physics in the third generationschwier/talks/seminars/drakecolloquium... · 2009-05-28 · reinhard...

56
Testing the Standard Model Testing the Standard Model at the Energy Frontier at the Energy Frontier Reinhard Schwienhorst Reinhard Schwienhorst Physics & Astronomy Seminar, Drake University, January 31, 2005 Physics in the Third Generation Physics in the Third Generation

Upload: others

Post on 13-Apr-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Physics in the Third Generationschwier/talks/seminars/DrakeColloquium... · 2009-05-28 · Reinhard Schwienhorst, Michigan State University 3 Introduction • The Standard Model of

Testing the Standard ModelTesting the Standard Modelat the Energy Frontierat the Energy Frontier

Reinhard SchwienhorstReinhard Schwienhorst

Physics & Astronomy Seminar, Drake University, January 31, 2005

Physics in the Third GenerationPhysics in the Third Generation

Page 2: Physics in the Third Generationschwier/talks/seminars/DrakeColloquium... · 2009-05-28 · Reinhard Schwienhorst, Michigan State University 3 Introduction • The Standard Model of

2 Reinhard Schwienhorst, Michigan State University

Outline• Introduction• Fundamental Questions• The Standard Model of Particle Physics

– The third generation of leptons and quarks

• The Energy Frontier– Fermilab Tevatron– Dzero Experiment

• Results– B Quark and Top Quark Measurements

• Outlook• Conclusions

Page 3: Physics in the Third Generationschwier/talks/seminars/DrakeColloquium... · 2009-05-28 · Reinhard Schwienhorst, Michigan State University 3 Introduction • The Standard Model of

3 Reinhard Schwienhorst, Michigan State University

Introduction• The Standard Model of Particle Physics has been very

successful in explaining our observations over the past 20 yearsOnly recently have there been some real puzzles: – Neutrino Oscillations– Large top quark mass– Dark Matter, Dark Energy

• Run II at the Tevatron is well on its way– Physics at the energy frontier

• We are exploring uncharted territory– Top Physics as precision measurements

• Top mass measurements have large impact on Higgs expectation

Page 4: Physics in the Third Generationschwier/talks/seminars/DrakeColloquium... · 2009-05-28 · Reinhard Schwienhorst, Michigan State University 3 Introduction • The Standard Model of

4 Reinhard Schwienhorst, Michigan State University

Fundamental Questions

What do we want to know?

Page 5: Physics in the Third Generationschwier/talks/seminars/DrakeColloquium... · 2009-05-28 · Reinhard Schwienhorst, Michigan State University 3 Introduction • The Standard Model of

5 Reinhard Schwienhorst, Michigan State University

Daß ich erkenne, was die WeltIm Innersten zusammenhält

So that I may perceive whatever holdsThe world together in its inmost folds

Faust, Johann Wolfgang von Goethe

Page 6: Physics in the Third Generationschwier/talks/seminars/DrakeColloquium... · 2009-05-28 · Reinhard Schwienhorst, Michigan State University 3 Introduction • The Standard Model of

6 Reinhard Schwienhorst, Michigan State University

Relax.What is Mind?

No matter.What is Matter?

Never mind!

Homer J Simpson

Page 7: Physics in the Third Generationschwier/talks/seminars/DrakeColloquium... · 2009-05-28 · Reinhard Schwienhorst, Michigan State University 3 Introduction • The Standard Model of

7 Reinhard Schwienhorst, Michigan State University

Particle Physics Questions and Challenges• What is the origin of mass?

– What is the origin of electroweak symmetry breaking?– Is it really the Higgs Mechanism?

• Particles acquire mass through interactions with the Higgs boson

– Does the Higgs boson exist?

particle

Feynman diagram forHiggs Boson Interactions

Higgs boson

Page 8: Physics in the Third Generationschwier/talks/seminars/DrakeColloquium... · 2009-05-28 · Reinhard Schwienhorst, Michigan State University 3 Introduction • The Standard Model of

8 Reinhard Schwienhorst, Michigan State University

Particle Physics Questions and Challenges• What is the origin of mass?

– What is the origin of electroweak symmetry breaking?

• Is there an underlying symmetry?– Supersymmetry? – String Theory? – Extra spatial dimensions?– Technicolor?

Page 9: Physics in the Third Generationschwier/talks/seminars/DrakeColloquium... · 2009-05-28 · Reinhard Schwienhorst, Michigan State University 3 Introduction • The Standard Model of

9 Reinhard Schwienhorst, Michigan State University

Particle Physics Questions and Challenges• What is the origin of mass?

