physics with highly charged, stored ions

50
A few examples of physics with Highly Charged, Stored Ions at Paul Indelicato, Laboratoire Kastler Brossel Ecole Normale Supérieure, CNRS, Université Pierre et Marie Curie, for SPARC

Upload: others

Post on 12-Sep-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Physics with Highly Charged, Stored Ions

A few examples of physics with Highly Charged, Stored Ions at

Paul Indelicato,Laboratoire Kastler Brossel

Ecole Normale Supérieure, CNRS, Université Pierre et Marie Curie, for SPARC

Page 2: Physics with Highly Charged, Stored Ions

2

AUSTRIAVienna University of TechnolgyCANADAUniversity of ManitobaYork UniversityCHINAChina Institute of Atomic Energy, BeijingInstitute of Applied Physics and Computational Mathematics, BeijingInstitute of Modern Physics, Fudan University, ShanghaiInstitute of Modern Physics, Chinese Academy of Sciences, LanzhouInstitute of Atomic and Molecular Physics, Jilin University, JilinLanzhou University, LanzhouUniversity of Science and Technology of China, HefeiWuhan Institute of Physics and Mathematics, WuhanPhysics Department, Northwest Normal UniversityDepartment of Physics and Astronomy, University of AarhusDENMARKDepartment of Physics and Astronomy, University of AarhusEGYPTPhysics Department, Beni-Suef Faculty of ScienceFRANCELaboratoire kastler-Brossel, Ecole Normale Sup. ParisINSP, Univ. Pierre et Marie CurieCIRIL GanilEcole Normale Superieure – Lyon Institut de Physique Nucléaire de LyonGERMANYErnst Moritz Arndt Universität GreifswaldForschungszentrum JülichFreiburg UniversityGSI, DarmstadtInstitut für Kernphysik, Justus-Liebig-Universität GießenInstitut für Atom- und Molekülphysik, Justus-Liebig-Universität GießenSektion Physik, LMU MunichMax-Planck-Institut für Kernphysik, HeidelbergInstitut für Theoretische Physik, TU DresdenTübingen UniversityIKF, J.W.v.Goethe Universität Frankfurt am MainInstitut für Physik, Universität MainzInstitut für Physik, Universität KasselInstitut für Theoretische Physik, TU ClausthalKirchhoff-Institut für Physik, Universität HeidelbergTU DarmstadtPhysikalisch-technische BundesanstaltMathematics Institute, University of Munich, 80333 MunichHUNGARYInst. of Nuclear Research (ATOMKI), DebrecenINDIATata Institute of Fundamental Research

Vaish College, RohtakNuclear Science Centre, New DelhiBhabha Atomic Research CentreITALYInst. Naz. Fisica Nucleare, Dip. di Fisica, CataniaJAPANUniversity of Tokyo & Atomic Physics Laboratory RIKEN, WakoJORDANHashemite UniversityPOLANDInstitute of Physics, Swietokrzyska AcademyInstitute of Physics, Jagiellonian UniversityInstitute of Theoretical Physics, Warsaw UniversityInstitute of Nuclear Physics of Polish Academy of SciencesThe Soltan Institute For Nuclear StudiesROMANIANIPNE National Institute for Physics and Nuclear EngineeringRUSSIALebedev Physical Institute, MoscowInstitute of Physics, St. Petersburg State UniversityInstitute of Metrology for Time and Space at VNIIFTRIInstitute of Spectroscopy of the RASV.G.Khlopin Radium Institute, St.PetersburgSERBIA AND MONTENEGROInstitute of Physics, BelgradeSWEDENChalmers University of Technology and Goteborg University Stockholm UniversityMid-Sweden UniversityLund UniversitySWITZERLANDCERN Department of Physics, University FribourgInstitut für Physik, Universität BaselUNITED KINGDOMDepartment of Physics, The University of DurhamQueen's University, BelfastUNITED STATESLawrence Berkeley National LaboratoryGeorgia State UniversityUniversity of Missouri RollaOak Ridge National LaboratoryWestern Michigan UniversityHarvard-Smithsonian Center for AstrophysicsBrown University, Physics DepartmentUniveristy of Texas at AustinKansas State UniversityColumbia Astrophysics Laboratory, Columbia University

