phytoplankton community structure in the river-influenced

12
1 The following supplement accompanies the article Phytoplankton community structure in the river-influenced continental margin of the northern Gulf of Mexico Sumit Chakraborty, Steven E. Lohrenz* *Corresponding author: [email protected] Marine Ecology Progress Series 521: 31-47 (2015) Supplement. This supplement includes dendrograms from the cluster analysis of water mass hydrographic properties (Fig. S1) and mean seasonal profiles of temperature, salinity, sigma-t and chlorophyll fluorescence (Fig. S2). Additional information includes CHEMTAX output of chl a to pigment ratios for different phytoplankton groups and water mass types (Table S1), pigment to total accessory pigment ratios for different seasons and water mass regimes (Table S2), CHEMTAX-derived contributions to chl a by taxonomic groups of phytoplankton (Table S3), and eigenvectors for the PCA analysis for the different water mass types (Table S4).

Upload: others

Post on 19-Oct-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

1

The following supplement accompanies the article

Phytoplankton community structure in the river-influenced continental margin of the northern Gulf of Mexico

Sumit Chakraborty, Steven E. Lohrenz*

*Corresponding author: [email protected]

Marine Ecology Progress Series 521: 31-47 (2015)

Supplement. This supplement includes dendrograms from the cluster analysis of water mass hydrographic properties (Fig. S1) and mean seasonal profiles of temperature, salinity, sigma-t and chlorophyll fluorescence (Fig. S2). Additional information includes CHEMTAX output of chl a to pigment ratios for different phytoplankton groups and water mass types (Table S1), pigment to total accessory pigment ratios for different seasons and water mass regimes (Table S2), CHEMTAX-derived contributions to chl a by taxonomic groups of phytoplankton (Table S3), and eigenvectors for the PCA analysis for the different water mass types (Table S4).

2

Fig. S1. Cluster analysis (dendrograms) for the different hydrographic regimes (water mass types). Distance is a relative measure of separation (standardized unit variance)

3

Fig. S2. Seasonal variations in temperature, salinity, sigma-t and chlorophyll fluorescence for the inner shelf regime. The lines represent the means and the gray shaded areas represent the standard errors

Fluorescence (mg m-3)

4

Fig. S2 (continued). Seasonal variations in temperature, salinity, sigma-t and chlorophyll fluorescence for midshelf regime. The lines represent the means and the gray shaded areas represent the standard errors

5

Fig. S2 (continued). Seasonal variations in temperature, salinity, sigma-t and chlorophyll fluorescence for slope (offshore) regime. The lines represent the means and the gray shaded areas represent the standard errors

6

Table S1. Output from CHEMTAX of pigment to chl a ratios for the different phytoplankton groups and water mass types Chlc3 Chlc2 Peri 19But Fuco Neo Pras Viola 19Hex Ddx Allo Zea Lut chlb

Dinoflagellates Estuarine-Inner shelf-Midshelf - 0.172 0.889 - - - - - - 0.167 - - - - Slope - 0.212 0.916 - - - - - - 0.079 - - - -Deep - 0.092 0.67 - - - - - - 0.039 - - - - Diatoms Estuarine-Inner shelf-Midshelf - 0.1522 - - 0.5356 - - - - 0.102 - - - -Slope - 0.103 - - 0.413 - - - - 0.0665 - - - -Deep - 0.301 - - 0.801 - - - - 0.1715 - - - -Chlorophytes Estuarine-Inner shelf-Midshelf - - - - - 0.054 - 0.028 - - - 0.0586 0.1859 0.1783Cryptophytes Estuarine-Inner shelf-Midshelf - 0.0385 - - - - - - - - 0.273 - - -Slope - 0.1105 - - - - - - - - 0.1912 - - -Deep - 0.1105 - - - - - - - - 0.1915 - - -Prasinophyte-I Estuarine-Inner shelf-Midshelf - - - - - 0.055 0.285 0.034 - - - 0.0329 0.0059 0.6738Slope - - - - - 0.0417 0.1308 0.083 - - - 0.04 - 0.8057Deep - - - - - 0.055 0.1869 0.052 - - - 0.02 - 1.014PrasinophyteII Estuarine-Inner shelf - - - - - 0.037 - 0.071 - - - 0.0262 0.079 0.7664Haptophyte-6 Estuarine-Inner shelf-Midshelf 0.1755 0.1876 - 0.007 0.0193 - - - 0.78 0.018 - - - -Slope 0.1854 0.1826 - 0.0068 0.117 - - - 0.806 0.109 - - - -Deep 0.2704 0.244 - 0.007 0.283 - - - 1.126 0.099 - - - -Haptophyte-8 Estuarine-Inner shelf-Midshelf 0.2702 0.121 0.204 0.1087 - - - 0.261 0.073 - - - -Slope 0.193 0.988 0.189 0.885 - - - 0.383 0.094 - - - -Deep 0.204 0.114 0.1776 0.098 - - - - 0.086 - - - -Pelagophyte Midshelf -Slope 0.195 0.0934 - 0.8651 0.6743 - - - - 0.279 - - - -Deep 0.66 0.2837 - 1.049 0.1 - - - - 0.093 - - - -

