLESS(TPL)[1]. Interestingly,thekix8-kix9mutantandatransgeniclineover-expressinganamiRNAtargetingPPD1and PPD2 (ami-ppd) both have enlarged dome-shaped leaves resultingfromincreasedmeristemoidamplifyingdivisions.Downstreamtargetsofthis PPD2-KIX8/9 repressor complex were identified, including severaltranscriptionfactorsandD3-typecyclins.

GenesencodingthemembersofthePPD-KIXrepressorcomplexareabsentfromPoaceae(grasses),butconservedindicots.Toshedlightonthe functional conservation of this complex across different dicot plantspecies, CRISPR/Cas9 mediated genome editing was used tosimultaneously knock-out the KIX8 and KIX9 orthologues in Solanumlycopersicum (tomato).PrimarytransformantswereobtainedwheretheSlKIX8 and SlKIX9 alleles contain indels leading to a frame shift. Theseplants and their progeny exhibited enlarged dome-shaped leaves,reminiscentofArabidopsis.Consistently,SlKIX8andSlKIX9couldinteractwithtomatoorthologuesofthePPDandTPLproteins.

TheidentifiedPPD-KIXcomplexisconservedindicotsonlyanddownregulation of KIX expression has similar effects on leaf morphology in

Page 111: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

POSTERS 109

Arabidopsisasintomato,indicatingthatthisisakeycomplextoregulateleafgrowthindicots.Mostlikely,thiscomplexplaysaroleindeterminingleaf growth in the second dimension, a developmental program that isabsentfrommonocotgrasses

[1]Gonzalez,N.,Pauwels,L.,Baekelandt,A.,DeMilde,L.,VanLeene,J.,Besbrugge,N.,Heyndrickx, KS., Pérez, A.C., Durand, A.N., De Clercq, R., et al. (2015). A repressorproteincomplexregulatesleafgrowthinArabidopsis.PlantCell27,2273-2287.

Page 112: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

POSTERS 110

TCTPinteractswithTIPtocontrolcellproliferationandorgandevelopmentinArabidopsisthalianaBetsch,L.,Pontier,G.,Brioudes,F.,Boltz,V.,Tissot,N.,Bendahmane,M.,andSzécsi,J.Centre National de la Recherche Scientifique, Institut National de laRechercheAgronomique,EcoleNormaleSupérieuredeLyon,UniversitéClaudeBernardLyon1,LaboratoiredeReproductionetDéveloppementdesPlantes,UniversitédeLyon,46Alléed’Italie,69364LyonCedex07,France.

Organ development and size determination require the tightregulation of cell proliferation and cell growth. Recently TCTP(TranslationallyControlledTumorProtein)wasshowntocontroltheG1/Stransition, cell cycle progression and morphogenesis in plants and inanimals. The molecular pathway by which TCTP controls cell cycle inanimals involvesthenegativeregulationofthep53protein.However inplants, no p53 homologous has been identified and the TCTP pathwaycontrollingcellcycleremainunknown.TodissecthowTCTPcontrolscellcycle progression in plants we identified its interacting proteins. Wedemonstrate that TCTP interactswith a novel protein namedTIP (TCTPInteractingProtein)toaccomplishitsfunctions.Toaddressthebiologicalsignificanceofthisinteraction,weperformedmolecularandbiochemicalanalysesaswellasgeneticinteractionstudies.WedemonstratethatTCTPandTIPrequireeachothertocontroltheG1/Stransitionaswellasorganandplantdevelopment.Thelatestdatawillbediscussed.

Page 113: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

POSTERS 111

Characterization of the regeneration process in plant´swounds:fromthenanostructuretothemolecularprocessesDíaz, A.A.1, Floriach-Clark, J.2, Capellades, M.1, Fuentes, J.2,Laromaine,A.2,andColl,N.S.11CentreforResearchinAgriculturalGenomics(CRAG),CSIC-IRTA-UAB-UB,CampusUAB,Bellaterra,Barcelona,08193,Spain.

2Institute ofMaterial Science of Barcelona (ICMAB-CSIC), Campus UAB,Bellaterra,Barcelona,08193,Spain.

Ourworkfocusesonthecombinationoftechniquesfromphysicsand

chemistry field to plant biology to elucidate the molecular processesunderlying plant tissue regeneration in this case promoted by naturalexopolysaccharides.Thiscompoundhasahighdegreeofpolymerizationandcrystallinity,maintainshumidityandprotectsagainstUVlight.Whenappliedtoplantwoundsinduceregenerationandanti-microbialcapacity.Scanning and transmission electron microscopy along with opticalmicroscopy,wereusedtoevaluatethenewtissueformationaroundthewoundedarea.Kineticstudiesofthewoundhealingprocessrevealedthatregeneration starts around 48 hours after wounding and thewound iscompletelyhealedafter7days.Wearecurrentlyanalyzingtheidentityofthenewlyformedcells,proteinsandgenesinvolvedinthisregeneratingprocess.

Page 114: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

POSTERS 112

AnovelroleofPREFOLDINinalternativesplicingEsteve-Bruna,D.1,Carrasco-López,C.2,Blanco-Touriñán,N.1,Iserte,J.3, Perea-Resa, C.2, Calleja-Cabrera, J.1, Yanovsky,M.J.3, Blázquez,M.A.1,Salinas,J.2,andAlabadí,D.11Instituto de BiologíaMolecular y Celular de Plantas, CSIC-UPV, 46022,Valencia,Spain.

2CentrodeInvestigacionesBiológicas,CSIC,28040,Madrid,Spain.3FundaciónInstitutoLeloir,C1405BWE,BuenosAires,Argentina.

PREFOLDIN (PFD) is an evolutionarily conserved heterohexamericchaperonin that presents unfolded tubulin to the main cytosolicchaperoneCCT.Thisfunctiontakesplaceinthecytosol,butPFDcanalsoaccumulateinthenucleusofArabidopsiscellsthroughtheinteractionwiththeDELLAtranscriptionalregulators.AlthoughthisinteractionismeanttoimpairPFDfunctioninthecytosol,thepossibilitystillexiststhatPFDalsoperformsaroleinthenucleus.

Published yeast, fly and human interactomes revealed extensiveinteractionbetweenall sixPFDsubunitsandnuclearproteins, includingmembersoftheLSm2-8complexinvolvedinmRNAsplicing.Interestingly,inspection of public databases compiling hundreds of transcriptomicanalysesinArabidopsisshowedthatseveralPFDgenesareextraordinarilycoexpressed with genes coding for LSm proteins, suggesting functionalrelationship. The LSm2-8 complex binds and stabilizes the U6 snRNAforming one of the five small nuclear ribonucleoproteins of thespliceosome.

Herewe show that the interactionbetween several PFDand LSmsubunitsisconservedinArabidopsis.Also,loss-of-functionallelesofgenesencoding PFDs and LSm8 interact genetically. Importantly, loss of PFDalters the stabilityof theU6 snRNA. Sincebothpfd4and lsm8mutantsshow an altered response to low temperature, we performed a high-coverage RNA-seq to investigate alternative splicing (AS) alterations inthesemutants both in standard conditions and after a cold treatment.UsingtheRpackageASpli,wefoundhundredsofASeventsalteredbothinpfd4and lsm8undercoldacclimation,whereasonlyASalterationswerefound in lsm8under standard conditions, suggesting a role for thePFDcomplexinthecontrolofASundercoldstress.

Page 115: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

POSTERS 113

Isolation and characterization of an albino T-DNA mutantshows that 1-deoxy-D-xylulose-5-phosphate synthase (DXS1)isessentialduringtomatoplantgrowthanddevelopmentGarcía-Alcázar,M.1,Giménez,E.1,Pineda,B.2,Capel,C.1,García-Sogo,B.2,Sánchez,S.2,Yuste-Lisbona,F.J.1,Angosto,T.1,Capel,J.1,Moreno,V.2,andLozano,R.11Centro de Investigación en Biotecnología Agroalimentaria (BITAL).UniversidaddeAlmería,04120Almería,Spain.

2Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC),UniversidadPolitécnicadeValencia.46022Valencia,Spain.

In tomato (Solanum lycopersicum L.), the 1-deoxy-D-xylulose-5-

phosphatesynthase1(DXS1)catalysesthefirststepofthe2-C-methyl-D-erythritol-4-Phosphate (MEP) pathway and it is required for carotenoidbiosynthesisduringfruitripening.However,itsfunctionalroleduringplantdevelopment remains unknown. This work reports the isolation andmolecularcharacterizationofthetomatowhitelethalseedling-2297(wls-2297)T-DNAmutant.Afterseedgermination,albinoseedlingsofthewls-2297mutantexpandedcotyledons,buttheywereunabletodeveloptrueleaves from the shoot apical meristem, which resulted in prematurelethality.CloningofthegenomicsequencesflankingtheT-DNAinsertionsitefollowedbyaco-segregationanalysisrevealedthatthemutantalbinophenotypewascausedbya38.6kb-deletion,whichaffectedtheDXS1andthreePEROXIDASE (POX) genes. Phenotypic and expression analyses ofDXS1 and POX silencing lines indicated that the wls-2297 mutantphenotype is due to a loss of function of theDXS1 gene, a result alsosupported by both in vivo complementation assays with 1-Deoxy-D-xylulose-5-phosphate (DXP) and DXS1 overexpression on the wls-2297mutant.Furthercharacterizationofgenes involved in theMEPpathwaysuggestedaroleforDXSintranscriptionalregulationofthefirststepsoftheMEPpathway.Takentogether,theseresults indicatethatDXS1mayplayotherimportantrolesbesidestothatproposedduringfruitcarotenoidbiosynthesis,beingitrequiredforthegrowthandsurvivaloftomatoplantsatearlydevelopmentalstages.

Page 116: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

POSTERS 114

Arabidopsis DENTICULATA10 encodes FTSHI4, a chloroplastproteinwitharoleinleafdorsoventralityGutiérrez-Nájera,N.,Sarmiento-Mañús,R.,Robles,P.,Quesada,V.,Ponce,M.R.,andMicol,J.L.Instituto de Bioingeniería, Universidad Miguel Hernández, Campus deElche,03202Elche,Alicante,Spain.

In Arabidopsis, loss-of-function alleles of a number of genes

encoding ribosomal proteins (RPs) cause weak developmentalphenotypes.Forexample,wepreviouslyisolatedArabidopsisdenticulata(den)mutants,whichexhibitpointedanddentateleaves;thesemutantsfallinto19complementationgroups.WepreviouslyidentifiedfiveoftheseDENgenes,allofwhichencodeRPs[1].Manymutantalleles(rp)ofgenesencodingRPssynergisticallyinteractwithallelesoftheAS1(ASYMMETRICLEAVES1)andAS2genes.AS1isaMYB-domainproteinandAS2aplant-specificnuclearproteinbelonging to the LATERALORGANBOUNDARIESfamily.Therpas1andrpas2doublemutantsexhibitstrongalterationsinleaf dorsoventrality. These observations point out the possibleinvolvementoftranslationalregulationinleafdevelopment.

Here,we describe theden10mutant,which exhibits dentate andreticulate leaves, abnormal patterning of leaf venation, and abnormalpalisade mesophyll cells that are larger in size but fewer in number,comparedwithwildtype.Usingmapping-by-sequencing,weidentifiedtheden10 mutation as the first viable allele of the FTSHI4 (FILAMENTINGTEMPERATURE-SENSITIVEMUTANTHINACTIVEPROTEASE4)gene,whichencodes a thylakoid membrane-associated protein essential forchloroplastdevelopment[2].Theden10as2-1doublemutantsshowedasynergistic phenotype of dwarf rosetteswith strongly radialized leaves.The den10 as1-1 plants also exhibited a synergistic phenotype.Surprisingly, we found that the floral gene AGAMOUS is ectopicallyexpressedinden10leaves.Inconclusion,theFTSHI4gene,whichdoesnotencode a RP, seems to be required for chloroplast biogenesis and leafpolarity.

[1]Horiguchi,G.,etal.(2011).PlantJ.65,724-736.[2]Lu,X.,etal.(2014).PLOSONE9,e99741.

Page 117: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

POSTERS 115

Ricematrixmetalloproteinase1gene,akeyregulatorofcellshapeandtissuedevelopmentKumarDas,P.,andKumarMaiti,M.DepartmentofBiotechnology. Indian InstituteofTechnologyKharagpur,India-721302.

Matrixmetalloproteinases(MMPs)areagroupofproteinspresent

normally in the extracellular matrix (ECM) of both animal and plantsystems.MMPs,beingzinc-dependentendopeptidases,areamajorgroupofenzymesthatregulatecell–matrixcompositioninanimalsystem.Theseproteinsbelongtothemetzincinsuperfamily,andhavediverseandcriticalfunctionalrolesindevelopmentanddefence.

Wehave identifiedaMMPhomologuegene in rice (Oryza sativa)genomethroughbioinformatics,anddesignatedasOsMMP1.Onegeneticconstructwasused for stable transgenicexpression in tobaccoplant todevelop‘gain-of-function’phenotype.Toinvestigatethespatio-temporalregulationofOsMMP1 gene, transgenic tobaccoplantsweredevelopedthroughOsMMP1promoter-reportergenefusionconstruct.