242 participants from over 20 countriesSpokesperson: Reinhold Schuch, Stockholm

Deputy: Andrzej Warczak, CracowBoard: 15 Members from 12 Countries

https://gsi.helmholtz.de/fair/experiments/sparc

Stored Particle Atomic Research CollaborationSPARC

Page 3: Physics with Highly Charged, Stored Ions

3

March 2004 LoI and green light for Technical Proposal

October 2004 First collaboration meeting

January 2005 Technical Proposal submitted

March 2005 Evaluation of TP ⇒ green light

June 2005 Evaluation of costs ⇒ green light

July 2005 SPARC part of the core facility of FAIR

July 2005 Collaboration meeting @ Rosario, Argentina

https://gsi.helmholtz.de/fair/experiments/sparc/workgroups.html

Activity

Additional Activities 33 talks presented at conferences and seminars20 publications

September 2005 Cost planning for 2006 and 2007

September 2005 SPARC Workshop @ Piaski, Poland

January 2006 Technical Report

August 2006 Collaboration meeting @ Belfast, UK

August 2006 Memorandum of Understanding

February 2007 SPARC Workshop @ Paris

July 2007 SPARC Theory Workshop @ GSI

Page 4: Physics with Highly Charged, Stored Ions

4

SPARC: Stored Particle Physics Research Collaboration

http://www.gsi.de/fair/experiments/sparc/http://sparc.lkb.ens.fr/

Page 5: Physics with Highly Charged, Stored Ions

5

Working Groups

High Energetic Ion-Atom Collisions Reaction Microscope

Electron and Electron/Positron Spectrometers

Photon and X-Ray SpectrometersDetector Development

Target Developments (in ring)Electron Cooler/Target

Low Energy SetupsTraps/HITRAPIon Sources

Laser Spectroscopy/Laser CoolingLaser/Ion Interaction

Theory

SPARC is Organized within 13 Working GroupsSPARC is Organized within 13 Working Groups

Page 6: Physics with Highly Charged, Stored Ions

6

Third Party Funding

2 BMBF projects (2004-2006)5 BMBF projects (2007-2009)4 R&D projects (2004-2006)6 R&D projects (2007-2009)2 INTAS projects (2005-2007)2 INTAS projects (2007-2008)DAAD/NSF particle acceleration in intense laser (Leemans, Berkeley)NSF calorimeter studies at ESR (Silver, Harvard-Smithsonian)ESRF detector development (Dousse, Grenoble)DOE: charge exchange processes for U28+ (DuBois, Missouri-Rolla)Polish Ministry for Education: Bragg Spectrometer (Pajek, Kielce)CNRS electron spectroscopy (Rothard, Ganil)ANR X-ray spectroscopy and ion-surface (Indelicato, Vernhet, Paris)INFN electron spectroscopy (Lazano, Catania)SFAIR trapping of HCI (Schuch, Stockholm)SPAIR calorimeter development (Schuch, Stockholm)+ projects HITRAP and FLAIR

FP7: additional funding for prototype development,design and construction

Page 7: Physics with Highly Charged, Stored Ions

7

ApplicationsApplications• ion cooling techniques• storage and trapping techniques• laser and spectrometer development• photon, electron, ion detection techniques• large energy deposition (ion-surface…)

DynamicsDynamics• dynamically induced strong field effects• correlated many body dynamics • elementary atomic processes at high Z• photon matter interaction, e.g., photon

polarization correlation

Positive Continuum

Negative Energy Continuum

TransferExcitation Ionization

Free Pair Production

+ mc

- mc2

2

e+

e-

0

StructureStructureStudiesStudies

• bound state quantum electrodynamics (QED)• nuclear effects on the atomic structure• effects of relativity on the atomic structure• electron correlation in strong fields• supercritical fields