What is the origin of electroweak symmetry breaking?– Is it the Higgs Mechanism? Does the Higgs boson exist?

• Is there an underlying symmetry?– Supersymmetry? – String Theory? – Extra spatial dimensions?– Technicolor?

• The Cosmological Connection:– Why is there more matter in the universe

than anti-matter?• Why does anti-matter not behave like matter?

– What is dark matter?– What is dark energy?

Page 10: Physics in the Third Generationschwier/talks/seminars/DrakeColloquium... · 2009-05-28 · Reinhard Schwienhorst, Michigan State University 3 Introduction • The Standard Model of

10 Reinhard Schwienhorst, Michigan State University

Experimental Particle Physics

Not asking general questionsand receiving limited answers,

but asking limited questionsand finding general answers!

Galileo

Page 11: Physics in the Third Generationschwier/talks/seminars/DrakeColloquium... · 2009-05-28 · Reinhard Schwienhorst, Michigan State University 3 Introduction • The Standard Model of

11 Reinhard Schwienhorst, Michigan State University

This talk will be about those limited questionsand how we go about 

answering themThe minute particular

Page 12: Physics in the Third Generationschwier/talks/seminars/DrakeColloquium... · 2009-05-28 · Reinhard Schwienhorst, Michigan State University 3 Introduction • The Standard Model of

12 Reinhard Schwienhorst, Michigan State University

State of the Art

What do we know already?

Page 13: Physics in the Third Generationschwier/talks/seminars/DrakeColloquium... · 2009-05-28 · Reinhard Schwienhorst, Michigan State University 3 Introduction • The Standard Model of

13 Reinhard Schwienhorst, Michigan State University

The Standard Model of Particle Physics• Three generations of

spin-½ fermions• They interact through

the exchange of spin-1 bosons force carriers

• SU(3)C×SU(2)L×U(1)Y

gauge structure• Plus Antimatter:

An anti-particle for each particle

• Plus the Higgs bosongiving mass to particles

Page 14: Physics in the Third Generationschwier/talks/seminars/DrakeColloquium... · 2009-05-28 · Reinhard Schwienhorst, Michigan State University 3 Introduction • The Standard Model of

14 Reinhard Schwienhorst, Michigan State University

Interactions in the Standard Model

- Gives masses to particles

fermionW boson

other fermion

Charged Current Electroweak Interactions

Z boson

fermion

Neutral Current Electroweak Interactions

gluon

quark

Strong Interactions

fermion

Higgs boson

fermion

Yukawa Coupling

fermion

- and electro-magnetism

- Holds atomic nuclei together- Responsible for nuclear beta decay

quark

Page 15: Physics in the Third Generationschwier/talks/seminars/DrakeColloquium... · 2009-05-28 · Reinhard Schwienhorst, Michigan State University 3 Introduction • The Standard Model of

15 Reinhard Schwienhorst, Michigan State University

What matter is made of: The 1 st Generation

Electrons Up and Down Quarks

Page 16: Physics in the Third Generationschwier/talks/seminars/DrakeColloquium... · 2009-05-28 · Reinhard Schwienhorst, Michigan State University 3 Introduction • The Standard Model of

16 Reinhard Schwienhorst, Michigan State University

How a High-Energy Experimentalist sees the 1 st Generation Fermions

• Electrons:

– Stable, charged ( deflected in a magnetic field)– Produces electromagnetic shower in matter

• Synchroton radiation of photons which convert to electron-positron pairs which emit synchroton radiation which.....

detector materialvacuum

Page 17: Physics in the Third Generationschwier/talks/seminars/DrakeColloquium... · 2009-05-28 · Reinhard Schwienhorst, Michigan State University 3 Introduction • The Standard Model of

17 Reinhard Schwienhorst, Michigan State University

How a High-Energy Experimentalist sees the 1 st Generation Fermions

• Up or Down Quarks:

– Free quarks don't exist (quark confinement)• Quarks produced in interactions hadronize to mesons or hadrons• These typically travel in the same direction hadronic jet

– Jet produces a hadronic shower through interactions with nuclei

vacuum detector material

Page 18: Physics in the Third Generationschwier/talks/seminars/DrakeColloquium... · 2009-05-28 · Reinhard Schwienhorst, Michigan State University 3 Introduction • The Standard Model of

