plan for a proposal in high-energy hadorn physics at j...

77
Plan for a proposal in high-energy hadorn physics at J-PARC March 12 (Thursday), 2015 pre-workshop meeting Discussions on J-PARC proposal on high-energy hadron physics 1 Wen-Chen Chang, Takahiro Sawada (Academia Sinica) Jen-Chieh Peng (UIUC) Shunzo Kumano, Shinya Sawada (KEK) Kazuhiro Tanaka (Juntendo)

Upload: tranphuc

Post on 16-Jun-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

Plan for a proposal in high-energy hadorn physics at J-PARC

March 12 (Thursday), 2015

pre-workshop meeting

Discussions on J-PARC proposal on high-energy hadron physics

1

Wen-Chen Chang, Takahiro Sawada (Academia Sinica)

Jen-Chieh Peng (UIUC)

Shunzo Kumano, Shinya Sawada (KEK)

Kazuhiro Tanaka (Juntendo)

Outline

• Uniqueness of hadron physics studied at HiPBL of J-PARC

• Physics Processes under consideration:• Drell-Yan process

• Hard exclusive process

• Charm production process

• Feasibility study of exclusive Drell-Yan process in E50 spectrometer

• Summary & Questions

2

J-PARC High-momentum Beam Line(Hi-P BL)

• High-intensity secondary Pion beam

• High-resolution beam: Δp/p ~ 0.1%

3

Hadron Hall

50GeV Synchrotron

Beam Dump

50GeV Tunnel

T1 Target(30/50% Loss)

Test BL

Hi-P BL

ExtensionSM1

(2% Loss)T0

0.1% Loss)

Switchyard15kW Loss Target(SM)

30 GeV proton

J-PARC High-momentum Beam Line(Hi-P BL)

• High-intensity secondary Pion beam

• High-resolution beam: Δp/p ~ 0.1%

* Sanford-Wang: 15 kW Loss on Pt, Acceptance :1.5 msr%, 133.2 m

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+07

1.0E+08

1.0E+09

0 5 10 15 20

Co

un

ts/s

ec

[GeV/c]

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+07

1.0E+08

1.0E+09

0 5 10 15 20

Co

un

ts/s

ec

[GeV/c]

Negative Hadron Beams(Prod. Angle = 0 deg.)

p-

K-

pbar

p+

K+

Positive Hadron Beams(Prod. Angle = 3.1 deg.)

4

http://www-conf.kek.jp/hadron1/j-parc-hm-2013/

5

6

http://j-parc-th.kek.jp/html/English/e-index.html

Uniqueness of hadron physics studied at HiPBL of J-PARC

• The beam energy of hadrons at J-PARC at 5-15 GeV ( 𝑠 = 𝟑 − 𝟓. 𝟓 GeV) might be most ideal for studying the hard exclusive processes and discerning the quark-hadron transition in the strong interaction.

• Valance-like partonic degrees of freedom of hadrons could be discerned, compared to the collisions at low-energy regime.

• Reasonably large cross sections, compared to those at higher energies.

7

Constituent-Counting Rule in Hard Exclusive Process Kawamura et al., PRD 88, 034010 (2013)

8

p n p ++ +0Kpp - + +

2

1( ) ( ) CMn a b c d

da b n nc d f

dt sn n n

-++ + ++

1 3 2 3 7n + + + 2 3 2 3 8n + + +

Physics Processes

• Drell-Yan process– Inclusive pion-induced Drell-Yan:

• u/d(x) at large x

• Violation of Lam-Tung relation, BM functions

• Pion PDF and DA

– Exclusive pion-induced Drell-Yan• GPD and TDA of proton

• Pion DA

• Hard exclusive production process– Exclusive pion-N Lambda(1405) production

• Valence quark structure of Lambda(1405)

• Charm production process– Inclusive pion-N J/psi production: J/psi production mechanism

– Exclusive pion-N J/psi production: Intrinsic charm?

– Exotic charmed baryons

9

Quark and Gluon Wigner Phase-Space

Distributions in Protons

10

Wigner Distribution

Transverse Momentum

Dependent PDF

Generalized Parton Distr.