Atomic Physics in Strong Coulomb Fields

Page 8: Physics with Highly Charged, Stored Ions

8

ExtreMe Matter Institute

Final acceptance: Nov. 7, 2007

Allianz

Page 9: Physics with Highly Charged, Stored Ions

9

EMMI Facilities

Page 10: Physics with Highly Charged, Stored Ions

10

Experimental Facilities For SPARC

Novel Instrumentation

SIS100/300

High Energy

Cave

NewExperimentalStorage Ring

FLAIR

Stored and CooledFrom Rest to Relativistic Energies:

Highly-Charged Ions and Exotic Nuclei Intense Beams of Radioactive Isotopes

Intense Source of Virtual X RaysXUV Energies via Lorentz Boost of Optical

Wavelengths

PAIR PRODUCTIONCHANNELING

Page 11: Physics with Highly Charged, Stored Ions

11

Positive Continuum

Negative Energy Continuum

TransferExcitation Ionization

Free Pair Production

+ mc

- mc2

2

e+

e-

0

Intense Laser

HydrogenEK = -13.6 eV<E>= 1 • 1010 V/cm

Z = 1

Z = 92

H-like UraniumEK = -132 • 103 eV<E>= 1.8 • 1016 V/cm

Atomic Physics in Strong Coulomb Fields

Atomic Structure at High-Z

• bound state quantum electrodynamics (QED)

• effects of relativity on the atomic structure

• electron correlation in the presence of strong fields

1 10 20 30 40 50 60 70 80 90109

1010

1011

1012

1013

1014

1015

1016

1s

<E>

[V/c

m]

Nuclear Charge, Z

Atomic Collisions at High-Z

• time reversal of elementary atomic processes

• photon matter interaction

• dynamically induced strong field effects

Page 12: Physics with Highly Charged, Stored Ions

12

The 1s-LS in H-like Uranium (Exp. at GSI)

Quantum Electrodynamics

80 100 120 140 160 180 2000

20

40

60

80

100

120

140

coun

ts

photon energy [kev]

Lyα1

Lyα2

K-RR

1s Lamb shift

2p3/2

2p1/2

2s1/2

1s1/2

Lyα1 (E1)

Lyα2 (E1)M1

10 20 40 60 80 10010-5

10-4

10-3

10-2

10-1

1s L

amb

Shi

ft , Δ

E /

Z4 [m

eV]

nuclear charge number, Z

2005

2000

19961991

SE

VP

nuclear size

higher order

Page 13: Physics with Highly Charged, Stored Ions

13

Lamb shift in U91+

Page 14: Physics with Highly Charged, Stored Ions

14

Present status

Nuclear polarization: -0.19±0.09eVNuclear size uncertainty: ±0.52eVTwo-loop QED: -1.26eV

how to go further?

Page 15: Physics with Highly Charged, Stored Ions

15

FOCAL

Page 16: Physics with Highly Charged, Stored Ions

16

High-energy X-ray 2D detection

Page 17: Physics with Highly Charged, Stored Ions

17

Preliminary results

+FOCAL collaboration (March 2006)

Page 18: Physics with Highly Charged, Stored Ions

18

Toward a PNC experiments in ions?

Prospects for Parity-nonconservation Experiments with Highly Charged Heavy Ions. M. Maul, A. Schäfer, W. Greiner et P. Indelicato. Phys. Rev. A. 53 3915-3925, (1996).Stark quenching for the 1s22s2p 3P0 level in beryllium-like ions and parity-violating effects. M. Maul, A. Schäfer et P. Indelicato. J. Phys. B: At. Mol. Opt. Phys. 31 2725-2734, (1998).