Transgenic tobacco lines expressing OsMMP1 had developeddifferent morphological and cellular alterations. Delayed antherdehiscence was observed in transgenic tobacco. The cell shape oftransgenic tobacco linesweremuch resistance to cellwall biosynthesisinhibitor, where control plant failed to develop normal growth. Theexpressionofgreenfluorescenceproteininanther,stigma,stemandrootstronglyevidentthatthegeneplaysapivotalroleindevelopment.Resultsobtained from immunodetection indicates that this protein is highlyexpressedinplasmamembraneregionaswellascellwallregion.

Page 118: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

POSTERS 116

CW-MBD proteins may provide a link between methylatedDNA,histonemethylationandeuchromatin Iversen,V.,Nenseth,H.Z.,Nateland,L.,andAalen,R.B.DepartmentofBiosciences,UniversityofOslo,Norway.

Epigenetic gene regulationparticularly important at the transitionfromonedevelopmentalstagetothenextinaplant’slife,e.g.theswitchfrom embryonic to vegetative growth, and laterwhen switching to thereproductive stage. Leaf development does also go through atransformation, from cell proliferation to cell expansion. We haveidentified a small reader of epigenetic marks, more specifically DNA-methylation and Histone 3 lysine 4 monomethylation (H3K4me1),operatinginthisswitch.Mutationinthegene,encodingaproteinwithaCWandaMethyl-CpG-BindingDomain,resultsinenlargedleaves.WehaveusedRNAseqandChromatinpulldownseqtoidentifyputativedirectandindirecttargetsoftheCW-MBPprotein.Oneapproachhasbeentomapthechromatinstatesofallputativetargetsgenes.NinedifferentchromatinstateshavebeendescribedinArabidopsis,andState7,mainlyassociatedwith longgenesand intronic regionsandwithenrichment inH3K4me1,H2Bub, and H3K36me3marks, is strongly overrepresented at locationswhereCW-MBDseemstobind.Incontrast,bindingpeakswerenotfoundatthetranscriptionalstartsiteorinintergenicregions.WearepresentlystudyinginmoredetailputativedirecttargetgenesofCW-MBD.

Page 119: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

POSTERS 117

Rolesofepigenetic regulation in inducingendoreplication inplantsTakatsuka,H.1,andUmeda,M.1,21Graduate School of Biological Sciences, Nara Institute of Science andTechnology,Japan.

2JST,CREST,Japan.

One of the unique features in plant development is frequentoccurrenceofendoreplication.Endoreplication isadistinctmodeof thecellcycleinwhichmitosisandcytokinesis(Mphase)areskipped,andDNAsynthesis(Sphase)isrepeated,leadingtoDNApolyploidization.Itiswellknownthatendoreplicationincreasescellsize,therebyenhancingorgangrowth. Although endoreplication is widely observed in higher plants,about 30 % of angiosperm, including useful crops and trees, does notundergo endoreplication. Therefore, a reasonable strategy to increaseplant biomass is to induce endoreplication in non-endocycling plants.However, why different plant species have distinct abilities ofendoreplicationremainscompletelyunknown.

PreviousstudieshaveproposedthatinhibitionofG2/Mprogressioncaused by decreased mitotic CDK activity is sufficient to induceendoreplication, based on studies in plant species with a high level ofendoreplication, such as Arabidopsis. However, our studies using non-endocyclingplantsdemonstratedthatareductionofmitoticCDKactivitydoes not lead to DNA polyploidization, suggesting that an addtionalfactor(s) is (are) required to induce endoreplication in non-endocyclingplants. Recently, we found that epigenetic modifications controllingchromatinstructure,suchasDNAmethylation,histonemethylationandacetylation,arehighlyassociatedwiththecompetenceofendoreplication.Moreover,weobservedspecificepigeneticmodificationsaretransientlyreduced just before the onset of endoreplication. We shall propose amodelhowcontrolofchromatinstructure iscoordinatedwithcellcycleprogressionininductionofendoreplication.

Page 120: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

POSTERS 118

Arabidopsis CUPULIFORMIS genes: new players on theepigeneticssceneMateo-Bonmatí, E., Juan-Vicente, L., Cerdá-Bernad, D., andMicol,J.L.Instituto de Bioingeniería, Universidad Miguel Hernández, Campus deElche,03202Elche,Alicante,Spain.

Thecriticaldevelopmentalandphysiologicaleventsintheplantlife

cycle dependon the proper activation and repression of sets of genes;plants accomplish this by several mechanisms, including epigeneticregulation. A number of Arabidopsis mutants with defects in theepigenetic machinery exhibit pleiotropic phenotypes, including twocommontraits: incurved leavesandearly flowering [1,2],causedbytheectopicandheterochronicderepressionofkeydevelopmentalregulators.

Loss-of-functionmutationsofINCURVATA11(ICU11)alsoshowthesetraits;ICU11isthefoundingmemberofasmallgenefamilythatwenamedthe CUPULIFORMIS (CP) family. ICU11 and its closest paralog CP2 arenucleoplasmicproteins.Doublemutantcombinationsoficu11alleleswithloss-of-functionallelesofgenesencodingcomponentsof theepigeneticmachinery exhibit synergistic, severe phenotypes, some of which aresimilartothoseofembryonicflowermutants[3,4].

RNA-seqanalysisshowedthaticu11plantsmis-expresshundredsofgenes, including several members of the MADS-box family. Wedemonstrated that derepression of SEPALLATA3 (SEP3) causes the leafphenotypeoficu11mutants.Bisulfite-seqoficu11-1showednoalterationinDNAmethylation levels. InsteadofaffectingDNAmethylation, ICU11andCP2arerequiredforthedepositionofH3K27me3attheSEP3locus.Ourresultsthusrevealanovelfamilyofproteinsrequiredfordepositionofhistoneepigeneticmarksthroughanunknownmechanism.

[1]Goodrich,J.,etal.(1997).Nature386,44-51.[2]Barrero,J.M.,etal.(2007).PlantCell19,2822-2838.[3]Sung,Z.R.,etal.(1992).Science258,1645-1647.[4]Chen,L.,etal.(1997).PlantCell9,2011-2024.

Page 121: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

POSTERS 119

AnanalysisoftheexpressionofCUPULIFORMISgenes Juan-Vicente,L.,Mateo-Bonmatí,E.,andMicol,J.L.Instituto de Bioingeniería, Universidad Miguel Hernández, Campus deElche,03202Elche,Alicante,Spain.

WearestudyingtheArabidopsis(CUPULIFORMIS;CP)familyoffive

2-oxoglutarate/Fe(II)-dependent dioxygenases (2OGDs). At least two CPproteins have epigenetic activity: INCURVATA11 (ICU11), the foundingmemberofthefamily,andCP2.Thesuperfamilyof2OGDsisthesecondlargest family in plant proteomes and is widespread in bacteria andeukaryotes.TheCPgenesseemtobeofancientorigin.OnlytwoCPgenesarepresentingenomesofmonocots,andonlyoneisfoundintheliverwortMarchantia polymorpha and the cryptophyte Guillardia theta. InArabidopsis,thesenon-hemeiron-containingsolubleproteins localizetothecytosol,nucleus,andplastids.However,onlysometensofplant2OGDshavebeenfunctionallycharacterized.

In Arabidopsis, lack-of-function alleles of CP genes do not causevisiblephenotypes,excepticu11alleles,whichcauseleafhyponasty.Theonlygeneticinteractionthatwefoundinthedoublemutantcombinationsofallelesof thesegenes is thatof icu11cp2doublemutants,whicharelethal.Nocp4cp5doublemutantwasobtained,sinceCP4 andCP5 arearrangedintandem.WeareobtainingartificialmicroRNAsandsynthetictrans-actingsiRNAstosimultaneouslysilencethreeorfourCPgenes.

WealsoexaminedthelevelsandpatternofCPexpressiontoshedlightontheirpotentialfunctions.ThenumberofexpressedsequencetagsfoundindatabasesismuchhigherforICU11andCP2thanforCP3,CP4andCP5.However,weobtainedGUStranscriptionalfusionsthatshowedhighlevelsofexpressionofICU11andCP2,butalsoofCP3ingrowingtissues.Transgenicplantsexpressing35Spro:CP:GFPtransgenesshowedthatICU11,CP2,andCP5arenuclearproteins,andsuggestedthatCP4isnuclearandcytoplasmicandthatCP3isnotnuclear.Thedifferentexpressionpatternsandsubcellularlocalizationsindicatethatthemembersofthissmallgenefamilylikelyhavedifferentfunctionsinplantdevelopment.

Page 122: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

POSTERS 120

The INCURVATA11-CUPULIFORMIS2 paralogous gene pair isessentialandexhibitsunequalfunctionalredundancy Nadi,R.,Mateo-Bonmatí,E.,Juan-Vicente,L.,andMicol,J.L.Instituto de Bioingeniería, Universidad Miguel Hernández, Campus deElche,03202Elche,Spain.

Plant genomes contain many functionally redundant paralogous

genepairsthatoriginatedbygeneduplication,afterwhichtheduplicatedgenesdivergedbutretainedredundantfunctions.Manyofthesepairsofparalogs encode components of signal transduction, metabolic, anddevelopmentalpathways,aswellasribosomalproteins[1].Someofthesegenepairshaveremainedevolutionarilystable—insomecasesupto100millionyears—suggestingthattheycontributepositivelytothefitnessoftheorganismbyreducingthephenotypiccostofmutations[2].

Here, we studied the Arabidopsis INCURVATA11 (ICU11)-CUPULIFORMIS2(CP2)genepair.RedundantparalogstendtoshowhighsequenceidentityandtheICU11andCP2Arabidopsisproteinsshowmorethan50%aminoacidsequenceidentity.Paralogsalsotendtoshowweakphenotypes as single mutants and very strong phenotypes as multiplemutants. Indeed, severe, synergistic phenotypes were observed in thedoublemutantcombinationsofloss-of-functionallelesofICU11andCP2:seedsof the icu11cp2doublemutantsgerminatedbutseedlings lackedrosettes leaves, skipped vegetative growth and began flowering upongermination,generatingsmall,sterileflowers.Bycontrast,theicu11singlemutantsexhibitmildlyhyponasticleavesandearlyflowering,andthecp2mutantsareindistinguishablefromwildtype,exceptforsomeinfertility.

Therelativelymildphenotypeoficu11alleles,thecompletelywild-typephenotypeofcp2alleles,andthesevere,lethalphenotypesoftheirdoublemutant combinations, indicate that ICU11 andCP2 areapairofredundantgeneswithanessentialfunction.However,ICU11andCP2donot contributeequally to their redundant function, as the ICU11/icu11-2;cp2-3/cp2-3plantsarephenotypicallywildtype,buttheicu11-2/icu11-2;CP2/cp2-3plants have a lethal phenotype.We also interchanged thepromotersofICU11andCP2,andfoundthatthepromotersofthesegenes,butnottheproteinsthattheyencode,areequivalent.[1]Kafri,R.,etal.(2009).Cell136,389-392.[2]Dean,E.J.,etal.(2008).PLOSGenet.4,e1000113.

Page 123: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

POSTERS 121

The Arabidopsis RIBOSOMAL RNA PROCESSING7 nucleolarproteinisrequiredfor40SribosomesubunitbiogenesisMicol-Ponce, R., Sarmiento-Mañús, R., Ruiz-Bayón, A., Mora-Navarro,E.,andPonce,M.R.Instituto de Bioingeniería, Universidad Miguel Hernández, Campus deElche,03202Elche,Alicante,Spain.

NF-kappa B activating protein (NKAP) is amultifunctional protein

that acts in splicing and transcriptional repression in animals. TheArabidopsis ortholog of NKAP is MORPHOLOGY OF ARGONAUTE1-52SUPPRESSED2(MAS2),which is required for45SrDNAtranscriptionand45Spre-rRNAprocessing[1].RibosomalRNAprocessingprotein7(Rrp7)participates in the biogenesis of the 40S ribosomal subunit inSaccharomycescerevisiae.

WeidentifiedRRP7,theArabidopsisorthologofRrp7,inayeasttwo-hybrid screen for MAS2 interactors. We found RRP7 localized at thenucleolus.LackofRRP7functioncausesnucleolarhypertrophy,18SrRNAalteredprocessing,andnucleolarretentionofmatureandprecursor18SrRNAspecies.Thepleiotropicphenotypeofrrp7mutantsincludesalteredshoot phylotaxy, aberrant lateral organ venation pattern and ABAhypersensitivityattheseedlingestablishmentstage.

TheRRP7geneiscoexpressedwithgenesencodingfactorsrequiredfor 45S pre-rRNA processing and ribosome subunit assembly, includingSMALLORGAN4(SMO4),whichisrequiredfor5.8SrRNAmaturation.TheArabidopsis NUCLEOLIN1 (NUC1) and NUC2 redundant genes encodenucleolarproteinsthatparticipateintheepigeneticcontrolof45SrDNAexpression [2]. We observed synergistic phenotypes in double mutantcombinationsofallelesofRRP7withallelesofNUC1,NUC2,MAS2orgenesencoding components of the microRNA machinery. rrp7 alleles seemepistatic tosmo4alleles.TheArabidopsisgenomecontainshundredsof45S rDNA genes, with four types of variants (VAR). VAR patterns ofexpressiondifferamongaccessionsanddevelopmentalstages,andthesepatternsarealteredintherrp7andsmo4mutants.Ourresultsunveiltheactionandinteractionsofakeyfactorin40SribosomesubunitbiogenesisinArabidopsis.