PDF Form Factors

GPD

Ji, PRL91,062001(2003)

( , , )TW r x k

f( , )Tx k

f( )x

F( , , t)x

1 2( ), ( )F t F t

dr

Tdk dx0 & 0x

iq r

Te drdk

2/ 2 , z

qq E t q -

Naïve Assumption:

NMC (Gottfried Sum

Rule):

NA51 (Drell-Yan, 1994):

E866/NuSea (Drell-Yan,

1998):

Light Antiquark Flavor Asymmetry: Drell-Yan Experiments with Proton Beam

11

Tevatro

n 800

GeVMain Injector 120 GeV

𝑑(𝑥)/ 𝑢(𝑥) Measured by

FNAL E906/SeaQuest Experiment

12

Fermilab E906

𝑥𝐵𝑥𝑇 =𝑀

𝑠; smaller s, larger 𝑥𝑇

Unpolarized Drell-Yan using 120

GeV proton beam from Main

Injector

1H, 2H, and nuclear targets

( ( ) / ( )) up to 0.45Td x u x x

13Joint APS/DNP and JPS Meeting , Oct. 7, 2014, Jen-Chieh Peng

50-GeV proton beam

14Joint APS/DNP and JPS Meeting , Oct. 7, 2014, Jen-Chieh Peng

15Joint APS/DNP and JPS Meeting , Oct. 7, 2014, Jen-Chieh Peng

16Joint APS/DNP and JPS Meeting , Oct. 7, 2014, Jen-Chieh Peng

Ratios of d/u(x) at large x by pion-induced Drell-Yan processes• At large x1 and x2:

• With deuterium target and spectator tagging:

• With both 𝜋+ and 𝜋− beams:

17

1 2

1 2

1 2

( ) 4 ( ) ( )

( ) 4 ( ) ( )

( ) ( ) ( )

p

DY

p

DY

p

DY

p u x u x

n u x d x

p d x d x

p

p

p

p

p

p

-

-

+

-

-

+

1 2 2

21 2

( n) 4 ( )d ( ) ( )

( p) ( )4 ( ) u ( )

p p

DY

ppDY

u x x d x

u xu x x

p

p

p

p

-

-

-

-

1 2 2

21 2

( ) ( ) ( ) ( )

( p) 4 ( )4 ( ) u ( )

p p

DY

ppDY

p d x d x d x

u xu x x

p

p

p

p

+

-

+

-

No nuclear correction for deuteron is needed

Deuterium target

18

Drell-Yan decay angular distributions

Collins-Soper frame

and are the decay polar

and azimuthal angles of the

μ+ in the dilepton rest-frame

0O(

annilation parton model:

) =1, W W= =0; 1, 0T Ls

qq

2 2

2 2 2

(1 cos sin 2 cos sin cos 2 )2

( (1 cos ) (1 cos ) sin 2 cos sin cos 2 )T LW W W W

d

d

+ + +

+ + - + +

1Collinear pQCD

Lam-Tung relation (1978)

: O 2 1 2 =0( ), ; s LW W - -

E615 (PRD 39, 92 (1989)):

Higher Twist Effect at large 𝑥𝜋

19

xp

cos

E615 @ FNAL: Violation of LT RelationPRD 39, 92 (1989)

20

252-GeV p-+W

1 2 =0 - -

cos2 modulation at large Tp

Berger and Brodsky (PRL 42, 940, (1979)) :

Higher Twist Effect at large 𝑥𝜋

2 2

2 2 2

2

4(1 ) (1 cos ) sin

9

Tx kd x

m

p

p

- + +

2(1 cos )d +

21

Brandenburg et al. (PRL 73, 939 (1994)):

Pion Distribution Amplitude

22Pion distribution amplitude: distribution of LC momentum fractions

in the lowest-particle number valence Fock state.

A. P. Bakulev, N. G. Stefanis, and O. V. Teryaev

(Phys. Rev. D 76, 074032 (2007))

Pion Distribution Amplitude

asymptotic-like form = 6y(1-y)

Chernyak-Zhitnitsky (CZ)-like form

Nonlocal QCD sum rules

23

QCD evolution

A. P. Bakulev, N. G. Stefanis, and O. V. Teryaev

(Phys. Rev. D 76, 074032 (2007))

Sensitivity of Pion DA to ,,

*

*

TP

M

0.06 0.3 0.5

24

Dimuon pairs of Large Pt or small M

Theoretical Interpretations of Lam-Tung

Violation in pion-induced DY

25

Boer-Mulders

Function

QCD chromo-

magnetic effect

Glauber gluon

Origin of effect Hadron QCD vacuum Pion specifically

Quark-flavor

dependence

Yes No No

Hadron

dependence

Yes No Yes

Large PT limit 0 Nonzero 0

Reference PRD 60,

014012 (1999)