7

Table S1 (continued)

Chlc3 Chlc2 Peri 19But Fuco Neo Pras Viola 19Hex Ddx Allo Zea DVChlb Chlb DVChla Cyanobacteria Estuarine-Inner shelf-Midshelf - - - - - - - - - - - 0.5053 - - - Slope - - - - - - - - - - - 0.6074 - - - Deep - - - - - - - - - - - 0.454 - - - Prochlorophyte Slope - - - - - - - - - - - 0.4793 0.5597 - 1 Deep - - - - - - - - - - - 0.242 1.02 - 1

Choice of initial ratios

The taxonomic groups considered for the analysis were based on prior knowledge of phytoplankton in the region (Dortch & Whitledge 1992, Redalje et al. 1994, Bode & Dortch 1996, Lohrenz et al. 1999, Chen et al. 2000, Jochem 2003, Qian et al. 2003, Wawrik et al. 2003, Dagg et al. 2004, Wawrik & Paul 2004, Wysocki et al. 2006) and limited microscopic analyses during the cruises. Initial ratios selected for the relevant taxonomic groups were from values provided in previous studies (Gieskes & Kraay 1986, Jeffrey et al. 1997, Mackey et al. 1998, Schlüter et al. 2000, Schlüter & Møhlenberg 2003, Latasa et al. 2004, Veldhuis & Kraay 2004, Zapata et al. 2004, Rodríguez et al. 2005, Laza-Martinez et al. 2007, Seoane et al. 2009). Pigment ratios were also determined for selected phytoplankton taxa (Thalassiosira spp., Skeletonema spp., Nitzschia spp., Phaeodactylum spp., Dunaliella sp., and Isochrysis spp.) maintained in batch culture (FCRG medium, described in Eppley et al. 1967, 20oC, 12:12 light:dark cycle).

8

Table S2. Pigment:TAccp ratios for different seasons and water mass regimes, mean ± standard deviations. Bold numbers represent significant differences between slope (surface) and slope-CFM (Mann-Whitney U test)