Page 19: Physics with Highly Charged, Stored Ions

19

Parity violation in he-like ions

The feasibility of the experiment depends heavily on the degeneracy between the two levels (1/ΔE2)

Two photon absorption from laser ~1021W/cm2

Detected signal

Page 20: Physics with Highly Charged, Stored Ions

20

The latest theoretical results

QED calculation of the n = 1 and n = 2 energy levels in He-like ionsA.N. Artemyev, V. M. Shabaev, V. A. Yerokhin, G. Plunien, and G. Soff PRA (2005)

Measurements of Δn=0 transitions needed

Changing isotope could help find the best candidate

Page 21: Physics with Highly Charged, Stored Ions

21

N=2, Δn=0 transitions

Use pattern recognition techniques developed for exotic atoms spectroscopy to reduce background (in place of coincidence)

Page 22: Physics with Highly Charged, Stored Ions

22

First observ. of 1s2p3P2-1s2s3S1 in U

U90+ 1s2p3P2-1s2s3S1

Calibration: U89+ 1s22p 2P3/2-1s22s 2S1/2CCD image

Very low background, without coincidenceTrassinelli et al. Aug. 2007

Transition between excited states

Use of a low-energy HCI beam could lead to better calibrations, better accuracy

In flight calibration (Doppler!)

Page 23: Physics with Highly Charged, Stored Ions

23

e + Aq+ A(q-1)+

electron target

elec

tron

coo

ler

DR experiments for Li-likeheavy ions at the ESR: The already achievedaccuracy is comparablewith the most precise x-ray experiments

Experiments – at the Electron TargetDielectronic Recombination

40 60 80 100 120 140

30

40

50

60

n =

30n =

27

n =

29n

= 28

n =

23

n =

⇒ E

( 2s

→ 2

p 1/2)

n =

25n =

24

n =

26

Rec

omb.

Rat

e C

oeffi

cien

t [ar

b. u

nits

]

Electron-Ion Collision Energy (c.m.) [eV]

n =

22

. . .

Li-like NeodymiumNd57+(1s2 2s1/2) + e

→ Nd56+ (1s2 2s1/2 n lj)

Page 24: Physics with Highly Charged, Stored Ions

A=150

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

100

200

300

400

500

j=5/2 j>5/2j=3/2

Rat

e C

oeffi

cien

t [A

rb. U

nits

]

Electron-Ion Collision Energy (c.m.) [eV]

A=142

Nd56+ (1s2 2p1/2 18lj )

n = ∞n = 18

2p1/2

2s1/2

...

preliminary

j=1/2

(Preliminary Results of the Aug 2005 Beamtime)

C. Brandau, C. Kozhuharov et al., 2005

142Nd57+ 150Nd57+ 3rd“ generation electron target(dedicated and optimized with

respect to experiments)Adiabatic expansion / adiabatic

acceleration of electrons

Electron Target/Cooler

Page 25: Physics with Highly Charged, Stored Ions

25

HFS effects on Dielectronic Recombination Resonances

• Schuch, R., E. Lindroth, S. Madzunkov, M. Fogle, T. Mohamed and P. Indelicato, Dielectronic Resonance Method for Measuring Isotope Shifts, Physical Review Letters 95: 183003-4 (2005)

Atomic calculation of resonance needed to extract HFSand 4s QED corrections

Pb53+ (Cu-like) @ CRYRING

Page 26: Physics with Highly Charged, Stored Ions

26

Results using of cold e- targets

M. Lestinsky, E. Lindroth, D. A. Orlov, E. W. Schmidt, S. Schippers, S. Böhm, C. Brandau, F. Sprenger, A. S. Terekhov, A. Müller, and A. Wolf, submitted (2007)

Sc18+ TSR e- Cooler

Sc18+ TSR cold e- target

Kieslich, S., S. Schippers, W. Shi, A. Muller, G. Gwinner, M. Schnell, A. Wolf, E. Lindroth and M. Tokman, PRA 70: 042714-13 (2004)