Z. Phy. C

60,697 (1993)

PLB 726, 262

(2013)

Measurements with different beams , , , and at wide kinematical ranges

would help differentiating the origin.

p K pp

Competing with CERN COMPASS DY Program

Pasquini and Schweitzer (PRD 90, 014050 (2014))

Boer-Mulders Functions of Pion and Proton in

Light-Front Constituent Model

26

E866 (PRL 99 (2007) 082301; PRL 102 (2009) 182001)

Consistency of LT relation for DY events in pd, pp

27

Boer-Mulders functions from

unpolarized pD and pp Drell-YanZ. Lu and I. Schmidt,

PRD 81, 034023 (2010)

V. Barone et al.,

PRD 82, 114025 (2010)

Sign of BM functions and their flavor dependence? 28

u d

u d

u d

Flavor separation of the Boer–Mulders functions

Z. Lu et al. (PLB 639 (2006) 494)

29

2 22

2

cos 2 ( ) cos 2

4 4

T A B TT

A B A B T A B

q d h h llX qW d d q

M M d dx dx d q M M

MIT Bag Model Spectator Model Large Nc limit

Deuterium target

Quark and Gluon Wigner Phase-Space

Distributions in Protons

30

Wigner Distribution

Transverse Momentum

Dependent PDF

Generalized Parton Distr.

PDF Form Factors

GPD

Ji, PRL91,062001(2003)

( , , )TW r x k

f( , )Tx k

f( )x

F( , , t)x

1 2( ), ( )F t F t

dr

Tdk dx0 & 0x

iq r

Te drdk

2/ 2 , z

qq E t q -

x+ x-

t

GPD

s

PP’

( ,0,0) ( ) ( )

( ,0,0) ( ) ( )

f f f

f f f

H x q x q x

H x q x q x

- -

- -

1

1

1

1

2

1

1

1

1

1

( , , ) ( )

( , , ) ( )

( , , ) ( )

( , , ) ( )

f

f

f

f

f A

f

f p

f

dx H x t F t

dx E x t F t

dx H x t g t

dx E x t g t

-

-

-

-

-

-

-

-

)]0,,()0,,([2

1

2

11

1

xExHxdxLJ ff

ff

f ++ -

),,( txGPD

Ji’s sum rule

Generalized Parton Distribution (GPD)

2)'( PPt -

0t

5

( , , ) ( , , )

( , , ) ( , , )

f f

f f

no spin flip H x t H x t

spin flip E x t E x t

0t

31

Spacelike vs. Timelike ProcessesMuller et al., PRD 86 031502(R) (2012)

32

Deeply Virtual Compton Scattering Timelike Compton Scattering

2 0q 2 0q

t<0, space-like GPD

Spacelike vs. Timelike ProcessesMuller et al., PRD 86 031502(R) (2012)

33

Deeply Virtual Meson Production Exclusive Meson-induced DY

2 0q 2 0q

t<0, space-like GPD

𝜋𝑁 → 𝜇+𝜇−𝑁(PLB 523 (2001) 265)

𝑡 = 𝑝 − 𝑝′ 2

𝑄′2 = 𝑞′2 > 0

2 2

2

' '

2 N

Q Q

pq s M

-

( ')

( ')

p p

p p

+

+

-

+ 34

𝜋𝑁 → 𝜇+𝜇−𝑁(PLB 523 (2001) 265)

𝑡 = 𝑝 − 𝑝′ 2

𝑄′2 = 𝑞′2 > 0

2 2

2

' '

2B

N

Q Qx

pq s M

-

( ')

( ') 2

p p

p p

+

+

-

+ - 35

Differential Cross Sections (Q2,t,)E.R. Berger, M. Diehl, B. Pire, PLB 523 (2001) 265

36

𝑡 = 𝑝 − 𝑝′ 2

𝑄′2 = 𝑞′2 > 0

2 2

2

' '

2B

N

Q Qx

pq s M

-

( ')

( ') 2

p p

p p

+

+

-

+ -

Evaluation of Cross Sections

• Input:

– GPD 𝐻(𝑥, 𝜂, 𝑡;Q2), 𝐸(𝑥, 𝜂, 𝑡;Q2)

– Pion distribution amplitude (DA) φ(𝑧;Q2)

• QCD evolutions:

– GPD: Vinnikov framework for LO evolution

– Pion DA: construction by Gegenbauerpolynomials of order 3/2.