[1]Sánchez-García,A.B.,etal.(2015).PlantCell27,1999-2015.[2]Pontvianne,F.,etal.(2010).PLOSGenet.6,e1001225

Page 124: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

POSTERS 122

Arabidopsis SMALL ORGAN4 encodes a nucleolar andnucleoplasmicproteinrequiredfor5.8SrRNAmaturationMicol-Ponce,R.,Sarmiento-Mañús,R.,Fontcuberta-Cervera,S.,andPonce,M.R.InstitutodeBioingeniería,UniversidadMiguelHernández,CampusdeElche,03202Elche,Alicante,Spain.

MORPHOLOGY OF ARGONAUTE1-52 SUPPRESSED2 (MAS2) is the

ArabidopsisorthologofmetazoanNF-kappaBactivatingprotein(NKAP).MAS2isrequiredfor45SrDNAtranscriptionand45Spre-rRNAprocessing[1], and NKAP is involved in splicing and transcriptional repression. InSaccharomycescerevisiae,Nucleolarprotein53(Nop53)participatesinthebiogenesisofthe60Sribosomalsubunit.

TheArabidopsisorthologofNop53 isSMALLORGAN4(SMO4) [2],whichweidentifiedasaMAS2interactorinayeasttwo-hybridscreen.Ina genetic screen for Arabidopsis mutants with altered leaf shape, weidentifieddenticulata2 (den2),whichwefoundtobeanalleleofSMO4.Themorphologicalphenotypecausedbyden2 issimilarto,butstrongerthanthatofsmo4insertionalalleles;allthesemutantsexhibitreticulate,pointed,anddentatevegetativeleaves.

Null smo4 alleles cause accumulation of 5.8S rRNA precursors, asalready described for its yeast and human orthologs. We found theArabidopsisSMO4proteinlocalizedmainlytothenucleolusbutalsotothenucleoplasm.TheSMO4geneiscoexpressedwithgenesencodingfactorsrequired for 45S pre-rRNA processing and ribosome subunit assembly,includingRIBOSOMALRNAPROCESSING7(RRP7),whichisinvolvedin18SrRNA maturation. Our results on the morphological, cytological andmolecularphenotypescausedbythelackoffunctionofSMO4shedlightontheroleofthisproteinin60SribosomalsubunitbiogenesisandconfirmitsinteractionwithMAS2.[1]Sánchez-García,A.B.,etal.(2015).PlantCell27,1999-2015.[2]Zhang,X.R.,etal.(2015). J.Integr.PlantBiol.57,810-818.

Page 125: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

POSTERS 123

GeneticandphysicalinteractionsbetweenCAXINTERACTINGPROTEIN4 and MORPHOLOGY OF ARGONAUTE1-52SUPPRESSED2inArabidopsisAceituno-Valenzuela, U., Ruiz-Bayón, A., Sarmiento-Mañús, R.,Micol-Ponce,R.,andPonce,M.R.Instituto de Bioingeniería, Universidad Miguel Hernández, Campus deElche,03202Elche,Alicante,Spain.

TheArabidopsisorthologofmetazoanNF-kappaBActivatingProtein

isMORPHOLOGYOFARGONAUTE1-52SUPPRESSED2(MAS2),anessentialproteinthatseemstoplayakeyroleintheregulationofrRNAsynthesis.ByimagingofaMAS2:GFPfusionandfluorescenceinsituhybridization,wefound thatMAS2 colocalizes with the 45S rDNA in nucleolar organizerregions.To identifyMAS2 interactors,weperformedayeasttwo-hybridscreen;themostrepresentedinteractorfound,in23of55positiveclones,was CAX INTERACTING PROTEIN4 (CXIP4). This protein is of unknownfunctionandwaspreviouslyidentifiedasinteractingwiththehigh-affinityvacuolarcalciumantiporterCATIONEXCHANGER1(CAX1).CXIP4isaplant-specific protein, with a conserved CCHC-type zinc finger motif (zincknuckle),whichisinvolvedinDNA,RNA,andproteinbinding.Inaddition,the30N-terminalaminoacidsofCXIP4show70%similaritytomammalianSplicing regulatory protein, glutamine/lysine-rich 1 (SREK1)-interactingprotein1.

CXIP4isasingle-copyessentialgeneinArabidopsis,asshownbyitsinsertionalallelecxip4-1,whichcausesembryoniclethality.Tocircumventsuchlethality,weconstructedartificialmicroRNAs(amiR-CXIP4)targetingtheCXIP4mRNA.TheamiR-CXIP4plantsdisplayedpointedandreticulateleaves, a phenotype that is characteristic ofmutants affected in genesencodingribosomalproteinsandothergenesinvolvedintranslation.

Additionaltransgeneswereobtainedtocomplementthelethalityofhomozygous cxip4-1 plants, and to visualize the expression pattern ofCXIP4andthesubcellularlocalizationofCXIP4.WearealsostudyingthegeneticinteractionsbetweenCXIP4andMAS2,andbetweencxip4allelesandallelesofgenesencodingcomponentsofthemicroRNApathwayandribosomalfactors.OurpreliminaryresultssuggestthatCXIP4isinvolvedinribosomebiogenesisorthecontroloftranslation.

Page 126: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

POSTERS 124

Characterization of the Arabidopsis MORPHOLOGY OFARGONAUTE1-52SUPPRESSED5geneCabezas-Fuster, A.,Micol-Ponce, R., Senent-Valero, Y., and Ponce,M.R.Instituto de Bioingeniería, Universidad Miguel Hernández, Campus deElche,03202Elche,Alicante,Spain.

ARGONAUTE1(AGO1)functionsaspartoftheRNA-inducedsilencing

complex and ago1 mutations affect leaf development and polarity. ToexamineAGO1functioninleafdevelopment,wecarriedoutascreenforgenetic suppressors. To this end, we used ethyl methanesulfonate tomutagenize theArabidopsis ago1-52 line,which carries ahypomorphic,viableandrecessivealleleofAGO1.Wescreened37,000M2seeds,andisolated 23 viable double mutants exhibiting suppression of the leafphenotype of ago1-52; the lines carrying second-site mutations werenamedmas(morphologyofargonaute1-52suppressed)[1].

ThisscreenidentifiedsixallelesofMAS5andpositionalcloningofthemas5-1mutation allowedus to identify aG®A transition (Lys®Glu) inAT1G80070 (PRE-MRNA PROCESSING8; PRP8), which encodes a keysplicing factor. Null alleles of PRP8 (MAS5) and its yeast and animalorthologsareembryoniclethal.Ourmas5allelesmightbeneomorphicorantimorphic: they act as dominant suppressors of ago1-52 but do notexhibitanyvisiblephenotypeinawild-typegeneticbackground.

Theago1-52allelecarriesamutationthatcausesmis-splicingofitspre-mRNA,whichfinallyproducesamixtureofmutantandentirelywild-typeAGO1proteins;thisaberrantsplicingisnotmodifiedintheago1-52mas5-1doublemutantplants.However,weobservedahigherlevelofthewild-typeAGO1proteininago1-52mas5-1plantsthaninago1-52plants.

We are studying the genetic interactions of ago1-52 with prp8hypomorphicallelesobtainedbyotherauthors,andwithmutationsthatcause mis-splicing, in order to ascertain the molecular nature of thesuppressioneffectcausedbymas5allelesonago1-52.

[1]Micol-Ponce,R.,etal.(2015).Sci.Rep.4,5533.

Page 127: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

POSTERS 125

Theapi7mutantrevealsaroleforArabidopsisABCEproteinsinleafdevelopmentandvenationpatterningNavarro-Quiles, C., Sosa-Domínguez, P., Mateo-Bonmatí, E., andMicol,J.L.Instituto de Bioingeniería, Universidad Miguel Hernández, Campus deElche,03202Elche,Alicante,Spain.

InascreenforArabidopsis leafmorphologicalmutants inducedby

EMS,weisolatedtheapiculata7(api7)mutant,whichhassmall,dentateandpointedleaves,withpalemarginsandaberrantvenationpattern.Theapi7 adult plants are also shorter than wild type in height. Thesephenotypes occur inmanymutantswith defects in components of thetranslationmachinery.Wecombinedlinkageanalysisandwhole-genome,next-generationsequencingtoidentifytheapi7mutation,whichwefoundtobeahypomorphicalleleofRNASELINHIBITOR2(RLI2).Weobtainedaninsertional allele ofRLI2 from a public collection; this allele (which wenamed rli2-2) is null and recessive lethal. In all studied eukaryotes andarchaea,nullallelesorRNAinterferencelinesoforthologsofArabidopsisRLI2arelethalandhypomorphicallelescauseslowgrowth.

TheRLI2 gene encodes the Arabidopsis ABCE2 protein. The best-studied ABCE protein is yeast Rli1, which participates in ribosomebiogenesis and recycling. Human and Arabidopsis ABCE proteins alsofunction inRNAsilencing.Consistentwith itspotential role in ribosomefunction, we observed synergistic phenotypes in double mutantcombinations of api7 and loss-of-function alleles of the ASYMMETRICLEAVES1(AS1)andAS2genes,whichencodetranscriptionfactorsknownto play a role in leaf dorsoventral patterning and polarity. To test thesubcellular localization of RLI2, we constructed an RLI2pro:RLI2:GFPtranslationalfusion,whichshowedthatRLI2 isacytoplasmicprotein,asexpected from the absence of a predicted transmembrane domain.Althoughtheaberrantvenationpatternofapi7leavessuggestsadefectinauxinhomeostasis,thetransportandperceptionofauxindoesnotseemtobealtered inapi7roots.Theapi7mutation is the firstviablemutantalleleofRLI2.OurstudyofthisallelerevealedanunexpectedroleforABCEproteinsinleafdevelopmentandvenationpatterning.

Page 128: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

POSTERS 126

TheANGULATA7geneencodesaDnaJ-likezinc-finger-domainproteininvolvedinchloroplastfunctionandleafdevelopmentinArabidopsisMuñoz-Nortes,T.,Pérez-Pérez, J.M.,Ponce,M.R.,Candela,H.,andMicol,J.L.Instituto de Bioingeniería, Universidad Miguel Hernández, Campus deElche,03202Elche,Alicante,Spain.

The characterization of mutants with altered leaf shape and

pigmentationhasallowedtheidentificationofnucleargenesthatencodeplastid-localized proteins with essential functions in leaf growth anddevelopment.A large-scalescreenpreviouslyallowedusto isolateethylmethanesulfonate (EMS)-inducedmutantswith small rosettes and palegreen leaveswith prominentmarginal teeth,whichwere assigned to aphenotypicclassthatwedubbedAngulata.ThemolecularcharacterizationoftheANGULATAgenesshouldhelpustoadvanceourunderstandingoftherelationshipbetweenchloroplastbiogenesisandleafmorphogenesis.

Herewereportthephenotypicandmolecularcharacterizationoftheangulata7-1 (anu7-1) mutant of Arabidopsis, which we found to be ahypomorphicalleleof theEMB2737gene,previouslyknownonly for itsembryonic-lethal mutations. ANU7 encodes a plant-specific proteincontaining a domain similar to the central cysteine-rich (CR) domain ofDnaJproteins.DnaJproteinsnormallyfunctionaschaperones,eitheraloneorincombinationwithheat-shockprotein70,andhavebeenproposedtoparticipate in the folding,unfolding,assemblyanddegradationofotherproteins.

We have found that ANU7 is necessary for the accumulation ofphotosynthetic pigments and the correct organization of the thylakoidmembranesystem.OurmicroarrayandqRT-PCRexpressionstudiesshowthat many genes which normally function in the chloroplasts areupregulated inanu7-1 rosettes,witha significantoverrepresentationofthoserequiredfortheexpressionofplastidgenomegenessuchasmanysubunitsofplastidtranscriptionallyactivechromosomecomplexes(pTAC).The synergistic interactionbetween theanu7-1mutation and a loss-of-function mutation of GENOMES UNCOUPLED1 (GUN1) points to afunctionalrelationshipbetweenANU7andGUN1,bothofwhichhavebeenisolatedinthenucleoidfractionofplastids.

Page 129: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

POSTERS 127

FunctionsofchloroplastribosomeproteinsrevealedthroughcharacterizationofthecrdmutantsofArabidopsisRobles,P.,Ferrández-Ayela,A.,Núñez-Delegido,E.,andQuesada,V.Instituto de Bioingeniería. UniversidadMiguel Hernández, 03202 Elche,Alicante,Spain.

The crd (chloroplast ribosome defective) mutants of Arabidopsis

thaliana are loss-of-function alleles of four nuclear genes encodingdifferentchloroplastribosomalproteins:threeofthesmallsubunit(30S)andoneof the largeone (50S).Phenotypically, thecrdmutantsshowareduced growth and general paleness of green tissues. Cells of thepallisademeshophyllofvegetativeleavesarenotasdenselypackagedasinthewildtypeandtheirchloroplastsareabnormal.Inordertodetermineifchloroplastfunctionisperturbedinthecrdmutants,weareperformingdifferentmolecularanalyses.