HFS

Very accurate test of QED in light 3 body

system

Page 27: Physics with Highly Charged, Stored Ions

27

HITRAP – Trap facility for heavy highly charged ions

g-Factor of the bound electron in a hydrogen-like ion(hydrogenlike uranium at rest)

• low-Z → electron mass me• medium-Z → fine-structure constant α• high-Z → test of bound-state QED

Bound-state QED and fundamental constantsg-Factor measurements

in a series of elements up to U91+

Theory: T. Beier, U.D. Jentschura,S. Karshenboim,

H. Persson, V. Shabaev,Yerokhin, Indelicato, Shabaev

Page 28: Physics with Highly Charged, Stored Ions

28

fine structure constant and He fine structure

Using the electron g-2 deprives physics from a valuable test of fundamental theories

The two-body problem is not yetunderstood accurately enough

e- g-2No QED!

Ca19+ g-2 would gives an independant alpha value

Page 29: Physics with Highly Charged, Stored Ions

29

High energy deposition with slow HCI

• A single slow U92+ ion can deposit up to 762 keV (full neutralization)– Highly localized– Very short time

• Study of the capture and decay of highly excited atoms• Ion interaction cluster, fullerenes, molecules…• Creation of defects on surfaces

– Hillock formation– Structured surfaces– Magnetic surfaces– Modifying magnetic transport properties (like Giant Magnetic

Resonance-Pomeroy et al. NIST) applications to spintronic

Page 30: Physics with Highly Charged, Stored Ions

30

@ Relativistic EnergiesQuantum Electrodynamics, Cooling, Crystalline BeamsQuantum Electrodynamics, Cooling, Crystalline Beams

SIS100/300

eVtoboosted

6.280

2/12 21 ps

2/12 21 ss

eV6.2802γ×

2γ×

improved resolution factor of 10 to 20

QED in Li-like systems

H. Backe, arXiv:physics/0701056 (2007)

Page 31: Physics with Highly Charged, Stored Ions

31

Laser cooling of CLaser cooling of C3+3+ beamsbeams

momentum dependent (Doppler tuned)laser deceleration + bunching(restoring force) --> cooling

probing of the velocity width by rapid laser scan of the Doppler profile for different revolution frequencies

U. Schramm et al., 2005

bunch length reduced by a factor 2beam diameter reduced by a factor 4

momentum spread reduced by a factor 10

Demonstration of laser cooling of C3+ Ions at 122 MeV/u in the ESR for application at SIS 100/300 (2004)

Page 32: Physics with Highly Charged, Stored Ions

32

CrystalMonochromatorX-Ray

Detector

hωX-ray = 19.6 keV

Laser (same as @ ESR)λlaser = 257.34 nmhωlaser = 4.818 eV

SPARC07 M. Bussmann, U. Schramm, D. Habs et al. www.ha.physik.uni-muenchen.de/uschramm

Laser Cooling and Precision Spectroscopy

Li-like 238U89+

γ = 30

SIS300 SchematicExperimentalSetup

Outlook: Precision Laser X-Ray Spectroscopy at FAIR

hωrest = 280.59 eV

Measureabsolute transition wavelength

ω 2rest = ωlaser · ωX-ray

Page 33: Physics with Highly Charged, Stored Ions

33

U92+

0 87 94 97 98Percent of Light Velocity

b ~ 106 fm

γ = 1 2 3 4 5

Reactions of Relativistic Projectilesin Extreme Dynamic Fields

t ≤ 0.1 asI ≈ 1021 W/cm2t ≤ 0.1 asI ≈ 1021 W/cm2

intense fieldsultra-short electromagnetic pulsespair production

γβ

=−

11 2

Page 34: Physics with Highly Charged, Stored Ions

34

Merged Beams

Supercritical fieldsSupercritical fields

U92+U91+

< 5 MeV/uFormation of a Quasi-Molecule

E(r)2pπ

1sσ

timeW. GreinerGSI-Workshop 1996

R [fm]