18 Reinhard Schwienhorst, Michigan State University

• Particles at high energy

• Particles propagating in free space

• Particles interacting with matter– In a detector

How a High-Energy Experimentalist sees the 1 st Generation Fermions

Use high-energy electrons and quarksas experimental tools

quark jet

electron

Page 19: Physics in the Third Generationschwier/talks/seminars/DrakeColloquium... · 2009-05-28 · Reinhard Schwienhorst, Michigan State University 3 Introduction • The Standard Model of

19 Reinhard Schwienhorst, Michigan State University

The 2 nd Generation• Another set of leptons and quarks

– Muon and muon neutrino– Strange and charm quarks

• Duplication of 1st generation, but at higher mass• Subject of detailed measurements

• Very High Statistics Precision experimentsto probe details of the Standard Model

– Muon magnetic moment (g-2)– CP-violation in the Kaon sector

Page 20: Physics in the Third Generationschwier/talks/seminars/DrakeColloquium... · 2009-05-28 · Reinhard Schwienhorst, Michigan State University 3 Introduction • The Standard Model of

20 Reinhard Schwienhorst, Michigan State University

How most High-Energy Experimentalists see the 2 nd Generation Fermions

• Muon:

– Muons do not shower as they pass through matter• They are charged, thus they loose energy through ionizing atoms as

they pass through: Trail of ionization

vacuum detector material

Page 21: Physics in the Third Generationschwier/talks/seminars/DrakeColloquium... · 2009-05-28 · Reinhard Schwienhorst, Michigan State University 3 Introduction • The Standard Model of

21 Reinhard Schwienhorst, Michigan State University

How most High-Energy Experimentalists see the 2 nd Generation Fermions

• Strange or Charm Quarks:

– Hadronic jet that produces a hadronic shower– Strange and charm quarks look just like up or down quarks

vacuum detector material

Page 22: Physics in the Third Generationschwier/talks/seminars/DrakeColloquium... · 2009-05-28 · Reinhard Schwienhorst, Michigan State University 3 Introduction • The Standard Model of

22 Reinhard Schwienhorst, Michigan State University

The 3 rd Generation• Another set of leptons and quarks

– Tau and tau neutrino– Bottom and top quarks

• Duplication of 1st generation, but at much higher mass• Detailed investigations are just beginning

Focus of this talk

Page 23: Physics in the Third Generationschwier/talks/seminars/DrakeColloquium... · 2009-05-28 · Reinhard Schwienhorst, Michigan State University 3 Introduction • The Standard Model of

23 Reinhard Schwienhorst, Michigan State University

The Third Generation of Leptons:Neutrino Oscillations

• Neutrino mass Eigenstates are not weak interaction Eigenstates

• Consequence: neutrino oscillationsProduction Propagation Interaction

m

nm n2 nt

t

Page 24: Physics in the Third Generationschwier/talks/seminars/DrakeColloquium... · 2009-05-28 · Reinhard Schwienhorst, Michigan State University 3 Introduction • The Standard Model of

24 Reinhard Schwienhorst, Michigan State University

• Discovered 1977 at Fermilab• Currently being studied extensively

at e+e- colliders– B-Factories

study decay of B0 mesons– Detailed measurement of quark

electroweak charged current Interactions• Complex phase of CKM Matrix

The Third Generation of Quarks: Bottom Quark

q q'

W

CKM Matrix

Vqq'

Page 25: Physics in the Third Generationschwier/talks/seminars/DrakeColloquium... · 2009-05-28 · Reinhard Schwienhorst, Michigan State University 3 Introduction • The Standard Model of

25 Reinhard Schwienhorst, Michigan State University

The Top Quark• Discovered in 1995 at

Fermilab by CDF and DØ• Heaviest of all fermions

– 40 times heavier than b quark

• Couples strongly to Higgs boson– Study electroweak symmetry

breaking

• Only quark that decays before it hadronized– Clean laboratory to study

quark properties

King of Fermions

Page 26: Physics in the Third Generationschwier/talks/seminars/DrakeColloquium... · 2009-05-28 · Reinhard Schwienhorst, Michigan State University 3 Introduction • The Standard Model of

26 Reinhard Schwienhorst, Michigan State University

Experimental Setup:The Energy Frontier

Probe Physics at small distance scales by colliding particles at high energy

proton anti-proton

u d

u

u du

Page 27: Physics in the Third Generationschwier/talks/seminars/DrakeColloquium... · 2009-05-28 · Reinhard Schwienhorst, Michigan State University 3 Introduction • The Standard Model of

