physics of semiconductors - 東京大学...electron – phonon inelastic scattering electron –...

31
Physics of Semiconductors Shingo Katsumoto Department of Physics and Institute for Solid State Physics University of Tokyo 10 th 2016.6.20

Upload: others

Post on 24-Feb-2021

8 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Physics of Semiconductors - 東京大学...Electron – Phonon inelastic scattering Electron – Electron inelastic scattering Electron – Localized spin scattering Lengths limit

Physics of Semiconductors

Shingo Katsumoto Department of Physics

and Institute for Solid State Physics

University of Tokyo 10th 2016.6.20

Page 2: Physics of Semiconductors - 東京大学...Electron – Phonon inelastic scattering Electron – Electron inelastic scattering Electron – Localized spin scattering Lengths limit

Outline today

Graphene: A two-dimensional material Quantum wire and fundamentals of quantum transport Formation of quantum wires Boundary between classical and quantum Landauer formula Quantized conductance Quantum point contact and conductance channel S-matrix Onsager reciprocity Landauer-Büttiker multi-probe formula

Page 3: Physics of Semiconductors - 東京大学...Electron – Phonon inelastic scattering Electron – Electron inelastic scattering Electron – Localized spin scattering Lengths limit

Graphene: A two-dimensional material

van der Waals

covalent

Graphite Graphene

Page 4: Physics of Semiconductors - 東京大学...Electron – Phonon inelastic scattering Electron – Electron inelastic scattering Electron – Localized spin scattering Lengths limit

Graphene lattice/reciprocal lattice structure

Atomic orbitals Honeycomb lattice

Page 5: Physics of Semiconductors - 東京大学...Electron – Phonon inelastic scattering Electron – Electron inelastic scattering Electron – Localized spin scattering Lengths limit

Graphene lattice/reciprocal lattice structure Lattice: unit cell Reciprocal lattice

Page 6: Physics of Semiconductors - 東京大学...Electron – Phonon inelastic scattering Electron – Electron inelastic scattering Electron – Localized spin scattering Lengths limit

Tight binding model

Tight binding:

Eigenvalues:

Page 7: Physics of Semiconductors - 東京大学...Electron – Phonon inelastic scattering Electron – Electron inelastic scattering Electron – Localized spin scattering Lengths limit

Sublattice transition term

Take the nearest neighbor approximation:

Page 8: Physics of Semiconductors - 東京大学...Electron – Phonon inelastic scattering Electron – Electron inelastic scattering Electron – Localized spin scattering Lengths limit

Dirac points in k -space

A Dirac point

𝑘𝑥 𝑘𝑦

Page 9: Physics of Semiconductors - 東京大学...Electron – Phonon inelastic scattering Electron – Electron inelastic scattering Electron – Localized spin scattering Lengths limit

Ch.4 Quantum wires and fundamentals of quantum transport

Page 10: Physics of Semiconductors - 東京大学...Electron – Phonon inelastic scattering Electron – Electron inelastic scattering Electron – Localized spin scattering Lengths limit

Formation of quantum wires: Split gate Metal gates

Depletion layer

Two-dimensional electrons

Page 11: Physics of Semiconductors - 東京大学...Electron – Phonon inelastic scattering Electron – Electron inelastic scattering Electron – Localized spin scattering Lengths limit

Self-assembled nano-wires

http://iemn.univ-lille1.fr/sites_perso/ vignaud/english/35_nanowires.htm

G. Zhang et al. NTT technical Review

Page 12: Physics of Semiconductors - 東京大学...Electron – Phonon inelastic scattering Electron – Electron inelastic scattering Electron – Localized spin scattering Lengths limit

Carbon nanotube

Page 13: Physics of Semiconductors - 東京大学...Electron – Phonon inelastic scattering Electron – Electron inelastic scattering Electron – Localized spin scattering Lengths limit

Boundary between classical and quantum

𝜓1

𝜓2

𝜒1

𝜒2 Interference term:

Environment wavefunction: 𝜒

𝜒1 𝜒2 = 1: Full interference

𝜒1 𝜒2 = 0: No interference Particle-Environment maximally entangled

Electron transport: Electron – Phonon inelastic scattering Electron – Electron inelastic scattering Electron – Localized spin scattering

Page 14: Physics of Semiconductors - 東京大学...Electron – Phonon inelastic scattering Electron – Electron inelastic scattering Electron – Localized spin scattering Lengths limit

Lengths limit quantum coherence (Coherence length)

Monochromaticity: Thermal length

Energy width: Diffusion length:

Phase width:

Thermal diffusion length

Ballistic thermal length

Page 15: Physics of Semiconductors - 東京大学...Electron – Phonon inelastic scattering Electron – Electron inelastic scattering Electron – Localized spin scattering Lengths limit

Conductance quantum L, R : Particle reservoirs

Thermal equilibrium: well defined chemical potentials

Instantaneous thermalization: particles loose quantum coherence

𝐿: wavefunction normalization length

Conductance quantum

Page 16: Physics of Semiconductors - 東京大学...Electron – Phonon inelastic scattering Electron – Electron inelastic scattering Electron – Localized spin scattering Lengths limit