E [keV] negative continuum

Page 35: Physics with Highly Charged, Stored Ions

35

Supercritical fieldsSupercritical fields

Formation of a Quasi-Molecule

time

E(r)2pπ

1sσ

Z = 184Interference:x-ray spectrafixed impact parameter

E1sσ (R)

b

Page 36: Physics with Highly Charged, Stored Ions

36

Developments in preparation for SPARC/FLAIR: exemple in Paris

• Electrostatic highly-charged ion traps (could be used for antiprotons too)• High-precision studies of highly-charged medium-Z ions X-ray transitions• X-ray standards• New ECRIS technologies (superconducting/permanent magnet

combination, multi-frequency)• X-ray spectrometer developments for plasma studies (ECRIS, laser-

generated HCI plasmas)– Transmission spectrometers (NIST/NRL)– High-efficiency Asymmetric-cut spherical-crystal spectrometers for

HCI (ion-surface interaction, antiprotonic atoms)– Two-crystal instrument for absolute X-ray energy measurements

• Ion-surface interaction studies– Ion-rare gas clusters interaction

Page 37: Physics with Highly Charged, Stored Ions

37

plafond

3m

1,31

0±0,

010

~3,3

m

Dewars

plafond

SS

RdC

SUPER-SIMPA: A superconducting ECRIS PSI Paris

HF from 6.4 to 18 GHz, multifrequency

X-rayspectroscopy (plasma, QED…)

Page 38: Physics with Highly Charged, Stored Ions

38

Cl15+ 3P2 and 3P1

Cl 13+ Cl 11+ Cl 9+

Cl15+ 1P1 Cl14+

Cl 15+ 3S1

Cl 12+ Cl10+Cl neutralK α

E

Spectra of highly charged Chlorine from ECRISSpectra of highly charged Chlorine from ECRIS

Helium-like to neutral, core-excited, very bright source

•Correlation and QED effects in medium-Z ions

•Auger width and shift (resonances!)

•X-ray standards for heavy elements ΔN=0 transitions

Page 39: Physics with Highly Charged, Stored Ions

39

Using ions at restUsing ions at rest

Spherically bent crystal

Position detector

R sin(ΘΒ)

ΘΒ

Plasma chamber

λ1 < λ2

R

ECRIT

Page 40: Physics with Highly Charged, Stored Ions

40

Example: few-electron argon

378 Ar

1,0E-02

1,0E-01

1,0E+00

1,0E+01

1,0E+02

1,0E+03

1,0E+04

3085 3095 3105 3115 3125 3135 3145

Energy (eV)

He-likeLi-likeBe-likeB-likeTotal ThInt

1s2

s2p

2 3

S1->

1s2

2s2

p 3

P2

1s2

s2p

2 3

S1->

1s2

2s2

p 3

P1

1s2

s2p

2 3

S1->

1s2

2s2

p 3

P0

1s

2s2

2p 1

P1->

2s2

1S

0

He

M1

1s2

s2p 2

P1/2

->1s2

2s

2S

1/2 1s2

p 3

P1->

1s2

1S

0

1s2

p 3

P2->

1s2

1S

0

1s2

s2p 2

P3/2

->1s2

2s

2S

1/2

1s2

p 1

P1->

1s2

1S

0

Ab-initio calculation including intensitiesMain lines to a few meV accuracy

446 Ar

1,00E-01

1,00E+00

1,00E+01

1,00E+02

1,00E+03

1,00E+04

1,00E+05

3080 3090 3100 3110 3120 3130

Energy (eV)

He-likeLi-likeBe-likeB-likeTotal ThInt

1s2

s2p

2 3

S1->

1s2

2s2

p 3

P2

1s2

s2p

2 3

S1->

1s2

2s2

p 3

P1

1s2

s2p

2 3

S1->

1s2

2s2

p 3

P0

1s

2s2

2p 1

P1->

2s2

1S

0

He

M1

1s2

s2p 2

P1/2

->1s2

2s

2S

1/2

1s2

p 3

P1->

1s2

1S

0

1s2

p 3

P2->

1s2

1S

0

1s2

s2p 2

P3/2

->1s2

2s

2S

1/2

New excitation mechanism needed to explain some weak lines

Correlation, QEDAuger shift and broadening

Julich, Vienna, PSI, Paris, Lisbon, Stockholm coll.