chlc3:TAccp

chlc2c1:TAccp

peri:TAccp

19'-but:TAccp

fuco:TAccp

pras:TAccp

19'-hex:TAccp

ddx:TAccp

allo:TAccp

diato:TAccp

zea:TAccp DVchlb:TAccp

chlb:TAccp

DVchla:TAccp

caro:TAccp

Winter

Inner shelf 0.019 ± 0.020

0.137 ± 0.055

0.029 ± 0.093

0.002 ± 0.005

0.523 ± 0.151

0.000 ± 0.001

0.017 ± 0.020

0.074 ± 0.027

0.028 ± 0.031

0.012 ± 0.013

0.030 ± 0.036

nd 0.067 ± 0.068

nd 0.044 ± 0.023

Midshelf 0.069 ± 0.021

0.127 ± 0.032

0.006 ± 0.011

0.018 ± 0.017

0.362 ± 0.097

0.005 ± 0.016

0.073 ± 0.043

0.053 ± 0.011

0.013 ± 0.008

0.016 ± 0.027

0.054 ± 0.039

nd 0.155 ± 0.064

0.005 ± 0.016

0.035 ± 0.008

slope

surface 0.093 ± 0.018

0.102 ± 0.024

0.001 ± 0.003

0.070 ± 0.029

0.125 ± 0.100

nd 0.166 ± 0.052

0.035 ± 0.012

0.014 ± 0.010

0.011 ± 0.023

0.133 ± 0.079

0.018 ± 0.019

0.174 ± 0.046

0.136 ± 0.124

0.045 ± 0.030

CFM 0.122 ± 0.025

0.115 ± 0.025

0.002 ± 0.004

0.091 ± 0.036

0.197 ± 0.126

0.001 ± 0.004

0.169 ± 0.066

0.035 ± 0.009

0.016 ± 0.009

0.005 ± 0.008

0.078 ± 0.037

nd 0.157 ± 0.048

0.065 ± 0.064

0.040 ± 0.011

p-value 0.02

Deep (≥100 m)

0.128 ± 0.020

0.082 ± 0.020

0.001 ± 0.002

0.137 ± 0.026

0.121 ± 0.040

0.001 ± 0.006

0.196 ± 0.033

0.014 ± 0.013

0.004 ± 0.007

0.000 ± 0.000

0.036 ± 0.031

0.147 ± 0.162

0.118 ± 0.082

0.060 ± 0.026

0.013 ± 0.018

Spring 2009

Inner shelf 0.021 ± 0.014

0.158 ± 0.074

0.024 ± 0.060

0.000 ± 0.000

0.498 ± 0.079

0.002 ± 0.003

0.006 ± 0.010

0.092 ± 0.031

0.029 ± 0.025

0.011 ± 0.006

0.025 ± 0.023

nd 0.078 ± 0.052

0.000 ± 0.000

0.046 ± 0.018

Midshelf 0.039 ± 0.049

0.188 ± 0.294

0.011 ± 0.024

0.004 ± 0.004

0.451 ± 0.687

0.002 ± 0.005

0.032 ± 0.018

0.090 ± 0.116

0.018 ± 0.035

0.012 ± 0.016

0.056 ± 0.025

nd 0.066 ± 0.120

0.007 ± 0.011

0.038 ± 0.049

slope

surface 0.042 ± 0.040

0.064 ± 0.029

0.008 ± 0.011

0.057 ± 0.029

0.089 ± 0.056

nd 0.150 ± 0.029

0.056 ± 0.025

0.000 ± 0.002

0.006 ± 0.011

0.407 ± 0.136

0.007 ± 0.012

0.060 ± 0.082

0.248 ± 0.093

0.051 ± 0.035

CFM 0.104 ± 0.037

0.041 ± 0.024

0.007 ± 0.019

0.092 ± 0.043

0.070 ± 0.047

0.006 ± 0.008

0.182 ± 0.035

0.009 ± 0.005

0.003 ± 0.002

0.000 ± 0.000

0.033 ± 0.011

0.065 ± 0.057

0.081 ± 0.053

0.097 ± 0.033

0.002 ± 0.003

p-value 0.002 0.003 0.009

Deep (≥100 m)