• Matrix elements of Exclusive DY.

• Differential cross sections (Q2,t,)

37

GPD 𝐻(𝑥, 𝜂, 𝑡) Double IntegrationE.R. Berger, M. Diehl, B. Pire, EPJC 23, 675 (2002)

38 𝐻(𝑥, 𝜂 = 0, 𝑡 = 0)=polarized valance distribution

GPD 𝐸(𝑥, 𝜂, 𝑡) Pion-pole DominanceE.R. Berger, M. Diehl, B. Pire, EPJC 23, 675 (2002)

39

𝜋𝑁 → 𝜇+𝜇−𝑁E.R. Berger, M. Diehl, B. Pire, PLB 523 (2001) 265

40

𝑸′𝟐 = 𝒒′𝟐 = 𝟓 𝑮𝒆𝑽𝟐

2 2

2

' '0.2

2 N

Q Q

pq s M

-𝑡 = 𝑝 − 𝑝′ 2=-0.2 GeV2

Cross sections increase toward small s!

blue greenred

|t|

GPD 𝐻(𝑥, 𝜂, 𝑡) Double IntegrationS.V. Goloskokov, P.Kroll, EPJC 53, 367 (2008)

41

GPD 𝐻(𝑥, 𝜂, 𝑡) Double IntegrationS.V. Goloskokov, P.Kroll, EPJC 53, 367 (2008)

42

GPD 𝐸(𝑥, 𝜂, 𝑡) Pion-pole DominanceS.V. Goloskokov, P.Kroll, EPJC 53, 367 (2008)

43

Cross Sections of Exclusive DY

2 2

2

' '0.2

2 N

Q Q

pq s M

-

Exclusive DYd

σ/(

dQ

2d

t) (

pb

/GeV

4)

|t| (GeV2)

τ

Cross sections increase toward small s!

/(d

Q2d

t) (

pb

/GeV

4)

Goloskokov, Kroll

Berger, Diehl, Pire

VinnikovGoloskokov, Kroll

Berger, Diehl, Pire

Vinnikov

J-PARC

GPD dependence

44

A.V. Vinnikov, hep-ph/0604248

Pion Distribution Amplitude (Q2 = 1 GeV2)

45DSE (PRL 111, 092001 (2013))

Pire

Pion Distribution Amplitude

46

QCD evolution

2 3/2 2 (3/2)

2,4,6,...

2 2

( , ) ( )[1 ( ) ( )]

3( , ) ( ) (1 )

4

asym

j j

j

asym

z Q z a Q C z

z Q z z

p p

p p

+

-

(3/2) : Gegenbauer =3/2 polynomialsjC

p DA Asymptotic Chernyak-Zhitnitsky(CZ)

Kroll Dyson-Schwinger equation(DSE)

Q2 (GeV2) infty 1 4 4

a2 0 0.56 0.22 0.20

a4 0 0 0 0.093

a6 0 0 0 0.055

Pion Distribution Amplitude

47

Q2 = 4 GeV2Q2 = 10 GeV2

Q2 = 100 GeV2 Q2 = 10000 GeV2

Pion DA Dependence: Pire GPD

48

The differential cross sections of exclusive DY process shows good sensitivity to pion DA 𝜑𝜋(𝑧).

|t| (GeV2)

Pion DA Dependence: Kroll GPD

49

The differential cross sections of exclusive DY process shows good sensitivity to pion DA 𝜑𝜋(𝑧).

|t| (GeV2)

Pion DA Dependence

50

Kroll

Pire

Pire

Kroll

The discrimination of pion DA and GPD could be done in multi-dimensional distributions.

1.5 GeVM 15 GeVPp

Pp

Hard exclusive production process

51

Constituent-Counting Rule in Hard Exclusive ProcessKawamura et al., PRD 88, 034010 (2013)

52

p n p ++ +0Kpp - + +

2

1( ) ( ) CMn a b c d

da b n nc d f

dt sn n n

-++ + ++

1 3 2 3 7n + + + 2 3 2 3 8n + + +

Quark Degrees of (1405)Kawamura et al., PRD 88, 034010 (2013)

53

0K (1405)pp - + +

1-100 pb

J-PARC

Charm production process

54

WA98: pi(252GeV) N->J/psi +XPRL 58, 2523 (1987)

qqbar anihlation dominating and exclusive production?

56

57

58

59

60

H. Noumi

A neutron target would be useful for the search of some exotic charmed baryons like 𝑑𝑑𝑢𝑢 𝑐 in I=0 channel.