Wehaveshownthatpalenessofcrdleavescorrelateswithreducedlevels of photosynthetic efficiency as determined by the ratio Fv/Fm.Throughquantificationof thedifferent ribosomalRNAspecies,wehavefoundchangesinthe30S:50Sratio,beinglowerthanthewildtypeinthreecrdmutantsandhigherinjustone,whichmightsuggestassemblyand/orstabilityproblemsoftheirchloro-ribosomes.WehavealsostudiedbyqRT-PCRwhether,inadditiontopotentialdefectsinchloroplasttranslation,thecrd mutants show altered steady-state levels of plastid and/or nucleargenetranscripts.Ourresultsrevealedthatthestudiedchloroplasticgenesareupregualted,includingthoseofgenesinvolvedinphotosynthesisandcontrolofgeneexpressionintheorganelle.Additionally,wefoundinthefourcrdmutantsan increase in the transcript levelsof thenuclearCRDgenes,exceptintheonemutatedineachofthem.

Inadditiontothedevelopmentaleffectsproducedbythereductioninchloro-ribosomefunction,wewanttocheckifCRDgainoffunctionhasanyeffectatthemorphologicaland/ormolecular levels inthewild-typeandmutantgeneticbackgrounds.WearemakingandcharacterizingCRDoverexpression lines in which the transcription of these genes isconstitutivelydrivenbytheCaMV35Spromoter.

Page 130: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

POSTERS 128

Functionalcharacterizationof theArabidopsismitochondrialtranscriptionterminationfactorsmTERF5andmTERF9Núñez-Delegido,E.,Ferrández-Ayela,A.,Robles,P.,andQuesada,V.InstitutodeBioingeniería.UniversidadMiguelHernández, 03202, Elche,Alicante,Spain.

PlantgenomesharboraconsiderablylargernumberofmTERFsthan

animals.However,unlikeanimals,verylittleisknownaboutitsfunctioninplants. To gain insight into the roles of plant mTERFs, we previouslyidentified and characterized theArabidopsis thalianamda1 andmterf9mutants, affected in the chloroplast-localized mTERF5 and mTERF9proteins, respectively, which exhibited altered chloroplast morphology,reduced growth and pale pigmentation. We are carrying out differentexperimental approaches to further characterizemTERF5 andmTERF9functions. The genomic sequence ofmTERF5 andmTERF9 fused to theconstitutive 35S promoter complement themda1-1 andmterf9mutantphenotypes, respectively. Besides, we have obtained mTERF5 andmTERF9-overexpressing transgenic lines inawild-typebackground, thatwe confirmed by qRT-PCR. We are currently studying them at themolecularandphenotypiclevels.

Toinvestigatetheeffectthatimpairedchloroplastbiogenesismighthave onmTERF5 andmTERF9 activity, we analysed their expression inseveralchloroplastdefectivemutantsandfoundsignificantdifferencesinmTERF5 and/ormTERF9 transcript levels for someof them.Ourdoublemutant analysis reveals that the sca3-2 mutation, affecting the RpoTpplastidRNApolymerase,isepistaticonmda1-1,whilemterf9andsca3-2synergisticallyinteract.Thissuggeststhattheaffectedgenesparticipateinthesamegeneticpathwayrequiredforaccuratechloroplastdevelopment.Inthisline,themaximumefficienciesofthephotosystemIIarereducedinmda1-1andmterf9comparedwithCol-0.

rRNAabundanceisusedasaproxyforthelevelsofthe50Sand30Sribosomalsubunits.Hence,wequantifiedthelevelsofthedifferentplastidrRNAspeciesinmda1-1andmterf9.WefoundadifferentialaccumulationofsomeplastidrRNAsinmda1-1andmterf9comparedwithCol-0,whichis consistent with a defect in chloroplast ribosomal stability and/orassemblyinthemutants.

Page 131: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

POSTERS 129

The characterization of the Arabidopsis mterf6-5 mutantreveals a role for the mTERF6 gene in organelle geneexpressionandplantdevelopmentQuesada,V.,Ferrández-Ayela,A.,andRobles,P.Instituto de Bioingeniería. UniversidadMiguel Hernández, 03202 Elche,Alicante,Spain.

Weperformedareversegeneticsscreenformutationsaffectingthe

mitochondrial transcription termination factor (mTERF) family inArabidopsisthaliana.Oneofthemutantsidentifiedinourscreenprovedtobeanewallelenotyetdescribedof themTERF6gene, thatwehavenamedmterf6-5.Themterf6-5mutantexhibitsmarkedlyreducedgrowthanddevelopmentalretardation,palecotyledons,leaves,stemsandsepals.Accordingly,photosyntheticefficiencyisreducedinmterf6-5plants,aswedeterminedbytheFv/Fmratio.TheinsertionoftheT-DNAcausedastrongreductioninmTERF6transcriptlevelsinthemterf6-5mutant.WestudiedbyqRT-PCRmTERF6expressionpatternalongdevelopment.WedetectedmTERF6transcriptsinallthestagesanalysed,reachingtheirhighestandlowestlevelsattheearliestandlatesttimepointsstudied(7and20daysafter stratification, respectively).mTERF6waspreviously reported tobedually targeted to chloroplasts andmitochondria.Our qRT-PCR analysisshows that the expression of several characteristic plastid andmitochondrialgenesisalteredinthemterf6-5mutant,beingmostofthemsignificantlyupregulated.Inaddition,thetranscriptlevelsofnucleargenesencoding plastid and/or mitochondrial targeted proteins are alsomisregulated in mterf6-5 plants, suggesting that defective chloroplastand/ormitochondrialfunctionissignaledtothenucleus.Inaddition,wehave performed a double mutant analysis and found that mterf6-5synergistically interactswiththechloroplastdefectivemutantssoldat10,mda1-1 andmterf9 (affected in differentmTERF genes) aswell aswithsca3-2,affectedintheplastidRpoTpRNApolymerase.Theseresultspointto a functional relationship between mTERF6, other mTERFs andRpoTp/SCA3.Ouranalysisofthemterf6-5mutantrevealsnewfunctionsfor themTERF6 gene in plant development and its important role inorganellegeneexpression.

Page 132: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

POSTERS 130

Elucidating the interaction networks at work in themethyladenosineepitranscriptomeRodríguez-Alcocer,E.,Gómez-Peral,N.,Hernández-Cortés,C.,Ruiz,E.,Burillo,E.,Jover-Gil,S.,andCandela,H.Instituto de Bioingeniería. UniversidadMiguel Hernández, 03202 Elche,Alicante,Spain.

Recentresearchonthereversiblemethylationofadenosineresidues

attheirN6position,i.e.themostabundantinternalmodificationpresentinthemessengerRNA(mRNA)ofeukaryotes,hasledtotheestablishmentof an entirely new field of study called epitranscriptomics. Despite thispost-transcriptionalmodificationhasbeenknownforaboutfourdecades,thestudyofadenosinemethylationhasemergedasahotresearchtopiconlyinthelastfewyears,coincidingwiththeimplementationphaseofourgrant, placing us in a privileged position to address frontier researchquestionsinthisfieldusingArabidopsisthalianaasamodelorganism.

Somekeyadvancesinthisfieldhavebeen:(i)thecharacterizationofthemultisubunit complex thatmethylates adenosine residues (“writer”proteins),(ii)theidentificationofenzymeswithdemethylaseactivity,suchas theoneencodedby theFTOgene,whosepolymorphismshavebeenassociated to obesity in humans (“eraser” proteins), and (iii) theidentificationoftheYTHdomainastheN6-methyladenosine(m6A)bindingdomain of some RNA binding proteins (“reader” proteins). As acontinuationofourproject,wearesystematicallyperformingyeasttwo-hybridscreensusingproteinsofthethreefunctionalcategories(writers,erasersandreaders)asbaits,whichhavealreadyyieldedsomepromisingprotein-protein interactions. We are also setting up a novel, high-throughputRNAtaggingprotocoltoidentifymRNAmoleculestargetedbyproteinsfromthethreefunctionalcategories.Ourultimategoalistomakea significant contribution to this new field by identifying the protein-proteinandRNA-proteininteractionsthatshapethem6AepitranscriptomeinArabidopsisthaliana.

Thiswork receivedsupport fromSpain'sMinistryofEconomyandCompetitiveness(MINECO)andtheEuropeanRegionalDevelopmentFund(ERDF)(‘UnamaneradehacerEuropa')[BFU2012-31719]andGeneralitatValenciana [ACOMP/2015/042].E.R.-A.’scontract isalsosupportedbyaMINECOgrant[PEJ-2014-A-21398].

Page 133: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

POSTERS 131

Impaired maintenance of the dNTP pool causes leafreticulationinthevenosa4mutantsSarmiento-Mañús,R.,Ruiz-Ramírez,J.,González-Bayón,R.,Quesada,V.,Ponce,M.R.,andMicol,J.L.Instituto de Bioingeniería, Universidad Miguel Hernández, Campus deElche,03202Elche,Alicante,Spain.

IntheleavesofArabidopsisvenosa(ven)mutants,theleafvascular

network can be clearly distinguished as green reticulation on a palerlamina. We have previously shown that leaf reticulation may revealalterationsintheinternalleafarchitecture[1,2].Bypositionalcloning,weidentifiedtheethylmethanesulfonate-inducedven4-1mutationasanewalleleof a gene thatencodesaputativephosphohydrolaseofunknownfunction and is expressed in expanding leaves and flowers, roots, andstems.Weobtainedtwo insertionalven4alleles frompubliccollections;these alleles exhibited a phenotype similar to that of ven4-1. The ven4plantshave smallerpalisademesophyll cells and reduced freshanddryweights,comparedwithwildtype.

TheVEN4proteinlocalizesinthenucleus,asdescribedforitshumanortholog,SAMdomainandHDdomain-containingprotein1(SAMHD1),adNTP triphosphohydrolase that is essential for dNTP catabolism.ConsistentwiththeaminoacidsequencesimilarityofhumanSAMHD1andArabidopsisVEN4,ven4mutantsarehypersensitivetohydroxyurea;thissubstance alters the pool of dNTPs by inhibiting RIBONUCLEOTIDEREDUCTASE(RNR)activity.Inaddition,wefoundthatven4-1andven4-2geneticallyinteractwithtso2-1,amutantalleleofRNR2.

We also observed synergistic phenotypes in the double mutantcombinations of ven4 alleles with dov1 (differential development ofvascular associated cells 1); DOV1 encodes glutamine phosphoribosylpyrophosphate aminotransferase 2 (ATase2), the enzyme that catalysesthefirststepindenovopurinebiosynthesis[3].OurresultssuggestthatVEN4playsakeyroleinthemaintenanceofthedNTPpoolinArabidopsis,whichiscriticalforDNAreplicationandrepair.[1]González-Bayón,R.,etal.(2006).J.Exp.Bot.12,3019-3031.[2]Mollá-Morales,A.,etal.(2011).PlantJ.65,335-345.[3]Rosar,C.,etal.(2012).Mol.Plant5,1127-1241.

Page 134: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

POSTERS 132

Artificial microRNAs targeting paralogous genes reveal newrolesfortranscriptionfactorsinArabidopsisleafdevelopmentRuiz-Bayón, A., Jover-Gil, S., Aguilar-García, A.M., Micol, J.L., andPonce,M.R.Instituto de Bioingeniería, Universidad Miguel Hernández, Campus deElche,03202Elche,Alicante,Spain.

Plantgenomescontainmanygenefamiliesthatincludefunctionally

redundant members; this can hamper analysis of individual genefunctions.Forexample,theArabidopsisthalianagenomecontains~2,000genes encoding transcription factors (TFs) but amutant phenotype hasbeendescribedforonly~200ofthesegenes.Toaddressthefunctionofthese genes encoding TFs, we obtained Arabidopsis transgenic linesexpressingartificialmicroRNAs(amiRNAs),eachofwhichtargetsagroupof paralogous genes [1]. Several of these transgenic lines exhibitmorphological alterations in leaves, which reveals a role for the genefamiliestargetedbytheiramiRNAsinleafdevelopment.

Here,wedescribeouranalysisof transgenic linescarryingamiR-TPL17(targeting2membersoftheC2H2TFfamily),amiR-TPL36(targeting5membersoftheNACTFfamily),amiR-TPL106(targeting2membersoftheCCAAT-HAP5TFfamily)andamiR-TPL189(targeting2membersoftheC2C2-CO-likeTFfamily).Inmostcases,thetransgenicplantsweresmallerthanthewild-typeCol-0,andtheirrosetteand laminaarea,andpetiolelengthwerereduced.Thepalisademesophyllcellswerealsosmallerthanwild type inall the transgenic lines.Theseresultssuggesta role for thegenes targeted by these amiRNAs in the control ofmesophyll cell size,whichcontributestothefinalsizeofthewholeorgan,andthereforeinleafdevelopment.

Since these lines were paler than Col-0, we also used confocalmicroscopytodeterminewhetherthepalisademesophyllcellshavefeweror smaller chloroplasts.Chloroplast size, chlorophylla andb levels,andphotosyntheticefficiencywere reduced inamiR-TPL17,amiR-TPL36 andamiR-TPL189plants.ToconfirmthatthephenotypesofouramiR-TPLlinesarecausedbyrepressionoftheirtargets,weareproducingartificialtargetmimicsdesignedtoinhibittheamiRNAs.

[1]Jover-Gil,S.,etal.(2014).PlantJ.80,149-160.

Page 135: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

POSTERS 133

How does CUC2 regulate leaf serration development inArabidopsis?Zhang,Z.,Ravanelli,S.,andTsiantis,M.Max Planck Institute for Plant Breeding Research. Department ofComparativeDevelopmentandGenetics.Carl-von-Linné-Weg10,50829Köln,Germany.