0.022 ± 0.021

0.017 ± 0.019

0.000 ± 0.000

0.024 ± 0.024

0.027 ± 0.032

0.009 ± 0.005

0.026 ± 0.030

0.004 ± 0.004

0.001 ± 0.002

0.000 ± 0.000

0.009 ± 0.017

0.024 ± 0.032

0.020 ± 0.035

0.024 ± 0.016

0.005 ± 0.007

Summer

Inner shelf 0.024 ± 0.019

0.089 ± 0.046

0.045 ± 0.098

0.004 ± 0.008

0.288 ± 0.138

nd 0.042 ± 0.053

0.070 ± 0.034

0.021 ± 0.022

0.011 ± 0.009

0.226 ± 0.128

nd 0.087 ± 0.038

0.009 ± 0.040

0.080 ± 0.034

Midshelf 0.044 ± 0.023

0.090 ± 0.032

0.026 ± 0.019

0.011 ± 0.011

0.163 ± 0.124

nd 0.128 ± 0.046

0.076 ± 0.022

0.002 ± 0.004

0.009 ± 0.007

0.315 ± 0.152

0.002 ± 0.005

0.069 ± 0.038

0.063 ± 0.112

0.062 ± 0.021

slope

surface 0.039 ± 0.025

0.088 ± 0.046

0.017 ± 0.017

0.003 ± 0.004

0.149 ± 0.152

nd 0.143 ± 0.067

0.060 ± 0.025

0.002 ± 0.006

0.008 ± 0.008

0.328 ± 0.183

0.002 ± 0.006

0.061 ± 0.040

0.149 ± 0.156

0.067 ± 0.038

CFM 0.131 ± 0.053

0.092 ± 0.023

0.002 ± 0.007

0.082 ± 0.031

0.138 ± 0.119

0.016 ± 0.008

0.153 ± 0.048

0.022 ± 0.007

0.004 ± 0.005

0.001 ± 0.004

0.051 ± 0.026

0.161 ± 0.121

0.149 ± 0.142

0.208 ± 0.187

0.010 ± 0.011

p-value 0.001 0.002 0.001 0.007 0.003

Deep (≥100 m)

0.089 ± 0.028

0.066 ± 0.016

0.000 ± 0.000

0.097 ± 0.023

0.117 ± 0.084

0.011 ± 0.003

0.139 ± 0.022

0.016 ± 0.009

0.000 ± 0.000

0.000 ± 0.000

0.042 ± 0.025

0.279 ± 0.227

0.154 ± 0.192

0.175 ± 0.111

0.001 ± 0.002

9

Table S2 (continued)

chlc3:TAccp

chlc2c1:TAccp

peri:TAccp

19'-but:TAccp

fuco:TAccp

pras:TAccp

19'-hex:TAccp

ddx:TAccp

allo:TAccp

diato:TAccp

zea:TAccp DVchlb:TAccp

chlb:TAccp

DVchla:TAccp

caro:TAccp

Fall

Inner shelf 0.019 ± 0.018

0.118 ± 0.055

0.033 ± 0.035

0.002 ± 0.004

0.397 ± 0.104

0.004 ± 0.008

0.015 ± 0.020

0.063 ± 0.021

0.059 ± 0.031

0.011 ± 0.013

0.068 ± 0.050

nd 0.137 ± 0.057

nd 0.056 ± 0.026

Midshelf 0.062 ± 0.055

0.125 ± 0.105

0.021 ± 0.035

0.022 ± 0.020

0.251 ± 0.185

0.003 ± 0.009

0.077 ± 0.056

0.056 ± 0.044

0.023 ± 0.025

0.031 ± 0.096

0.140 ± 0.160

0.013 ± 0.024

0.115 ± 0.057

0.118 ± 0.198

0.042 ± 0.017

slope(surface) surface 0.057 ±

0.021 0.072 ± 0.029

0.006 ± 0.007

0.005 ± 0.001

0.098 ± 0.074

0.003 ± 0.009

0.152 ± 0.026

0.032 ± 0.014

0.005 ± 0.010

0.001 ± 0.003

0.350 ± 0.170

0.039 ± 0.031

0.097 ± 0.093

0.362 ± 0.235

0.029 ± 0.018

CFM 0.084 ± 0.014

0.014 ± 0.000

0.000 ± 0.000

0.025 ± 0.000

0.014 ± 0.000

0.009 ± 0.004

0.158 ± 0.043

0.005 ± 0.000

0.003 ± 0.000

0.000 ± 0.000

0.087 ± 0.052

0.319 ± 0.112

0.106 ± 0.052

0.315 ± 0.113

0.001 ± 0.000

p-value 0.002 0.001 0.001 0.001

Deep (≥100 m)