Page 41: Physics with Highly Charged, Stored Ions

41

Double flat crystal spectrometer

SourceΔθ

counts

•Non-dispersive mode (0)

In this mode, regardless of the energy, X-ray pass through when the crystals are almost parallel: spectrometer response function: Crystal/21/2

Δθ

counts

> < 10 -4 rad

•dispersive mode (2 θBragg)

Histogram = Line shape × spectrometer response

2d sin(θBragg ) = kλ

Correction: index of refraction

Page 42: Physics with Highly Charged, Stored Ions

Vacuum chamber, 900 kg+ spectrometer 300 kg

Fixed 1st axis (microstepping motor,0.2” encoder)

X-rays in

70 cm

25 cm

Two-crystal spectrometer for a fixed sourceTwo-crystal spectrometer for a fixed source

Detect.

ECRIS

Movable2nd axis

Page 43: Physics with Highly Charged, Stored Ions

Darmstadt Helmholtz Centre for Ion Research

Challenges Challenges and Opportunitiesand Opportunities• Heavy Highly Charged Ions• Relativistic Heavy Ions• Radioactive Nuclei• Antiprotons

I. Extreme Static Electromagnetic FieldsII. Extreme Dynamic FieldsIII. Ultra-Slow and Trapped Antiprotons

Page 44: Physics with Highly Charged, Stored Ions

44

A new double-flat crystal instrument

• High-precision machined axis (high-stability alloy, thermal stabilization…)

• 1 T vacuum chamber

Page 45: Physics with Highly Charged, Stored Ions

45

High stability design

Hunting for stability:200 kg, LK3, alloy base plate, stabilized at 900 °C for 48 hoursMachined, stabilized at 700 °C for 24 hours, then ground to 2µm accuracy

Page 46: Physics with Highly Charged, Stored Ions

46

Crystal rotation

• Angular encoder accuracy 0.2”• Angle range 15° to 65°• Vacuum instrument• Si 220 and Si 111 crystal pairs made and

measured at NIST (< 0.1 ppm)• Si 220: 3.6 (0.45 ppm) to 12 (3.6 ppm)

keV• Si 111: 2.2 (0.45 ppm) to 7.5 (3.6 ppm)

keV

Page 47: Physics with Highly Charged, Stored Ions

47

Crystal positioning

x

Crystal holder design

Flextures

0.2” Heidenhain encoder (ROD 900+AWE 1024)

Page 48: Physics with Highly Charged, Stored Ions

48

Super-critical fields

Au79+ on U91+ at 240 MeV/A

Page 49: Physics with Highly Charged, Stored Ions

49

QuickTime™ et undécompresseur Cinepak

sont requis pour visionner cette image.

Page 50: Physics with Highly Charged, Stored Ions

50

20 40 60 80 100 120 140 160

1E11

1E12

1E13

1E14

1E15

1E16

1E17

1E18

<E>

V/cm

Nuclear Charge, Z20 40 60 80 100 120 140 160

1E11

1E12

1E13

1E14

1E15

1E16

1E17

1E18

<E>

V/cm

Nuclear Charge, Z

1s

2s

2p1/2

Critical- and Super-Critical Fields

U92+ → U =>

U91+ + MO-X-Ray...

as function of impact parameter

RequirementsDeceleration to About 6 MeV/u

107 Slow Extracted Ions (Resonance Extraction)Large Solid Angle X-Ray Detectors

Monolayer Target (Uranium)Position Sensitve Particle Detectors