A key question in developmental biology is how developmental

patterning generates the final form of an organ. Arabidopsis thalianaproduces simple leaves bearing repeated marginal outgrowths termedserrations,providingagoodopportunitytostudythisquestion.TheNACdomain transcription factor CUC2 regulates serration formation bypromoting the formationof PIN1 convergencepoints andauxin activitymaximaalongtheleafmarginduringleafdevelopment(Bilsboroughetal.,2011).However,howCUC2regulatesrepeatedformationofauxinmaximaand serrations remains enigmatic. To address this question, we did anEMS-mutagenesisscreeninacuc2-3mutantbackgroundtoidentifynovelcomponents in regulating serration formation, specifically looking forsuppressorsthatrestoreserrationdevelopment.

Among the suppressors identified, we investigate #51 because itdisplays the strongest suppression effect and no other developmentaldefects. We found that #51 could restore auxin maxima and PIN1convergence points along cuc2 leaf margin. Currently we are trying toidentifythemolecularbasisforthe51mutationandunderstandhowthegenedefinedbythismutationregulatesthePIN1convergencepointsandauxinmaximaformation.

Page 136: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

POSTERS 134

AfunctionallinkbetweenDESIGUAL1andcytokininsinearlyleafdevelopment?Navarro-Cartagena, S., Wilson-Sánchez, D., Nicolás-Albujer, M., Muñoz-Díaz,E.,Alcañiz-Pascual,L.,andMicol,J.L.Instituto de Bioingeniería, Universidad Miguel Hernández, Campus deElche,03202Elche,Spain.

Bilateralsymmetryisastrikingpropertyofmanyplantsandanimals.

In bilaterally symmetric plant organs such as leaves, acquisition ofsymmetryrequiresproperlyregulateddevelopmentonbothsidesofthemidplane. However, how this occurs remains unclear at the molecularlevel. We are studying the Arabidopsis DESIGUAL (DEAL) gene family,whosemembersseemtoberequiredforbilateralsymmetryatveryearlystages of leaf organogenesis. The deal1 mutants show defects in leafbilateralsymmetryandthesemorphologicalaberrationsarevisibleatveryearly stages of leaf development, when cells proliferate but have notbegun to expand. Therefore, DEAL1 seems to be involved in cellproliferation.

TheDEAL1proteinlocalizestothemembraneofasub-compartmentof the endoplasmic reticulum. A split-ubiquitin membrane-based yeasttwo-hybridscreenforDEAL1interactorsidentified,amongotherproteins,severalcomponentsoftheVery-Long-ChainFattyAcid(VLCFA)elongationcomplex. VLCFAs negatively regulate leaf cell proliferation by inhibitingcytokinin biosynthesis. Specifically, VLCFAs inhibit the expression ofATP/ADPISOPENTENYLTRANSFERASE(IPT)genes,whichcatalyzethefirststepofthecytokininbiosyntheticpathway[1].

TotestthelinkbetweenDEAL1functionandcytokinins,weanalyzedthe response of deal1-1 to 6-benzylaminopurine, a synthetic cytokinin,which increasedthepenetranceandseverityofthebilateralasymmetryphenotype.Cafenstrol,whichinhibitstheactivityoftheVLCFAelongationcomplex,reducedthepenetranceandseverityofthephenotypeofdeal1-1.UsingquantitativePCRwe found slightly increased theexpressionofseveralIPTgenesinthedeal1-1mutant.Therefore,ourresultsindicateapotentiallinkbetweenDEAL1functionandcytokininbiosynthesis,possiblythroughVLCFAs.[1]Nobusawa,T.,etal.(2013).PLoSBiol.11,e1001531.

Page 137: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

POSTERS 135

CytokininsregulatePihomeostasisinArabidopsisrootsSilva-Navas,J.,Navarro-Neila,S.,Sáez,A.,anddelPozo,J.C.CentrodeBiotecnologíayGenómicadePlantas.UniversidadPolitécnicadeMadrid(UPM)-InstitutoNacionaldeInvestigaciónyTecnologíaAgrariay Alimentaria (INIA). Campus Montegancedo UPM 28223-Pozuelo deAlarcón(Madrid),Spain.

Phosphorous(Pi)isanessentialmacronutrientforplantgrowth.Piis

neededforthegenerationofATP,nucleicacids,membranephospholipids.Inaddition,Piisinvolvedinmanymetabolicandregulatoryprocesses.Pistarvationisoneofthemostcriticalnutritionaldeficienciesthatseverelyaffectsplantsurvivalandreproduction.Usinginvitroconditions,inwhichrootsarenormallygrowninlightconditions,PistarvationstronglyreducesArabidopsisrootgrowth,whileincreasinglateralrootdensity.

Recently,ourgrouphaveengineeredadevice, calledD-Root, thatallows the in vitro cultivation of plantswith the aerial part exposed tonormalphotoperiodicconditionsbuttherootsystemondarkness.UsingtheD-Root,we found that root systemarchitectureunderPideficiencysignificantly differs from the phenotype observed in light grown roots.ReductiononprimaryrootgrowthinlowPiwasminor(only30%lessthanhigh Pi medium). Conversely to light grown roots, we found that PistarvationdecreaseslateralrootdensityintheD-Root.Differenthormonaltreatments combined with Pi starvation revealed that cytokininsignificantlyincreasesinorganicPiconcentrationinroots.However,whencytokinin is applied to the double mutant ahk3/cre1 this increase ininorganicPiisnotdetected,pointingoutadirectroleofthishormoneinPihomeostasis.Moreover,cytokinintreatmentreducestheexpressionofthePitransporterPHO1,implicatedinPimobilizationfromrootstoshoots.

Taken together, our data indicate that light strongly influence Pistarvation response in roots. Furthermore, cytokinin controls Pihomeostasisandtransporttoshoots.

Page 138: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

POSTERS 136

A conserved carbon-starvation response underlies buddormancyinwoodyandherbaceousspeciesTarancón, C., González-Grandío, E.,Oliveros, J.C.,Nicolás,M., andCubas,P.PlantMolecularGeneticsDepartment,CentroNacionaldeBiotecnología,ConsejoSuperiordeInvestigacionesCientíficas,Spain.

Shootsareformedfromaxillarymeristemsandbuds,whoseactivity

is controlled by systemic and local signals that modulate growth anddevelopment.Thesesignalsconveyinformationaboutnutrientandwateravailability,lightquality,sink/sourceorganactivityandothervariablesthatdetermine the timeliness and competence tomaintain development ofnew shoots. This information is translated into a local response, inmeristemsandbuds,ofgrowthorquiescence.Althoughsomekeygenesinvolved in the onset of bud latency have been identified, the generegulatory networks (GRN) controlled by these genes are not yet welldefined.Moreover, ithasnotbeendeterminedwhetherbuddormancyinduced by environmental cues, such as low red to far-red light ratio,sharesgeneticmechanismswithbuddormancyinducedbyothercauses,suchasapicaldominanceorashort-dayphotoperiod.Theevolutionandconservationofthesegeneticnetworksthroughoutangiospermshasnotyetbeenstudied.WehavereanalyzedpublictranscriptomicdatasetsthatcomparequiescentandactiveaxillarybudsofArabidopsiswithdatasetsofaxillarybudsofthewoodyspeciesVitisvinifera (grapevine)andPopulustremula x Populus alba (poplar) during the bud growthto-dormancytransition. Our aim was to identify potentially common GRN inducedduringtheprocessthat leadstopara-,eco-andendodormancy inbuds,andtostudytheirbiologicalsignificance.InArabidopsisbudsenteringeco-or paradormancy, we identified four induced, interrelated GRN thatcorrespond to a carbon (C) starvation syndrome, typical of tissuesundergoing C depletion. This response is also detectable in poplar andgrapevine buds before and during the transition to dormancy. In alleukaryotes,Climitingconditionsarecoupledtogrowtharrestandlatency,likethatobservedindormantaxillarybuds.Buddormancymightinpartbeaconsequenceof theunderlyingCstarvationsyndrometriggeredbyenvironmental and endogenous cues that signal conditions unfavorableforsustainedshootgrowth.

Page 139: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

POSTERS 137

Developing Universal Synthetic Promoters driving specificexpressionintheArabidopsisandmaizeleafVercruysse, J.1,2, Van Bel, M.1,2, Storme, V.1,2, Nelissen, H.1,2,Vandepoele,K.1,2,Gonzalez,N.1,2,3,andInzé,D.1,21CenterforPlantSystemsBiology,VIB,Technologiepark927,9052Gent,Belgium.

2DepartmentofPlantBiotechnologyandBioinformatics,GhentUniversity,9052Gent,Belgium.

3INRA,UMR1332BiologiedufruitetPathologie,INRABordeauxAquitaine,CS20032,F-33882,Villenaved’Ornoncedex,France.

Synthetic promoters are artificial sequences that do not occur in

natureandthatcanbeusedtopreciselycontrolgeneexpression.Here,wepresent thedesignof suchsyntheticpromoters,usingacombinationoftranscription factor binding sites (TFBSs) derived from Arabidopsis andmaizegeneexpressiondataduringleafdevelopment.

InordertoidentifyandcomparetheTFBSandbindingTFscommonorspecifictoArabidopsisand/ormaize,weconductedalargeorthologystudyincludingleaftranscriptomicdatafrombothorganisms.Webuiltanintegrated network with all functional orthologs from both species,allowingustodetermineexpressionconservationatgenelevel.Overall,weobservedthattheexpressionofgenesinvolvedinleafgrowthislargelyconserved,withsomeexceptions.ThesametendencywasobservedforallknownTFs.ExploringtheconservationamongTFsinbothspecieswillhelpus to understand how and,more importantlywhen, these TFs bind onTFBSsandregulateexpression.Withthisinformation,wewillcontributeto building further the growth regulatory network in Arabidopsis andmaize.

Based on this information, we inferred TFBSs that could beassociated with a certain expression trend and designed syntheticpromoterstocontrolgeneexpression.To identify functionalpromoters,weusedreporterconstructsinalargescreenforArabidopsis.Onthelongterm,wewillstudytheuniversalcharacterofthesyntheticpromotersbyanalyzingtheexpressionspecificityduringleafdevelopmentinmaize,oneofthemodelorganismsformonocots.

Page 140: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

POSTERS 138

Additionally,weaimat improvingyieldand/orbiomassbydrivingspecificexpressionofknowngrowth-promotinggenesundertheinfluenceofasyntheticpromoter.

Page 141: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

POSTERS 139

AdvancesinthegeneticdissectionoftomatoleafdevelopmentfromanenhancertrapmutagenesisprogramFonseca, R.1, Yuste-Lisbona, F.J.1, Pineda, B.2, Pérez-Martín, F.1,García-Sogo,B.2,Atares,A.2,Angosto,T.1,Capel,J.1,Moreno,V.2,andLozano,R.11Centro de Investigación en Biotecnología Agroalimentaria (BITAL),UniversidaddeAlmería,04120Almería,Spain.

2Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC),UniversidadPolitécnicadeValencia,46022Valencia,Spain.

During the vegetative phase, the shoot apical meristem mainly

produces leaves disposed following a specific phyllotaxis pattern.Manyprogresses have recently been made in the genetic dissection of leafdevelopment and some regulatory genes have been discovered inArabidopsis thaliana. However, genetic and molecular mechanismsdetermining leaf developmental pattern in crop species remain largelyunknown. Indeed, leaf area and plant architecture are key traits invegetablespeciessincetheyaredeterminantfactorsforplantgrowthandproductivity. Particularly, tomato (Solanum lycopersicum L.) developsunipinnatecompoundleaves(7-9leaflets),whicharepositionedinaspiralphyllotaxis. In this work, we have screened a T-DNA insertion mutantcollectionoftomatowiththeaimtoidentifymutationsthateitherincreaseordecreasethedegreeofleafcomplexity.

Twomutantphenotypes,bothinheritedasmonogenictraitsandco-segregatingwith the T-DNA insertion, have been characterized and thetaggedgenescloned.First,leavesofthemutantline2477ETMMshowedevidentnecrosissymptomsandconsequently,areductionofplantgrowthat early stages of development. Later, necrosis increased and leavesbecamecurledandsenescent.T-DNAmutationinthe2477ETMMlinewaslocatedinthefifthexonoftheSolyc11g011960,agenecodingforaUTP-glucose-1-phosphate uridylyltransferase involved in programmed celldeath and leaf development. This findingmeans a novel gene functionreported in tomato. Second, the mutant line 1381ETMM displayed asignificantreductionofleafsize,givingrisetoonlyoneortwosecondaryleaflets;inaddition,flowerandfruitdevelopmentwereseverelyaffected.1381ETMMlineonlyboreoneT-DNAcopylocatedinthesixthexonoftheLYRATEgene,whichcodesforalipase-likeproteinrequiredtoestablishthe

Page 142: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

POSTERS 140

appropriate leaf morphogenetic pattern. Together, our results supportthat enhancer trapping is a valuable resource to identify novel genefunctionsregulatingdevelopmentalpatternoftomatoleaf.

Page 143: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

POSTERS 141

Simulationofwhole-genomesequencingdatatoimprovethedesignofmapping-by-sequencingexperimentsWilson-Sánchez,D., Sarmiento-Mañús,R., Ponce,M.R., andMicol,J.L.Instituto de Bioingeniería, Universidad Miguel Hernández, Campus deElche,03202Elche,Alicante,Spain.