61Stage-1 approved by J-PARC PAC-18, August 12, 2014.

J-PARC E50 Spectrometer + MuID

62

p-

LH2-target

Ring ImageCherenkovCounter

Internal DC

FM magnet

ps-

K+

Fiber tracker

Beam GC

Internal TOF

Internal TOFDC

TOF wall

2m

Decay p(p+)

20 GeV/cBeam p-

Acceptance: ~ 60% for D*, ~80% for decay p+

Resolution: p/p~0.2% at ~5 GeV/c (Rigidity: ~2.1 Tm)

||<60

Scintillator Muon trigger device

+

-

10 GeV/c 20 GeV/c

Beam Intensity High

Total Cross Sectionof Exclusive DY High

High

Acceptance High

π- beam(prod. angle 0 deg)

Total Cross Section of DY

Beam Intensity High

High

Low

Low

Low

Low

Low

Low

of Inclusive DY

15 GeV/cBeam Energy

Yield Estimation

π+ beam(prod. angle 3.1 deg)

63

・ π- beam : 50 days(prod. angle 0 deg)

・ π+ beam : 150 days(prod. angle 3.1 deg)

d/u ratio

GPD

Assumptions:

• Ibeam=107 π/s, Target ; 57cm LH2 , ε(DAQ, Tracking, PID) = 0.9*0.7*0.9, 1 events/day/pb

• Beam momentum resolution: Δp/p = 0.1 %

• Detector resolution: ΔM/M = 1 %

・ Beam Time

・ J-PARC High-p Beam Line

Inclusive DY

Exclusive DY

Yield Estimation

64

Geant 4.9.3(E-50 spectrometer + Muon ID)

・ Exclusive Drell-Yancalculated with GPD by

E.R. Berger, M. Diehl, B. Pire, Eur. Phys. J. C 23, 675 (2002)

・ Inclusive Drell-Yan Pythia 6.4.26

・ BackgroundJAM 1.132

π π+

10 GeV 2.11 nb 0.323 nb

15 GeV 2.71 nb 0.493 nb

20 GeV 3.08 nb 0.616 nb

-

π π+

10 GeV 9.98 pb

15 GeV 7.53 pb

20 GeV 5.83 pb

-

π π+

10 GeV 26.9 mb 24.8 mb

15 GeV 25.8 mb 24.1 mb

20 GeV 25.1 mb 23.5 mb

-

Event GeneratorInclusive Drell-Yan (Mμμ>1.5 GeV)

Exclusive Drell-Yan (Mμμ>1.5 GeV)

Background

Total Cross Section

Particle Transportation + Detector

Yield Estimation

65

π π+

10 GeV 2.11 nb 0.323 nb

15 GeV 2.71 nb 0.493 nb

20 GeV 3.08 nb 0.616 nb

-

π π+

10 GeV 9.98 pb

15 GeV 7.53 pb

20 GeV 5.83 pb

-

π π+

10 GeV 26.9 mb 24.8 mb

15 GeV 25.8 mb 24.1 mb

20 GeV 25.1 mb 23.5 mb

-

Inclusive Drell-Yan (Mμμ>1.5 GeV)

Exclusive Drell-Yan (Mμμ>1.5 GeV)

Background

・ Exclusive Drell-Yancalculated with GPD by

E.R. Berger, M. Diehl, B. Pire, Eur. Phys. J. C 23, 675 (2002)

Geant 4.9.3(E-50 spectrometer + Muon ID)

・ Inclusive Drell-Yan Pythia 6.4.26

・ BackgroundJAM 1.132

Event Generator Total Cross Section

Particle Transportation + Detector

might be several times larger

Yield Estimation

66

𝜋−p → 𝜇+𝜇−𝑛MX In E-50 Spectrometer + MuID

67

1.5 < Mμ+μ- < 2.9 GeV/c2π- beam 50 days

10 GeV 15 GeV 20 GeV

Beam Momentum

Nev

ent

(/0

.01

GeV

/c2)

Missing Mass MX (GeV/c2)

Nev

ent

(/0

.01

GeV

/c2)

Nev

ent

(/0

.01

GeV

/c2)

Missing Mass MX (GeV/c2) Missing Mass MX (GeV/c2)

Exclusive DY

Inclusive DY

Exclusive DY

Inclusive DY

BG BG BG

Exclusive DY

Inclusive DY

• The signal of exclusive Drell-Yan processes can be clearly identified in the missing mass spectrum of dimuon pairs.