27 Reinhard Schwienhorst, Michigan State University

Experimental Setup:Fermilab Tevatron in Run II

Page 28: Physics in the Third Generationschwier/talks/seminars/DrakeColloquium... · 2009-05-28 · Reinhard Schwienhorst, Michigan State University 3 Introduction • The Standard Model of

28 Reinhard Schwienhorst, Michigan State University

Experimental Setup:Fermilab Tevatron in Run II

• Proton-Antiproton Collider• CM Energy 1.96TeV

Energy Frontier• One interaction every 396ns

Interaction Rate Frontier

CDF

Page 29: Physics in the Third Generationschwier/talks/seminars/DrakeColloquium... · 2009-05-28 · Reinhard Schwienhorst, Michigan State University 3 Introduction • The Standard Model of

29 Reinhard Schwienhorst, Michigan State University

Experimental Setup:Detector Configuration

MuonQuark jet

ElectronTracking detector

Magnet

EM calorimeter

Hadroniccalorimeter

Muon detectors

Magnet

Beam pipe

Page 30: Physics in the Third Generationschwier/talks/seminars/DrakeColloquium... · 2009-05-28 · Reinhard Schwienhorst, Michigan State University 3 Introduction • The Standard Model of

30 Reinhard Schwienhorst, Michigan State University

Experimental Apparatus: DØ Detector

20 m/66 ft

14

m/4

6 ft

Page 31: Physics in the Third Generationschwier/talks/seminars/DrakeColloquium... · 2009-05-28 · Reinhard Schwienhorst, Michigan State University 3 Introduction • The Standard Model of

31 Reinhard Schwienhorst, Michigan State University

Experimenters: The DØ Collaboration

➔ 19 countries ➔ 80 institutions➔ 670 physicists

Page 32: Physics in the Third Generationschwier/talks/seminars/DrakeColloquium... · 2009-05-28 · Reinhard Schwienhorst, Michigan State University 3 Introduction • The Standard Model of

32 Reinhard Schwienhorst, Michigan State University

Particle Production at the Tevatron

10-13

10-11

10-9

10-7

10-5

10-3

10-1

total inelastic

bottom quark pairs

W Boson

Z Boson

top quark pairssingle top quarks

prod

uctio

n cr

oss-

sect

ion

(bar

ns)

102

104

106

108

1010

1012

1014

Num

ber

of p

artic

les

prod

uced

so

far

Higgs Boson

Page 33: Physics in the Third Generationschwier/talks/seminars/DrakeColloquium... · 2009-05-28 · Reinhard Schwienhorst, Michigan State University 3 Introduction • The Standard Model of

33 Reinhard Schwienhorst, Michigan State University

Storage tape

Collecting Interesting Events:Trigger System

• Reduce rate of interactions (inelastic collision rate) to manageable level that can be written to storage tapes

• Record “interesting” events – Select events containing high-energy final state objects

• Electrons, muons, quark jets

2.5MHz 50Hz

Select interestingevents

Page 34: Physics in the Third Generationschwier/talks/seminars/DrakeColloquium... · 2009-05-28 · Reinhard Schwienhorst, Michigan State University 3 Introduction • The Standard Model of

34 Reinhard Schwienhorst, Michigan State University

tape

Level 2Level 1

Level 3

2.5MHz 1.5kHz 800Hz50Hz

Collecting Interesting Events:Trigger System

• DØ experiment: three-level trigger system– Reconstruct objects at every level

• Decreasing event accept rate• Increasing time per decision• Increasing level of sophistication

Page 35: Physics in the Third Generationschwier/talks/seminars/DrakeColloquium... · 2009-05-28 · Reinhard Schwienhorst, Michigan State University 3 Introduction • The Standard Model of

35 Reinhard Schwienhorst, Michigan State University

Tevatron Physics Program

10-13

10-11

10-9

10-7

10-5

10-3

10-1

total inelastic

bottom quark pairs

W Boson

Z Boson

top quark pairssingle top quarks

prod

uctio

n cr

oss-

sect

ion

(bar

ns)

Higgs Boson

Precision QCD Physics

B Physics

Precision ElectroweakPhysics

Top quark measurements

Higgs SearchesSearches fornew Physics

Page 36: Physics in the Third Generationschwier/talks/seminars/DrakeColloquium... · 2009-05-28 · Reinhard Schwienhorst, Michigan State University 3 Introduction • The Standard Model of

36 Reinhard Schwienhorst, Michigan State University

Tevatron Physics Program• Precision QCD Physics

– Detailed studies of strong interactions– Jet production cross section and angular correlations

• Precision Electroweak Measurements– Detailed studies of electroweak interactions– W and Z boson (+ jets) production cross section– W Boson mass measurement– Angular correlations

• Direct Higgs Searches– Search for the Standard Model Higgs Boson– Detailed studies of background processes

• Direct Searches for New Physics– Search for Supersymmetry, extra spatial dimensions, ...