Duringthepast25years,wehaveobtainedandstudiedhundredsof

ethylmethanesulfonate(EMS)-andT-DNA-inducedmutantsthatexhibitperturbations in leaf growth and development. To identify the causalmutations of the phenotypes of these mutants, we have moved fromlinkageanalysistomapping-by-sequencingusinghigh-throughput,short-readnext-generationsequencingtechnologies.Toimprovethedesignoftheseexperiments,wesimulatedseveralexperimentalsetups.

For EMS-induced mutants, we first evaluated which short-readtechnology is best suited to analyze the gene-rich genomic regions ofArabidopsis,andtheminimumsequencingdepthrequiredtoconfidentlycall variants. Next, we simulated backcross mapping-by-sequencingexperiments and determined how mapping population size andsequencingdepthinteracttoaffectmappingresolution.Wealsoevaluatedtheviabilityofcrossingtwosiblingnon-allelicmutantstoobtainamappingpopulation for simultaneously mapping of two recessive mutations. Inaddition, we compared different approaches to efficiently discriminatenatural and EMS-derived single nucleotide polymorphisms; suchdiscrimination is critical for localizing causalmutations innon-referencegeneticbackgrounds.

For T-DNA-inducedmutants,we first tested a customprotocol tomapinsertionswithpaired-endIllumina-likereads.Wethenassessedthemostcost-effectivereaddepthandtestedtheviabilityofpoolingseveralmutants.Theresultsofthesesimulationsprovedusefulforthedesignofrealexperiments.

Page 144: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

POSTERS 142

Easymap:aprogramtoeasemapping-by-sequencingoflargeinsertionsandpointmutationsLup,S.D.,Wilson-Sánchez,D.,Andreu-Sánchez,S.,andMicol,J.L.Instituto de Bioingeniería, Universidad Miguel Hernández, Campus deElche,03202Elche,Alicante,Spain.

Forwardgeneticscreenshaveidentifiedmanygenesandcontinueto

be powerful tools for the dissection of gene action and interactions inArabidopsis and other plant species. Moreover, next-generationsequencing has revitalized the time-consuming genetic approaches toidentify the mutation causing a phenotype of interest. Mapping-by-sequencingcombinesnext-generationsequencingwithclassicalmappingstrategiesandallowsrapididentificationofpointmutations[1].

Currently, we have programs that can analyze whole-genomesequencingdatatomapthepositionofthecausalmutationsforaspecificphenotype,buttheseprogramsarecomplicatedtoinstalloruse,requireadditionalsoftwaretoperformcompleteanalysis,orrequiretheusertopurchaseexpensivelicenses.Wearecreatingaprogram,calledEasymap,whichsimplifiesthedataanalysisworkflowfromrawreadstocandidatemutations. Two main workflow types are available: bulked segregantmapping for point mutations, and tagged-sequence mapping for largeinsertionssuchastransposonsorT-DNAs.

Easymapperformsinitialchecksonuserdata,whichareprocesseddepending on the needs. Large insertions are mapped by a series ofalignment and filtering steps, while single-nucleotide polymorphisms(SNPs)areanalyzedbasedontheirallelicfrequenciesinaphenotypedF2mapping population. Auxiliarymodules refine the output. Themutatedgenome is then comparedwith a fully annotated reference genome todetecttheputativeeffectsofthevariationfound(SNPsorlargeinsertions)on gene function. Finally, all the relevant information for the user ispresented in a unified report with graphical and text information. Amodule to simulatedata isalso included,whichcanbeused toexploredifferentexperimentalsetups.WearecurrentlytestingEasymapasatoolto identify mutations in the Arabidopsis leaf mutants isolated in ourlaboratory.

[1]James,G.V.,etal.(2013).GenomeBiol.14,R61.

Page 145: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

POSTERS 143

Cloningdevelopmentalgenesusingmapping-by-sequencingRuiz,E.,Rodríguez-Alcocer,E.,Jover-Gil,S.,andCandela,H.Instituto de Bioingeniería, Universidad Miguel Hernández, Campus deElche,03202Elche,Spain.

Mapping-by-sequencingisapowerfulapproachthatallowstherapid

mapping and identification of the molecular lesion responsible for amutantphenotypeofinterest.Wehaveusedthisapproachsuccessfullytoclone two developmental mutants of Arabidopsis thaliana. The firstmutantcausesalbinismandlethalityattheseedlingstage.Toidentifythecorrespondinggene,weclassifiedandpooledthe individualsfromanF2mappingpopulationaccordingtotheirphenotypes(wild-typeormutant).We purified genomic DNA from the plants of both pools, and the twosamplesweresequencedusingthe IlluminaHiSeq2500next-generationsequencing platform. We have implemented an efficient bioinformaticpipeline to analyze the sequences from both pools. This pipeline hasallowedustoidentifyapointmutationthatdamagesaconservedresidueattheacceptorsiteofanintronoftheAt2g04030gene,whichencodesamember of the Hsp90 family of heat-shock proteins in the genome ofArabidopsis thaliana. The second mutant exhibits abnormal fruitdevelopment,withfruitsthatconsistofmorevalves(carpels)thanthoseofthewildtype.Followingasimilarapproach,wehaveidentifiedanon-synonymous substitution at a conserved amino acid residue of theULTRAPETALA1 (At4g28190)protein,which is very likely responsible fortheobservedphenotype.

Thiswork receivedsupport fromSpain'sMinistryofEconomyandCompetitiveness(MINECO)andtheEuropeanRegionalDevelopmentFund(ERDF)(‘UnamaneradehacerEuropa')[BFU2012-31719]andGeneralitatValenciana [ACOMP/2015/042].E.R.-A.’scontract isalsosupportedbyaMINECOgrant[PEJ-2014-A-21398].

Page 146: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

POSTERS 144

RelatingwheatrootarchitecturetonitrateuptakeefficiencyusingcomputersimulationsofCTdataMellor, N., Griffiths, M., Wells, D., Schafer, E., Owen, M., andBennett,M.J.The Centre for Plant Integrative Biology, School of Biosciences, SuttonBoningtonCampus,UniversityofNottingham,UK,LE125RD.

TheFUTUREROOTSprojectaimstocreateauniquehighthroughput

root phenotyping facility that exploits recent advances in μCT imaging,biologicalimageanalysis,wheatgeneticsandmathematicalmodellingtopinpoint the key genes that control root architecture and developmolecularmarkers and new crop varieties with improved nutrient andwateruptakeefficiency.AspartoftheProjectweaimtousemodel-basedphenotyping to assess the relativenitrateuptakeefficiencyof differentwheatgenotypes.Weusenon-invasiveμCTtocapturelivingrootsystems,grown in soil columns, of 10-day old wheat seedlings belonging to 8genotypes from a Rialto-Savannah mapping population. Aftersegmentation,skeletonisationandconversiontotheRSML(RootSystemMarkup Language) file exchange format,we then use Python scripts toconvert the root systemdata intoa format suitable for import into thenewly open-source, 3D architectural plant root modelling platformOpenSimRoot (http://rootmodels.gitlab.io/).UsingSimRootweare thenable to ‘grow’ root-systems in-silico matching the CT data, and makepredictionsofthenitrateuptakeefficiencyofeachvirtualplant,andthuscompare between genotypes. In addition, by extracting parameterestimates relating to root growth and branching, we are able toextrapolateandpredictfuturegrowthofthedataderivedrootsystems,and also simulate both partially and fully computer generated rootarchitectures.Usingthesepartiallyorfullycomputergeneratedsystemsitisposible to investigate to the impactofproperties suchas lateral rootbranchingangleonnitrateuptakeefficiency.

Page 147: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

POSTERS 145

Developingmoleculartoolsforgarlicbreeding Parreño,R.1,Gallego,A.1,Rodríguez-Alcocer,E.1,Blasco-Espada,D.1,GómezdelCastillo,F.2,CastilloMartínez,P.2,andCandela,H.11Instituto de Bioingeniería, Universidad Miguel Hernández, Campus deElche,03202Elche,Spain.

2Coopaman, S.C.L., c/ General Borrero, s/n., 16660 Las Pedroñeras,Cuenca,Spain.

ThegenusAlliumcomprisesseveralspeciesofcultivatedplants,such

asgarlicandonion,whicharehighlyappreciatedduetothecommercialvalue of their bulbs. In order to develop resources for the molecularcharacterization of garlic, we have carried out the assembly of thechloroplastgenomeofagarliccultivar,andhaveinitiatedthesequencing,denovoassemblyandannotationofthegarlictranscriptomeusingRNAsamples derived from different tissues, including bulbs, bulbils, shootapicalmeristems and vegetative leaves. The chloroplast genomeof thestudiedcultivar isacircular,double-strandedDNAmoleculewithatotallengthof153,131basepairs,andcontains136functionalgenes(including90 protein-coding genes, 38 transfer RNA genes and 8 ribosomal RNAgenes) and 6 pseudogenes. In order to identify genes involved in thepigmentation of garlic bulbs,we are characterizing a garlic variety thatexhibitsvariegation,withbulbscontainingwhiteandpurplesectors.Theboundaries of these sectors are sharply defined and extend along theproximal-distal axis of the tunicas (modified leaves that ensheath thebulb). These sectors resemble those observed in clonal analysis studiescarried out previously in monocotyledonous plants such as maize,suggesting that thedistinctpigmentation is transmitted throughout celldivisions.Ourtranscriptomestudiesshouldhelpustofurtherunderstandbulbdevelopmentandpigmentsynthesispathwaysinthisspecies.

Page 148: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

POSTERS 146

Growthandphysiological responsesofGlobbaschomburgkiiHook.fundersoilandhydroponicconditionsPhantong,P.1,Machikowa,T.2,andMuangsan,N.11School of Biology, Institute of Science, Suranaree University ofTechnology,NakhonRatchasima30000Thailand.

2School of Crop Production Technology, Institute of AgriculturalTechnology, Suranaree University of Technology, Nakhon Ratchasima,30000Thailand.

GlobbaschomburgkiiHook.f(Zingiberaceae),asmallperennialherb

native to Thailand, is an ornamental plant and has high value in thenationalmarketsduetoitsbeautifulinflorescence,called“GoldenDancingGirl”.However,cultivationofthisplantspeciesislimited.ThisexperimentaimedtocomparegrowthandphysiologicalresponsesofG.schomburgkiiHook. f under two conditions; soil and hydroponic conditions. In vitroplantlets(8cminheight)weregrowninhydroponicswiththenutrientfilmtechnique in a greenhouse using SUT nutrient formula with electricalconductivities(EC)of1.3mScm_1andpHbetween5.5-6.5.Insoilculture,theplantletsweregrowninsmallpotscontainingsand:burnedricehusk:peat moss (1:1:1 by volume). Growth and physiological characteristicsweremeasuredat15,30,45and60daysaftertransplanting.Theresultsshowedthatonehundredpercentoftheplantletssurvivedinbothgrowthconditions.Plantsgrown inhydroponicculture revealedhigher in shootlength,leafareaandstemdiameter,exceptnumberofshootthaninsoilculture. Plants grown in hydroponics had early inflorescence andmanybulbils. For physiological response, hydroponic plants had higherphotosynthesisrate,transpirationrate,andstomatalconductivity.Thesefindings indicatedthedifferencebetweenthetwoconditions intermofleafphysiological indices.Hence,theresultprovedthatG.schomburgkiiHook. f could adapt to the water-culture environment well and wouldprovide a useful information for cultivators for developing a suitablemethodforpropagatingofGlobbaspeciesandotherrelatedplantspecies.

Page 149: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

POSTERS 147

Synthesis of chiral alcohols; key intermediaries for thesynthesis of bioactive molecules by Medlar; fruit grown inAlgeriaZeror,S.,andBennamane,M.LaboratoiredeCatalyseAsymétriqueEcocompatible. LCAEUniversitéB.Mokhtar,Annaba,Algérie.

Stereoselective reductionsofheteroaryl ketones containing furan,

thiophene,chroman,andthiochromanmoietiesareofutmostimportancein organic synthesis since the resulting chiral alcohols are used asantioxidants,orbuildingblocks.[1]Asymmetricreductionofketoneswithchemicalcatalystorbiocatalystisapromisingroutefortheproductionofenantio enriched alcohols. In the context of developing green andsustainable chemical processes, biotechnologies are attractivealternatives.

Thebiocatalyticreductionofketoneswasperformedusingmedlar(Mespilus germanica. L) fruit grown in large amounts in Algeria [2,3]Variety of heterocyclic aromatic ketones was reduced with medlar ascatalystinaqueousmedia.Prochiralketonescontainingfuran,thiophene,chroman,andthiochromanmoietiesarereducedwithupto98%ee.Highenantioselectivitieshavebeenobservedespeciallyforthebioreductionoftetraloneandthiochromanonewithrespectively89%and98%ee.Thesechiralbenzylicalcoholsareusedassynthon-keyinvarioussynthesesofthemanydrugs.

Inconclusion,Bio-reductioncatalyzedbymedlarfruitsprovidesanattractiveapproachtoaccesschiralalcoholswithexcellentenantiomericexcess.These results showthatmedlar fruitshaveenzymesystemwithabilitytoenantioselectivereductionofketone.Indeed,fruitsrepresentanalternative source of “new”enzymes for use as catalysts in organicsynthesis.

[1]Noyori,R.,andOhkuma,T.(2001).Angew.Chem.40,40.[2]Bennamane,M.,Zeror,S.,andAribi-Zouioueche,L.(2014).Biocat.Biotrans.32,327–332.