0.087 ± 0.021

0.036 ± 0.023

0.000 ± 0.000

0.088 ± 0.027

0.053 ± 0.039

0.004 ± 0.002

0.133 ± 0.015

0.017 ± 0.016

0.002 ± 0.005

0.001 ± 0.002

0.098 ± 0.173

0.451 ± 0.237

0.027 ± 0.023

0.213 ± 0.051

0.008 ± 0.018

Spring 2010

Inner shelf 0.020 ± 0.039

0.140 ± 0.060

0.139 ± 0.125

0.002 ± 0.005

0.380 ± 0.152

0.001 ± 0.003

0.004 ± 0.009

0.152 ± 0.066

0.035 ± 0.019

0.009 ± 0.009

0.004 ± 0.005

nd 0.059 ± 0.036

nd 0.042 ± 0.014

Midshelf 0.025 ± 0.028

0.141 ± 0.024

0.082 ± 0.076

0.008 ± 0.011

0.420 ± 0.127

0.001 ± 0.002

0.021 ± 0.031

0.135 ± 0.041

0.031 ± 0.019

0.016 ± 0.007

0.005 ± 0.004

nd 0.070 ± 0.046

nd 0.035 ± 0.004

slope(surface) surface 0.090 ±

0.039 0.132 ± 0.027

0.000 ± 0.000

0.038 ± 0.023

0.278 ± 0.152

0.012 ± 0.017

0.140 ± 0.080

0.060 ± 0.026

0.021 ± 0.012

0.011 ± 0.010

0.034 ± 0.032

nd 0.142 ± 0.115

nd 0.028 ± 0.011

CFM 0.134 ± 0.067

0.124 ± 0.025

0.022 ± 0.058

0.068 ± 0.030

0.292 ± 0.130

0.015 ± 0.015

0.137 ± 0.061

0.038 ± 0.010

0.021 ± 0.018

0.001 ± 0.003

0.019 ± 0.024

nd 0.198 ± 0.071

0.001 ± 0.001

0.021 ± 0.013

p-value 0.03 0.01 0.01

Deep (≥100 m)

0.045 ± 0.052

0.155 ± 0.110

0.000 ± 0.000

0.033 ± 0.043

0.436 ± 0.262

nd 0.054 ± 0.076

0.017 ± 0.022

0.118 ± 0.121

0.000 ± 0.000

0.007 ± 0.008

nd 0.115 ± 0.184

0.001 ± 0.002

0.013 ± 0.015

nd = not detected

10

Table S3. Average percent (mean ± SD) contributions to chl a by taxonomic groups of phytoplankton as derived from CHEMTAX Dinoflagellates Diatoms Chlorophytes Cryptophytes Prasinophytes-I Prasinophytes-II Haptophytes-6 Haptophytes-8 Pelagophytes Cyanobacteria Prochlorophytes

Winter

Estuarine_Inner shelf 2.473 ± 7.551 65.616 ± 20.515 6.065 ± 9.357 15.317 ± 9.089 1.099 ± 2.720 3.279 ± 4.581 0.323 ± 0.557 2.754 ± 2.603 - 3.073 ± 4.142 -

Midshelf 0.352 ± 0.423 47.255 ± 13.794 3.447 ± 2.128 6.711 ± 4.027 14.933 ± 7.185 - 2.811 ± 2.873 16.445 ± 6.628 0.617 ± 2.047 7.127 ± 5.166 0.301 ± 0.942

Slope 3.309 ± 1.604 11.938 ± 10.121 1.75 ± 0.08 0.00 ± 0.00 3.12 ± 1.104 - 12.852 ± 7.778 19.815 ± 2.904 4.742 3.494 25.44 ± 9.824 17.034 ± 9.907

CFM 1.87 ± 0.972 7.022 ± 6.125 1.12 ± 1.672 3.065 ± 0.696 4.3 ± 3.986 - 9.006 ± 12.516 27.944 ± 24.845 16.307 ± 7.431 10.594 ± 7.625 18.772 ± 21.47

Deep 2.435 ± 5.361 9.774 ± 6.771 0.00 ± 0.00 0.512 ± 0.022 1.11 ± 0.06 - 14.118 ± 12.493 18.007 ± 21.116 15.12 ± 9.146 5.613 ± 8.95 33.311 ± 16.315

Spring 2009

Estuarine_Inner shelf 1.998 ± 4.743 58.530 ± 13.678 6.248 ± 8.794 20.569 ± 7.351 1.148 ± 0.799 4.587 ± 4.997 0.274 ± 0.698 3.633 ± 2.276 - 3.013 ± 3.009 -

Midshelf 2.135 ± 6.567 33.433 ± 28.920 2.360 ± 4.170 4.082 ± 4.208 4.564 ± 4.415 - 8.793 ± 6.732 6.901 ± 12.391 3.181 ± 2.415 28.151 ± 21.736 6.398 ± 8.162