Conductance quantum as uncertainty relation

Wave packet:

Fermion statistics: electron charge concentration =

Energy width: Wave packet width in time:

Conductance quantum comes from fermion statistics of electrons

Page 17: Physics of Semiconductors - 東京大学...Electron – Phonon inelastic scattering Electron – Electron inelastic scattering Electron – Localized spin scattering Lengths limit

Quantum point contact (QPC)

gate

gate

2DEG depletion layer

𝑊(𝑥)

Page 18: Physics of Semiconductors - 東京大学...Electron – Phonon inelastic scattering Electron – Electron inelastic scattering Electron – Localized spin scattering Lengths limit

Conductance channel

Transmissible one-dimensional system: Conductance Channel

Page 19: Physics of Semiconductors - 東京大学...Electron – Phonon inelastic scattering Electron – Electron inelastic scattering Electron – Localized spin scattering Lengths limit

Scanning tip conductance measurement

scanning tip

gate

gate

M. A. Topinka et al., Nature 410, 183 (2001)

Page 20: Physics of Semiconductors - 東京大学...Electron – Phonon inelastic scattering Electron – Electron inelastic scattering Electron – Localized spin scattering Lengths limit

Microwave and electron waveguides

Quantum point contact

Microwave waveguide

Page 21: Physics of Semiconductors - 東京大学...Electron – Phonon inelastic scattering Electron – Electron inelastic scattering Electron – Localized spin scattering Lengths limit

Landauer formula for two-terminal conductance 𝑇 = 1 Scattering 𝑇𝑖𝑖 ≤ 1

Rolf Landauer 1927 - 1999

Page 22: Physics of Semiconductors - 東京大学...Electron – Phonon inelastic scattering Electron – Electron inelastic scattering Electron – Localized spin scattering Lengths limit

Scattering matrix (S-matrix) 𝐴1(𝑘) 𝐴2(𝑘)

𝐵1(𝑘) 𝐵2(𝑘) 1 2

𝑄

𝑀𝑇

Transfer matrix: 𝑀𝑇

T-matrix

𝑎1(𝑘) 𝑎2(𝑘)

𝑏1(𝑘) 𝑏2(𝑘) 1 2 𝑆 S-matrix

incoming

outgoing

Complex probability density flux

Page 23: Physics of Semiconductors - 東京大学...Electron – Phonon inelastic scattering Electron – Electron inelastic scattering Electron – Localized spin scattering Lengths limit

Connection of S-matrix

Page 24: Physics of Semiconductors - 東京大学...Electron – Phonon inelastic scattering Electron – Electron inelastic scattering Electron – Localized spin scattering Lengths limit

S-matrix

A B

Multi-channel

Reciprocity Unitarity (time-reversal symmetry)

Page 25: Physics of Semiconductors - 東京大学...Electron – Phonon inelastic scattering Electron – Electron inelastic scattering Electron – Localized spin scattering Lengths limit

Onsager reciprocity Lars Onsager 1903-1976

Complex conjugate and

Scattering solution: Sc 𝑎 → 𝑏

Page 26: Physics of Semiconductors - 東京大学...Electron – Phonon inelastic scattering Electron – Electron inelastic scattering Electron – Localized spin scattering Lengths limit

Landauer-Büttker formula Makus Büttiker 1950-2013

sample

Page 27: Physics of Semiconductors - 東京大学...Electron – Phonon inelastic scattering Electron – Electron inelastic scattering Electron – Localized spin scattering Lengths limit

Landauer-Büttker formula

1 2

3 4

𝐽

𝐽

𝑉24

Page 28: Physics of Semiconductors - 東京大学...Electron – Phonon inelastic scattering Electron – Electron inelastic scattering Electron – Localized spin scattering Lengths limit

Aharonov-Bohm effect

F FD D

Φ

C

(a) (b)

1 1

2 2

Page 29: Physics of Semiconductors - 東京大学...Electron – Phonon inelastic scattering Electron – Electron inelastic scattering Electron – Localized spin scattering Lengths limit

Aharonov-Bohm ring

Page 30: Physics of Semiconductors - 東京大学...Electron – Phonon inelastic scattering Electron – Electron inelastic scattering Electron – Localized spin scattering Lengths limit

Disappearance of electrons

? Φ

Page 31: Physics of Semiconductors - 東京大学...Electron – Phonon inelastic scattering Electron – Electron inelastic scattering Electron – Localized spin scattering Lengths limit

Exercise C-6-20

Energy gap opening in one-dimensional lattice can be easily understood by solving 2x2 Schrodinger equation:

which gives eigenvalues 𝐸 ± 𝜉

𝜉

𝜉 𝜉

For systematic treatment, the space group theory is the best method to consider this kind of symmetry. But in the case of graphene, a simple consideration similar to the above is enough to understand why we the off-diagonal terms in Hamiltonian leave degeneracy. Consider the case illustrated in the left figure and calculate the eigenvalues. Write a brief comment why the degeneracy is not lifted.

E

E

E E