[3]Bennamane,M.,Zeror,S.,andAribi-Zouioueche,L.(2015).Chirality27,205-210.

Page 150: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

148

Page 151: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

Author index

Stuart
Texto escrito a máquina
Stuart
Texto escrito a máquina
Stuart
Texto escrito a máquina
Stuart
Texto escrito a máquina
Stuart
Texto escrito a máquina
Stuart
Texto escrito a máquina
Stuart
Texto escrito a máquina
Stuart
Texto escrito a máquina
Page 152: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

150

Page 153: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

Author index 151

Aalen, R.B. ........................................................................................................ 76, 101, 116 Abbas, M. .......................................................................................................................... 73 Abel, S............................................................................................................................... 62 Aceituno-Valenzuela, U. ................................................................................................. 123 Acosta, M. ....................................................................................................................... 100 Adibi, M. ........................................................................................................................... 98 Aguilar-García, A.M. ...................................................................................................... 132 Alabadí, D. ................................................................................................................ 73, 112 Alaguero, A. .................................................................................................................... 100 Alcañiz-Pascual, L. ......................................................................................................... 134 Altmann, T. ....................................................................................................................... 83 Andreu-Sánchez, S. ......................................................................................................... 142 Angenent, G.C. ................................................................................................................. 50 Angosto, T......................................................................................................... 51, 113, 139 Atares, A. ........................................................................................................................ 139 Babé, A. ............................................................................................................................ 87 Bach, L. ............................................................................................................................. 64 Baekelandt, A. ................................................................................................................. 108 Bailey, L.J. ................................................................................................................ 48, 107 Balcerowicz, D. ................................................................................................................. 37 Bald, L. .............................................................................................................................. 28 Balzergue, C. ..................................................................................................................... 32 Bastien, R. ......................................................................................................................... 91 Batoko, H. ......................................................................................................................... 87 Baud, S. ............................................................................................................................. 46 Beeckman, T. .................................................................................................................... 87 Beemster, G.T.S. ............................................................................................................... 66 Bekki, A. ......................................................................................................................... 103 Belachew, K.Y. ................................................................................................................. 39 Bendahmane, M. ............................................................................................................. 110 Benkovics, A ..................................................................................................................... 71 Bennamane, M. ............................................................................................................... 147 Bennett, M.J. ......................................................................................................... 27, 37, 87 Benselama, A. ................................................................................................................. 103 Betsch, L. ........................................................................................................................ 110 Bimbo, A. .......................................................................................................................... 50 Birnbaum, K. ..................................................................................................................... 31 Bizet, F. ............................................................................................................................. 91 Blanco-Touriñán, N. ....................................................................................................... 112 Blasco-Espada, D. ........................................................................................................... 145 Blázquez, M.A. ......................................................................................................... 73, 112 Blein, T. ............................................................................................................................ 32 Boerjan, W. ....................................................................................................................... 63 Bogeat-Triboulot, M.B. ..................................................................................................... 91 Bogre, L. ........................................................................................................................... 74 Boltz, V. .......................................................................................................................... 110 Boulard, C. ........................................................................................................................ 46 Breen, G. ........................................................................................................................... 37 Brès, C............................................................................................................................... 54 Brioudes, F. ..................................................................................................................... 110

Page 154: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

Author index 152

Broholm, S. ....................................................................................................................... 98 Burillo, E. ........................................................................................................................ 130 Bürstenbinder, K. .............................................................................................................. 62 Busch, W. .......................................................................................................................... 90 Cabezas-Fuster, A. .......................................................................................................... 124 Calleja-Cabrera, J. ........................................................................................................... 112 Candela, H. ........................................................................................ 48, 126, 130, 143, 145 Cano, A. .......................................................................................................................... 100 Capel, C. .................................................................................................................... 51, 113 Capel, J. ............................................................................................................. 51, 113, 139 Capellades, M. ................................................................................................................ 111 Caperta, A.D. .......................................................................................................... 104, 106 Carrasco, V. ...................................................................................................................... 41 Carrasco-López, C. ......................................................................................................... 112 Castillo Martínez, P. ....................................................................................................... 145 Cerdá-Bernad, D. ............................................................................................................ 118 Chaumont, F. ..................................................................................................................... 87 Chevalier, C. ..................................................................................................................... 53 Christ, A. ........................................................................................................................... 32 Chu, J. ............................................................................................................................... 83 Coll, N.S. ........................................................................................................................ 111 Conceição, S. .......................................................................................................... 104, 106 Contreras, R. ..................................................................................................................... 68 Corneille, S. ...................................................................................................................... 63 Crespi, M........................................................................................................................... 32 Cruz-Valerio, M. ............................................................................................................. 107 Cubas, P. ......................................................................................................................... 136 De Diego, N. ..................................................................................................................... 93 De Smet, I. ........................................................................................................................ 87 De Vos, D. ......................................................................................................................... 66 del Pozo, J.C. ............................................................................................................ 41, 135 Dello Ioio, R. ..................................................................................................................... 97 DelRose, N. ....................................................................................................................... 31 Desnos, T. ......................................................................................................................... 32 Dewitte, W. ....................................................................................................................... 92 Díaz, A.A. ....................................................................................................................... 111 Dodd, I.C. .......................................................................................................................... 87 Doe, J. ............................................................................................................................... 28 Domagalska, M.A. ............................................................................................................ 66 Doorsselaere, J.V. ........................................................................................................... 108 Dornelas, M.C. .................................................................................................................. 50 Draye, X. ........................................................................................................................... 87 Dubois, M. ........................................................................................................................ 64 Dubreucq, B. ..................................................................................................................... 46 Dubreuil, C. ....................................................................................................................... 89 Efroni, I. ............................................................................................................................ 31 Egea-Cortines, M. ............................................................................................................. 55 Esteve-Bruna, D. ............................................................................................................. 112 Farahi-Bilooei, S. .............................................................................................................. 74 Farhi, M............................................................................................................................. 60 Fatihi, A. ........................................................................................................................... 46

Page 155: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

Author index 153

Feijó, J.A. .......................................................................................................................... 47 Fernandez, L. .................................................................................................................... 53 Fernández-López, M. ........................................................................................................ 99 Ferrández-Ayela, A. ........................................................................................ 127, 128, 129 Fischer, U. ......................................................................................................................... 89 Fiume, E. ........................................................................................................................... 46 Floriach-Clark, J. ............................................................................................................ 111 Fonseca, R. ...................................................................................................................... 139 Fontcuberta-Cervera, S. .................................................................................................. 122 Forero-Vargas, M. ............................................................................................................. 92 Friml, J. ............................................................................................................................. 73 Fuentes, J......................................................................................................................... 111 Fürst, T. ............................................................................................................................. 93 Gabriel, M. ........................................................................................................................ 32 Gallego, A. ...................................................................................................................... 145 Gallego, F.J. ...................................................................................................................... 41 Garcia, V. .......................................................................................................................... 54 García-Alcázar, M. .......................................................................................................... 113 García-Sogo, B. ................................................................................................. 51, 113, 139 Gautheret, D. ..................................................................................................................... 32 Genschik, P. ...................................................................................................................... 64 Gerth, S. ............................................................................................................................ 66 Gévaudant, F. .................................................................................................................... 53 Giménez, E. ............................................................................................................... 51, 113 Gómez del Castillo, F. .................................................................................................... 145 Gómez-Peral, N. .............................................................................................................. 130 Gonzalez, N. ............................................................................................................ 108, 137 González-Bayón R. ......................................................................................................... 131 González-García, M.P. ...................................................................................................... 68 González-Grandío, E. ...................................................................................................... 136 Goossens, A. ................................................................................................................... 108 Göschl, C........................................................................................................................... 90 Granier, C. ......................................................................................................................... 64 Grieneisen, V.A. ............................................................................................................... 75 Grierson, C.S. .................................................................................................................... 37 Grönlund, A. ..................................................................................................................... 89 Gutiérrez-Nájera, N. ........................................................................................................ 114 Hammes, U. ...................................................................................................................... 73 Hartmann C. ...................................................................................................................... 32 Hernández-Cortés, C. ...................................................................................................... 130 Hernández-García, J. ......................................................................................................... 73 Herrmann, U. .................................................................................................................. 101 Heuermann, M. ................................................................................................................. 83 Hill, K. .............................................................................................................................. 37 Holman, T.J. ...................................................................................................................... 37 Hulsmans, S. ..................................................................................................................... 65 Hummel, I. ........................................................................................................................ 91 Humplík, J.F. .................................................................................................................... 93 Husbands, A. ..................................................................................................................... 71 Ibáñez, S. ................................................................................................................... 99, 102 Ichihashi, Y. ...................................................................................................................... 60

Page 156: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

Author index 154

Immink, R.G.H. ................................................................................................................ 50 Inzé, D. .............................................................................................................. 79, 108, 137 Ip, P.L................................................................................................................................ 31 Iserte, J. ........................................................................................................................... 112 Iversen, V. ................................................................................................................. 76, 116 Jaeger, G.D. ..................................................................................................................... 108 Jandrasits, K. ..................................................................................................................... 90 Jeon, H.J. ........................................................................................................................... 83 Jin, X. ................................................................................................................................ 89 Jones, A.R. ........................................................................................................................ 92 Jorly, J. ........................................................................................................................ 53, 54 Jover-Gil, S. .................................................................................................... 130, 132, 143 Juan-Vicente, L. .............................................................................................. 118, 119, 120 Junker, A. .......................................................................................................................... 83 Just, D. .............................................................................................................................. 53 Justamante, M.S. ............................................................................................................. 102 Kalve, S. ............................................................................................................................ 66 Kelemen, Z. ....................................................................................................................... 46 Keyhaninejad, N. .............................................................................................................. 45 Kierzkowski, D. ................................................................................................................ 97 Klukas, C........................................................................................................................... 83 Kolb, M. ............................................................................................................................ 73 Krings, J. ........................................................................................................................... 35 Kumar Das, P. ................................................................................................................. 115 Kumar Maiti, M. ............................................................................................................. 115 Kunkowska, A.B. .............................................................................................................. 67 Lamy, G. ........................................................................................................................... 64 Laromaine, A. ................................................................................................................. 111 Lavigne, T. ........................................................................................................................ 87 Legland, D. ........................................................................................................................ 91 Lemaire-Chamley, M. ................................................................................................. 53, 54 Lepiniec, L. ....................................................................................................................... 46 Ligeza, A. .......................................................................................................................... 87 Lisec, J. ............................................................................................................................. 83 Ljung, K. ........................................................................................................................... 87 Lopez-Juez, E. ............................................................................................................. 74, 75 Loudet, O. ......................................................................................................................... 86 Lozano, R. ......................................................................................................... 51, 113, 139 Lup, S.D. ................................................................................................................... 59, 142 Machikowa, T. ................................................................................................................ 146 Mähönen, A.P. .................................................................................................................. 98 Maizel, A. .......................................................................................................................... 28 Manzano, C. ...................................................................................................................... 41 Markakis, M.N. ................................................................................................................. 37 Marrocco, K. ..................................................................................................................... 64 Martinelli, A.P. ................................................................................................................. 50 Martínez-Laborda, A. ................................................................................................ 48, 107 Martins, M......................................................................................................................... 30 Mateo-Bonmatí, E. .................................................................................. 118, 119, 120, 125 Mauxion, J.P. .................................................................................................................... 54 Mello, A. ........................................................................................................................... 31

Page 157: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

Author index 155

Meulia, T. .......................................................................................................................... 45 Meyer, R.C. ....................................................................................................................... 83 Micol, J.L. ........................... 59, 99, 114, 118, 119, 120, 125, 126, 131, 132, 134, 141, 142 Micol-Ponce, R. ...................................................................................... 121, 122, 123, 124 Miquel, M. ........................................................................................................................ 46 Mitra, D. ............................................................................................................................ 62 Mohammed, B. ............................................................................................................ 74, 75 Möller, B. .......................................................................................................................... 62 Montiel-Jorda, A. .............................................................................................................. 30 Mora-Navarro, E. ............................................................................................................ 121 Moreno, V. ........................................................................................................ 51, 113, 139 Moreno-Risueno, M.A. ..................................................................................................... 41 Morris, E. .......................................................................................................................... 87 Mouille, G. ........................................................................................................................ 37 Muangsan, N. .................................................................................................................. 146 Muñoz, A. ......................................................................................................................... 68 Muñoz-Díaz, E. ............................................................................................................... 134 Muñoz-Nortes, T. ............................................................................................................ 126 Muraya, M. ........................................................................................................................ 83 Murray, J. .......................................................................................................................... 92 Musseau, C. ....................................................................................................................... 53 Nadi, R. ........................................................................................................................... 120 Nagel, K.A. ....................................................................................................................... 39 Nakayama, H. .................................................................................................................... 60 Nateland, L. ............................................................................................................... 76, 116 Navarro, P.J. ...................................................................................................................... 55 Navarro-Cartagena, S. ............................................................................................... 59, 134 Navarro-Neila, S. ...................................................................................................... 41, 135 Navarro-Quiles, C. .......................................................................................................... 125 Nawy, T. ............................................................................................................................ 31 Nektarios, M.M. ................................................................................................................ 66 Nelissen, H. ..................................................................................................................... 137 Nenseth, H.Z. ............................................................................................................ 76, 116 Nicolás, M. ...................................................................................................................... 136 Nicolás-Albujer, M. ........................................................................................................ 134 Noilhan, B. ........................................................................................................................ 54 Novak, O. .......................................................................................................................... 87 Núñez-Delegido, E. ................................................................................................. 127, 128 Nussaume, L. .................................................................................................................... 32 Oh, J. ................................................................................................................................. 37 Oliveros, J.C.................................................................................................................... 136 Orman, B. .......................................................................................................................... 87 Ortuño-Miquel, S. ..................................................................................................... 48, 107 Ounane, S.M. .................................................................................................................. 103 Parizot, B. .......................................................................................................................... 87 Parreño, R. ...................................................................................................................... 145 Pauwels, L. ...................................................................................................................... 108 Perea-Resa, C. ................................................................................................................. 112 Péret, B. ............................................................................................................................. 36 Pérez-Martín, F. ........................................................................................................ 51, 139 Pérez-Pérez, J.M. ...................................................................................... 99, 100, 102, 126