Slope 0.561 ± 1.011 5.784 ± 8.689 1.01 ± 0.2 1.51 ± 0.876 0.464 ± 0.512 - 17.561 ± 6.005 1.898 ± 1.690 2.625 ± 5.609 50.846 ± 14.182 17.74 ± 5.026

CFM 4.21 ± 8.23 4.39 ± 6.752 4.78 ± 2.818 5.018 ± 2.941 2.36 ± 3.573 - 19.713 ± 7.367 6.52 ± 7.14 8.869 ± 5.061 15.744 ± 17.355 28.396 ± 16.475

Deep 1.035 ± 3.449 6.96 ± 8.745 0.00 ± 0.00 0.06 ± 0.12 1.5 ± 1.12 - 11.326 ± 9.83 7.464 ± 9 19.712 ± 9.781 3.335 ± 5.22 48.068 ± 16.219

Summer

Estuarine_Inner shelf 5.046 ± 11.525 38.904 ± 12.977 4.346 ± 7.724 11.851 ± 11.133 0.568 ± 0588 5.368 ± 3.527 2.149 ± 3.050 2.883 ± 3.080 - 28.885 ± 20.786 -

Midshelf 1.822 ± 1.894 13.100 ± 16.271 1.696 ± 2.762 2.420 ± 2.929 8.216 ± 6.069 - 14.936 ± 4.968 3.315 ± 4.769 3.114 ± 4.337 44.893 ± 16.570 6.489 ± 7.129

Slope 1.337 ± 1.61 26.098 ± 30.779 0.00 ± 0.00 2.06 ± 2.54 1.43 ± 0.745 - 14.408 ± 8.755 1.0671 ± 1.952 1.677 ± 1.428 41.178 ± 19.764 10.744 ± 10.036

CFM 0.241± 0.682 10.468 ± 16.944 1.78 ± 0.392 1.849 ± 2.447 3.005 ± 2.932 - 15.261 ± 4.465 9.757 ± 15.26 9.181 ± 3.611 5.284 ± 2.141 43.174 ± 25.627

Deep 0.654 ± 0.924 8.059 ± 10.479 0.00 ± 0.00 2.001 ± 2.458 0.00 ± 0.00 - 11.712 ± 5.347 10.036 ± 13.153 13.224 ± 4.158 3.66 ± 5.985 50.654 ± 23.792

Fall

Estuarine_Inner shelf 2.967 ± 3.855 46.138 ± 13.530 4.825 ± 9.255 24.747 ± 10.540 1.402 ± 2.129 9.330 ± 7.019 0.402 ± 1.113 3.289 ± 2.965 - 6.899 ± 6.461 -

Midshelf 0.936 ± 0.555 19.230 ± 17.400 1.491 ± 2.089 6.099 ± 5.621 9.525 ± 6.182 - 8.434 ± 6.523 13.335 ± 13.281 2.739 ± 4.577 22.018 ± 18.773 16.193 ± 18.929

Slope 0.69 ± 0.14 2.254 ± 4.858 0.00 ± 0.00 0.00 ± 0.00 0.373 ± 1.001 - 16.58 ± 2.716 2.267 ± 1.657 2.542 ± 1.027 43.09 ± 15.126 32.196 ± 15.612

CFM 1.248 ± 0.452 2.526 ± 5.074 1.324 ± 1.563 1.298 ± 0.618 3.06 ± 3.863 - 12.325 ± 4.465 3.136 ± 7.818 9.957 ± 3.447 3.471 ± 1.69 58.423 ± 17.641

Deep 0.603 ± 0.254 1.775 ± 2.823 0.00 ± 0.00 0.00 ± 0.00 0.5 ± 0.653 - 12.908 ± 3.132 0.776 ± 1.92 10.775 ± 4.753 11.012 ± 21.103 61.651 ± 17.718

Spring 2010

Estuarine_Inner shelf 10.503 ± 9.121 49.609 ± 14.071 7.886 ± 5.023 25.317 ± 9.246 1.313 ± 0.830 1.631 ± 2.274 0.001 ± 0.007 3.017 ± 3.507 - 0.724 ± 0.497 -