• Because of the low event rate, this study could be accommodated into the E50 experiment.

S. Sawada (KEK)S. Kumano (KEK)J.C. Peng (UIUC)T. Sawada (AS)W.C. Chang (AS)

GPD(xB,Q2) in both space-like and time-like regime

68

J-PARC’s results in the time-like and large-Q2 region will be complementary to what to be obtained in space-like processes from the deeply virtual Compton scattering (DVCS) deeply virtual meson scattering (DVMS) process to be measured in JLab.

Large-Q2 region

10 GeV 15 GeV 20 GeV

π+ beam 150 days π- beam 50 days

Beam Momentum

(p+/p-) p → μ+ μ- Xd/u measurement with E-50 Spectrometer + MuID

𝑥2

𝑑/𝑢

𝑑/𝑢

𝑑/𝑢

𝑥2 𝑥2

Red lines : CTEQ6.6M

Inclusive DY

Statistics strongly depends on the prod. angle for

secondary beam 69

1.5 < Mμ+μ- < 2.9 GeV/c2

Experimental Difficulties of Detecting 𝜋−𝑝 → 𝐾0Λ(1405)• Multi-particle Acceptance:

• Background?

70

0

0

K (1405)

K

(1405)

pp

p p

p

-

+ -

+ +

+

+

Pion-Induced Exclusive Drell-Yan Process

2small ( )t q q -2large ( )t q q -

: pion distritribution amplitude (DA)p TDA : -N transistion distritribution amplitudep

•DA characterizes the minimal valence Fock state of hadrons.•DA of pion are also explored by pion-photon transition form factor in Belle and Barbar Exps.

•TDA characterizes the next-to-minimal valence Fock state of hadrons.•TDA of pion-nucleon is related to the pion cloud of nucleons.

Bernard Pire , IWHS2011

71

B. Pire, L. Szymanowski, Phys. Lett. B622 (2005) 83

Small cross sections

Exclusive Vector Boson Production

• 𝜋−p → γ∗𝑛

• 𝜋−p → γ∗∆0

• 𝜋−n → γ∗∆−

• 𝜋+n → γ∗p

• 𝜋+p → γ∗∆++

• 𝜋+n → γ∗∆+

• 𝜋−p → 𝐽/𝜓𝑛

• 𝜋−p → 𝐽/𝜓∆0

• 𝜋−n → 𝐽/𝜓∆−

• 𝜋+n → 𝐽/𝜓p

• 𝜋+p → 𝐽/𝜓∆++

• 𝜋+n → 𝐽/𝜓∆+

72

New Physics Search in Drell-Yan like Processes

73

, , , ,...H W Z A

Dark Photon A’

74

p-

LH2-target

Ring ImageCherenkovCounter

Internal DC

FM magnet

ps-

K+

Fiber tracker

Beam GC

Internal TOF

Internal TOFDC

TOF wall

2m

Decay p(p+)

20 GeV/cBeam p-

Acceptance: ~ 60% for D*, ~80% for decay p+

Resolution: p/p~0.2% at ~5 GeV/c (Rigidity: ~2.1 Tm)

||<60

Scintillator Muon trigger device

+

-

'A

Summary (I)

• High-energy hadron beam at J-PARC is ideal for studying hard exclusive processes.

• The study of 𝜋-induced DY/charm production and hard exclusive processes will offer important understanding on

• Nucleon structure: valence quarks PDF; TMD (BM), GPD (TDA)

• 𝜋 structure: DA and PDF

• Structure of exotic hadrons

• 𝑱/𝝍 production mechanism, exotic charmed baryons

75

Summary (II)

• Spectrometer with large acceptance and good mass resolution is required for the measurement and such measurement in E-50 conceptual detectors seems promising.

• Availability of deuterium target together with the detection of recoiled protons will enable the measurement of flavor separation of BM functions , valance-quark distributions at large-x and search for some exotic charmed baryons.

• More collaborators are critically necessary!

76

Questions

• Will the factorization of exclusive DY process based on a crossing symmetry of DVMP process be a major concern?

• What is the relationship between the inclusive DY process at xF 1 limit and the exclusive one? If these two processes are different, how to differentiate them experimentally, e.g. the missing mass or angular distribution of dimuon pairs?

• What is the relationship between the inclusive J/psi production process at xF 1 limit and the exclusive one?

77