Page 158: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

Author index 156

Perez-Sanz, F. ................................................................................................................... 55 Périlleux, C. ...................................................................................................................... 87 Phantong, P. .................................................................................................................... 146 Pineda, B. .......................................................................................................... 51, 113, 139 Podlešáková, K. ................................................................................................................ 93 Pollmann, S. ................................................................................................................ 41, 73 Ponce, M.R...................................................... 114, 121, 122, 123, 124, 126, 131, 132, 141 Pontier G. ........................................................................................................................ 110 Powers, A. ......................................................................................................................... 31 Quesada, V. ..................................................................................... 114, 127, 128, 129, 131 Rahni, R. ........................................................................................................................... 31 Ravanelli, S. .................................................................................................................... 133 Reif, J.C. ........................................................................................................................... 83 Riewe, D. .......................................................................................................................... 83 Ripoll, J.J. ................................................................................................................. 48, 107 Robles, P. ................................................................................................ 114, 127, 128, 129 Rocha, D.I. ........................................................................................................................ 50 Rodriguez, P.L. ................................................................................................................. 87 Rodríguez-Alcocer, E. .................................................................................... 130, 143, 145 Rodríguez-Cazorla, E. ............................................................................................... 48, 107 Roiuk, M. .......................................................................................................................... 90 Rojo, E. ............................................................................................................................. 68 Rolland, F. ......................................................................................................................... 65 Rothan, C. ................................................................................................................... 53, 54 Ruiz, E. .................................................................................................................... 130, 143 Ruiz-Bayón, A. ............................................................................................... 121, 123, 132 Ruiz-Duarte, P. .................................................................................................................. 28 Ruiz-Ramírez, J. .............................................................................................................. 131 S Runions, A. .................................................................................................................... 97 Sáez, A. ........................................................................................................................... 135 Salinas, J. ........................................................................................................................ 112 Samodelov, S.L. ................................................................................................................ 73 Sánchez, S. ................................................................................................................ 51, 113 Sánchez-García, A.B. ........................................................................................................ 99 Sánchez-Serrano, J.J. ........................................................................................................ 68 Sanmartín, M. .................................................................................................................... 68 Sarmiento-Mañús, R. .............................................................. 114, 121, 122, 123, 131, 141 Satija, R. ............................................................................................................................ 31 Scalisi, L. .......................................................................................................................... 32 Schippers, J.H.M. ........................................................................................................ 35, 67 Schmeichel, J. ................................................................................................................... 83 Schmidt, R. ....................................................................................................................... 35 Schnittger, A. .................................................................................................................... 66 Schoenaers, S. ................................................................................................................... 37 Schubert, M. ...................................................................................................................... 28 Senent-Valero, Y. ............................................................................................................ 124 Setzer, C. ........................................................................................................................... 90 Séverin, J.P........................................................................................................................ 87 Seyfarth, M. ...................................................................................................................... 83 Shi, C. ............................................................................................................................. 101 Silva, N. .......................................................................................................................... 106

Page 159: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

Author index 157

Silva-Navas, J. .......................................................................................................... 41, 135 Silveira, S.R. ..................................................................................................................... 50 Sinha, N............................................................................................................................. 60 Sizani, B.L. ....................................................................................................................... 66 Skopelitis, D. ..................................................................................................................... 71 Slovak, R. .......................................................................................................................... 90 Smetana, O. ....................................................................................................................... 98 Smith, J. ............................................................................................................................ 28 Smith, R. ........................................................................................................................... 98 Smith, R.S. ........................................................................................................................ 92 Sorin, C. ............................................................................................................................ 32 Sosa-Domínguez, P. ........................................................................................................ 125 Spíchal, L. ......................................................................................................................... 93 Stelmaszewska, J. .............................................................................................................. 66 Stoddard, F.L. ................................................................................................................... 39 Storme, V. ....................................................................................................................... 137 Sturrock, C. ....................................................................................................................... 87 Swarup, R. ......................................................................................................................... 37 Swinnen, G. ..................................................................................................................... 108 Szécsi J. ........................................................................................................................... 110 Takahashi, N. .............................................................................................................. 29, 34 Takatsuka, H. .................................................................................................................. 117 Tarancón, C. .................................................................................................................... 136 Téllez-Robledo, B. ............................................................................................................ 41 Terry, M.-I. ....................................................................................................................... 55 Thévenin, J. ....................................................................................................................... 46 Timmermans, M. ............................................................................................................... 71 Tissot, N. ......................................................................................................................... 110 To, A. ................................................................................................................................ 46 Traas, J. ............................................................................................................................. 92 Tschiersch, H. ................................................................................................................... 83 Tsiantis, M. ......................................................................................................... 72, 97, 133 Tsukaya, H. ....................................................................................................................... 61 Ugena-Consuegra, L. ........................................................................................................ 93 Umeda, M. .......................................................................................................... 29, 34, 117 Van Bel, M. ..................................................................................................................... 137 Van der Knaap, E. ............................................................................................................. 45 van der Wal, F. .................................................................................................................. 50 van Es, S.W. ...................................................................................................................... 50 Vandepoele, K. ................................................................................................................ 137 Vanholme, B. .................................................................................................................... 63 Vera, A. ..................................................................................................................... 48, 107 Vercruysse, J. .................................................................................................................. 137 Vermeer, J. ........................................................................................................................ 28 Vert, G. .............................................................................................................................. 30 Veylder, L.D. .................................................................................................................... 66 Vilches-Barro, A. .............................................................................................................. 28 Villanova, J. .................................................................................................................... 100 Viron, N. ........................................................................................................................... 54 Vissenberg, K. ................................................................................................................... 37 Vodermaier, V. .................................................................................................................. 28

Page 160: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

Author index 158

Vuolo, F. ........................................................................................................................... 97 Weiss, J. ............................................................................................................................ 55 Wildhagen, M. ................................................................................................................ 101 Willmitzer, L. .................................................................................................................... 83 Wilson, M.H...................................................................................................................... 37 Wilson-Sánchez, D. .................................................................................. 59, 134, 141, 142 Withers, S.P. ..................................................................................................................... 92 Wong Jun Tai, F. ............................................................................................................... 54 Wu, S................................................................................................................................. 45 Wuyts, N. .......................................................................................................................... 85 Xuan, W. ........................................................................................................................... 87 Yanofsky, M.F. ......................................................................................................... 48, 107 Yanovsky, M.J. ............................................................................................................... 112 Youssef, C. ........................................................................................................................ 91 Yuste-Lisbona, F.J. ........................................................................................... 51, 113, 139 Zdanio, M. ......................................................................................................................... 37 Zeror, S. .......................................................................................................................... 147 Zhang, Z. ......................................................................................................................... 133 Zhao, Y. ............................................................................................................................ 83 Zumstein, K. ...................................................................................................................... 60 Zurbriggen, M. .................................................................................................................. 73

Page 161: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

Participant list

Page 162: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

160

Page 163: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

Participant list 161

Aalen, Reidunn Birgitta [email protected] Aceituno-Valenzuela, Uri [email protected] Adibi, Milad [email protected] Ahmad, Zaki [email protected] Alaguero, Aurora [email protected] Alcañiz-Pascual, Lourdes [email protected] Aljaiyash, Ahmed [email protected] Alonso Díaz, Alejandro [email protected] Altmann, Thomas [email protected] Amel, Benselama [email protected] Andreu-Sánchez, Sergio [email protected] Angosto, Maria Trinidad [email protected] Antón-López, Sofía [email protected] Azcona, Iñaki [email protected] Baekelandt, Alexandra [email protected] Belachew, Kiflemariam Yehuala [email protected] Bennett, Malcolm [email protected] Betsch, Léo [email protected] Blázquez, Miguel Angel [email protected] Blein, Thomas [email protected] Boulmaali, Messaouda [email protected] Boulmaali, Mohamed Nadjib [email protected] Bretones, Sandra [email protected] Bürstenbinder, Katharina [email protected] Cabezas-Fuster, Adrián [email protected] Candela, Héctor [email protected] Capel, Carmen [email protected] Caperta, Ana [email protected] Castañeda, Laura [email protected] Codesido, Verónica [email protected] Conceição, Sofia [email protected] Corneillie, Sander [email protected] Costa-González, Tamara [email protected] De Diego, Nuria [email protected] del Pozo, Juan Carlos [email protected] Dubois, Marieke [email protected] Efroni, Idan [email protected] Egea-Cortines, Marcos [email protected] Esteve-Bruna, David [email protected] Farahi-Bilooei, Sara [email protected] Feijó, José [email protected] Fernandez, Lucie [email protected] Fernández, Toñi [email protected] Fischer, Urs [email protected] Fontcuberta-Cervera, Sara [email protected] Fonseca, Rocío [email protected] Gonzaez, Nathalie [email protected] Grzegorek, Irmina [email protected] Gutiérrez-Nájera, Nerea [email protected] Hulsmans, Sander [email protected] Inzé, Dirk [email protected]

Page 164: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

Participant list 162

Iversen, Vegard [email protected] Juan-Vicente, Lucía [email protected] Justamante, María Salud [email protected] Kierzkowski, Daniel [email protected] Kumar Das, Prabir [email protected] Kunkowska, Alicja [email protected] Lemaire-Chamley, Martine [email protected] Lepiniec, Loïc [email protected] Loudet, Olivier [email protected] Lozano, Rafael [email protected] Lup, Samuel Daniel [email protected] Madani, Tayeb [email protected] Maizel, Alexis [email protected] Mateo-Bonmatí, Eduardo [email protected] Mellor, Nathan [email protected] Micol, José Luis [email protected] Micol-Ponce, Rosa [email protected] Mohammed, Binish [email protected] Mora-Navarro, Eloy [email protected] Muangsan, Nooduan [email protected] Muñoz-Díaz, Eduardo [email protected] Muñoz-Nortes, Tamara [email protected] Murray, Jim [email protected] Musseau, Constance [email protected] Nadi, Riad [email protected] Navarro-Cartagena, Sergio [email protected] Navarro-Quiles, Carla [email protected] Núñez-Delegido, Eva [email protected] Orman, Beata [email protected] Ortíz-Atienza, Ana [email protected] Parreño, Ricardo [email protected] Penalva-Pérez, Pablo [email protected] Peret, Benjamin [email protected] Perez Martin, Fernando [email protected] Pérez-Pérez, José Manuel [email protected] Ponce, María Rosa [email protected] Quesada, Víctor [email protected] Quispe, Jorge L. [email protected] Robles, Pedro [email protected] Rodríguez-Cazorla, Encarnación [email protected] Rodríguez-Alcocer, Eva [email protected] Rojo, Enrique [email protected] Rolland, Filip [email protected] Rothan, Christophe [email protected] Ruiz-Bayón, Alejandro [email protected] Ruiz-Ramírez, Jorge [email protected] Sarmiento-Mañús, Raquel [email protected] Schippers, Jos [email protected] Senent-Valero, Yaiza [email protected] Shi, Chunlin [email protected] Silva Navas, Javier [email protected]

Page 165: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

Participant list 163

Sinha, Neelima [email protected] Sizani, Bulelani [email protected] Slovak, Radka [email protected] Sosa-Domínguez, Pablo [email protected] Spichal, Lukas [email protected] Takahashi, Naoki [email protected] Takatsuka, Hirotomo [email protected] Tarancón, Carlos [email protected] Tena, Guillaume [email protected] Timmermans, Marja [email protected] Tsiantis, Miltos [email protected] Tsukaya, Hirokazu [email protected] Umeda, Masaaki [email protected] van der Knaap, Esther [email protected] van Es, Sam [email protected] Vera, Antonio [email protected] Vercruysse, Jasmien [email protected] Vert, Gregory [email protected] Vissenberg, Kris [email protected] Volschenk, Chris [email protected] Wilson-Sánchez, David [email protected] Wuyts, Nathalie [email protected] Youssef, Chvan [email protected] Yuste-Lisbona, Fernando Juan [email protected] Zeror, Saoussen [email protected] Zhang, Zhongjuan [email protected]

Page 166: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

Notes 164

Page 167: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

Notes 165

Page 168: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

Notes 166

Page 169: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

Notes 167

Page 170: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

Notes 168

Page 171: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

Notes 169

Page 172: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

Notes 170

Page 173: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

Notes 171

Page 174: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

Notes 172

Page 175: Plant Organ Growth Symposium 2017pogs2017.edu.umh.es/wp-content/uploads/sites/1152/... · Plant Organ Growth Symposium 2017 Elche (Spain) March 15-17th, 2017 @POGS2017Elche Covering

Notes 173