Midshelf 4.677 ± 5.735 63.74 ± 11.509 3.934 ± 2.124 9.997 ± 4.433 7.644 ± 5.105 - 2.053 ± 2.188 5.867 ± 4.473 0.900 ± 0.964 1.189 ± 1.352 0.00 ± 0.00

Slope 5.925 ± 2.006 28.48 ± 19.601 4.943 ± 3.217 6.943 ± 1.325 4.107 ± 2.76 - 13.86 ± 8.175 24.78 ± 10.817 3.943 ± 2.733 6.096 ± 6.734 0.00 ± 0.00

CFM 4.479 ± 5.806 30.836 ± 27.341 4.469 ± 3.937 4.644 ± 6.739 5.75 ± 4.749 - 9.906 ± 6.377 19.021 ± 13.23 15.508 ± 3.063 5.387 ± 3.177 0.00 ± 0.00

Deep 2.109 ± 3.818 22.521 ± 33.588 0.00 ± 0.00 2.28 ± 1.653 0.00 ± 0.00 - 13.12 ± 14.281 21.032 ± 21.533 11.653 ± 16.79 11.197 ± 6.605 16.088 ± 6.144

11

Table S4. Eigenvectors (i.e. vectors of variable loadings) for the first two principal components for each water mass type.

Estuarine & Inner shelf Midshelf Slope

PC1 PC2 PC1 PC2 PC1 PC2 Cholorophyll a 0.1373 0.0372 0.3984 0.0239 0.3426 -0.1131 Diatom 0.0427 -0.2612 0.2789 -0.1377 0.4000 0.0887 Cryptophyte 0.2719 -0.1737 0.3078 -0.0681 0.0267 0.0135 Haptophyte -0.2331 -0.0142 -0.2523 -0.1752 -0.2026 -0.2525 Cyanobacteria -0.1519 0.3806 -0.2756 0.2617 -0.3257 0.2674 Prochlorophyte - - -0.1808 -0.0521 -0.3556 -0.0439 Salinity (S) -0.3717 -0.0536 -0.3116 -0.3208 -0.2504 -0.3306 Temperature (T) -0.1930 0.4019 -0.2826 0.2711 -0.1437 0.3788 NO3+NO2 0.3687 0.1544 0.2848 0.0980 0.3107 -0.0066 SiO3 0.4105 0.1589 0.3414 0.0491 -0.0492 0.1091 PO4 0.3108 0.1499 -0.1156 -0.1313 -0.1168 0.0424 NH4 0.2934 0.1723 0.0744 0.3147 0.2190 0.2746 Zm -0.0723 -0.2562 -0.0335 -0.3250 -0.2031 -0.3704 W-u 0.0832 -0.0668 -0.0573 0.3885 0.3362 -0.2105 W-v -0.1170 0.3485 0.2406 0.1981 0.0647 0.3815 Nf 0.3175 0.1035 0.1224 0.3594 -0.2024 0.3446 C-u -0.1073 0.4601 -0.1578 0.3869 -0.0755 0.1970 C-v 0.1225 -0.3204 0.0285 -0.1552 0.0092 -0.1252

LITERATURE CITED

Bode A, Dortch Q (1996) Uptake and regeneration of inorganic nitrogen in coastal waters influenced by the Mississippi River: Spatial and seasonal variations. Journal of Plankton Research 18:2251-2268

Chen X, Lohrenz SE, Wiesenburg DA (2000) Distribution and controlling mechanisms of primary production on the Louisiana-Texas continental shelf. Journal of Marine Systems 25:179-207

Dagg M, Benner R, Lohrenz S, Lawrence D (2004) Transformation of dissolved and particulate materials on continental shelves influenced by large rivers: Plume processes. Continental Shelf Research 24:833-858

Dortch Q, Whitledge TE (1992) Does nitrogen or silicon limit phytoplankton production in the Mississippi River plume and nearby regions? Continental Shelf Research 12:1293-1309

Eppley RW, Holmes RW, Strickland JDH (1967) Sinking rates of marine phytoplankton measured with a fluorometer. Journal of Experimental Marine Biology and Ecology 1:191-208

Gieskes WW, Kraay GW (1986) Floristic and physiological differences between the shallow and the deep nanophytoplankton community in the euphotic zone of the open tropical Atlantic revealed by HPLC analysis of pigments. Marine Biology 91:567-576

Jeffrey SW, Mantoura RFC, Wright SW, International Council of Scientific Unions. Scientific Committee on Oceanic R, UNESCO (1997) Phytoplankton pigments in oceanography : Guidelines to modern methods, Vol. UNESCO Pub., Paris

12

Jochem FJ (2003) Photo- and heterotrophic pico- and nanoplankton in the Mississippi River plume: Distribution and grazing activity. Journal of Plankton Research 25:1201-1214

Latasa M, Scharek R, Gall FL, Guillou L (2004) Pigment suites and taxonomic groups in prasinophyceae. Journal of Phycology 40:1149-1155

Laza-Martinez A, Seoane S, Zapata M, Orive E (2007) Phytoplankton pigment patterns in a temperate estuary: From unialgal cultures to natural assemblages. Journal of Plankton Research 29:913-929

Lohrenz SE, Fahnenstiel GL, Redalje DG, Lang GA, Dagg MJ, Whitledge TE, Dortch Q (1999) Nutrients, irradiance, and mixing as factors regulating primary production in coastal waters impacted by the Mississippi River plume. Continental Shelf Research 19:1113-1141

Mackey DJ, Higgins HW, Mackey MD, Holdsworth D (1998) Algal class abundances in the western equatorial pacific: Estimation from hplc measurements of chloroplast pigments using chemtax. Deep-Sea Research Part I: Oceanographic Research Papers 45:1441-1468

Qian Y, Jochens AE, Kennicutt Ii MC, Biggs DC (2003) Spatial and temporal variability of phytoplankton biomass and community structure over the continental margin of the northeast Gulf of Mexico based on pigment analysis. Continental Shelf Research 23:1-17

Redalje DG, Lohrenz SE, Fahnenstiel GL (1994) The relationship between primary production and the vertical export of particulate organic matter in a river-impacted coastal ecosystem. Estuaries 17:829-838

Rodríguez F, Chauton M, Johnsen G, Andresen K, Olsen LM, Zapata M (2005) Photoacclimation in phytoplankton: Implications for biomass estimates, pigment functionality and chemotaxonomy. Marine Biology 148:963-971

Schlüter L, Møhlenberg F (2003) Detecting presence of phytoplankton groups with non-specific pigment signatures. Journal of Applied Phycology 15:465-476

Schlüter L, Møhlenberg F, Havskum H, Larsen S (2000) The use of phytoplankton pigments for identifying and quantifying phytoplankton groups in coastal areas: Testing the influence of light and nutrients on pigment/chlorophyll a ratios. Marine Ecology Progress Series 192:49-63

Seoane S, Zapata M, Orive E (2009) Growth rates and pigment patterns of haptophytes isolated from estuarine waters. Journal of Sea Research 62:286-294

Veldhuis MJW, Kraay GW (2004) Phytoplankton in the subtropical Atlantic ocean: Towards a better assessment of biomass and composition. Deep-Sea Research Part I: Oceanographic Research Papers 51:507-530

Wawrik B, Paul JH (2004) Phytoplankton community structure and productivity along the axis of the Mississippi River plume in oligotrophic Gulf of Mexico waters. Aquatic Microbial Ecology 35:185-196

Wawrik B, Paul JH, Campbell L, Griffin D, Houchin L, Fuentes-Ortega A, Muller-Karger F (2003) Vertical structure of the phytoplankton community associated with a coastal plume in the Gulf of Mexico. Marine Ecology Progress Series 251:87-101

Wysocki LA, Bianchi TS, Powell RT, Reuss N (2006) Spatial variability in the coupling of organic carbon, nutrients, and phytoplankton pigments in surface waters and sediments of the Mississippi River plume. Estuarine, Coastal and Shelf Science 69:47-63

Zapata M, Jeffrey SW, Wright SW, Rodríguez F, Garrido JL, Clementson L (2004) Photosynthetic pigments in 37 species (65 strains) of haptophyta: Implications for oceanography and chemotaxonomy. Marine Ecology Progress Series 270:83-102