Page 37: Physics in the Third Generationschwier/talks/seminars/DrakeColloquium... · 2009-05-28 · Reinhard Schwienhorst, Michigan State University 3 Introduction • The Standard Model of

37 Reinhard Schwienhorst, Michigan State University

Tevatron Physics Program• Precision QCD Physics• Precision Electroweak Measurements• Direct Higgs Searches• Direct Searches for New Physics• B Quark Physics

Why is there more matter than antimatter in the Universe?

Page 38: Physics in the Third Generationschwier/talks/seminars/DrakeColloquium... · 2009-05-28 · Reinhard Schwienhorst, Michigan State University 3 Introduction • The Standard Model of

38 Reinhard Schwienhorst, Michigan State University

B Physics• Precision measurements of B meson lifetime and decay

properties– Does matter behave differently than anti-matter?

Early Universe Todays Universe

Page 39: Physics in the Third Generationschwier/talks/seminars/DrakeColloquium... · 2009-05-28 · Reinhard Schwienhorst, Michigan State University 3 Introduction • The Standard Model of

39 Reinhard Schwienhorst, Michigan State University

Studying the Third Generation of Quarksat the Tevatron

bottom quark pairs B Physics

102

104

106

108

1010

1012

1014

Num

ber

of p

artic

les

prod

uced

so

far

Page 40: Physics in the Third Generationschwier/talks/seminars/DrakeColloquium... · 2009-05-28 · Reinhard Schwienhorst, Michigan State University 3 Introduction • The Standard Model of

40 Reinhard Schwienhorst, Michigan State University

Interaction point(“primary vertex”)

Beampipe

Silicon detector

B-Physics: Charged Particle Track Reconstruction

Charged particle tracks

Page 41: Physics in the Third Generationschwier/talks/seminars/DrakeColloquium... · 2009-05-28 · Reinhard Schwienhorst, Michigan State University 3 Introduction • The Standard Model of

41 Reinhard Schwienhorst, Michigan State University

Interaction point(“primary vertex”)

Beampipe

Silicon detector

B decay (“secondary vertex”)

Example: B0J/ K0

s, J/mm, K0

sp+p-

B-Physics: Precision Track Reconstruction

Page 42: Physics in the Third Generationschwier/talks/seminars/DrakeColloquium... · 2009-05-28 · Reinhard Schwienhorst, Michigan State University 3 Introduction • The Standard Model of

42 Reinhard Schwienhorst, Michigan State University

B-Physics at the Tevatron• B meson lifetimes, B

s lifetime differences

• Branching ratios, asymmetries

• Bs Mixing

Page 43: Physics in the Third Generationschwier/talks/seminars/DrakeColloquium... · 2009-05-28 · Reinhard Schwienhorst, Michigan State University 3 Introduction • The Standard Model of

43 Reinhard Schwienhorst, Michigan State University

Tevatron Physics Program• Precision QCD Physics• Precision Electroweak Measurements• Direct Higgs Searches• Searches for New Physics• B Quark Physics• Top Quark Physics

Page 44: Physics in the Third Generationschwier/talks/seminars/DrakeColloquium... · 2009-05-28 · Reinhard Schwienhorst, Michigan State University 3 Introduction • The Standard Model of

44 Reinhard Schwienhorst, Michigan State University

Studying the Third Generation of Quarksat the Tevatron

top quark pairssingle top quarks Top Physics

102

104

106

108

1010

1012

1014

Num

ber

of p

artic

les

prod

uced

so

far

Page 45: Physics in the Third Generationschwier/talks/seminars/DrakeColloquium... · 2009-05-28 · Reinhard Schwienhorst, Michigan State University 3 Introduction • The Standard Model of

45 Reinhard Schwienhorst, Michigan State University

Tevatron Top Pair Physics• Top Pair Production at a Proton-Antiproton collider

• Top Pair Studies at the Tevatron– Production cross section

• Many different final states• Test of QCD

– Top mass measurements• Implications for Standard Model Higgs

– Probe Top Quark electroweak interactions• Top spin and W helicity measurement

q g t

q t

g t

tg

g

~85% ~15%

t

W +

b

Top quark decay

Page 46: Physics in the Third Generationschwier/talks/seminars/DrakeColloquium... · 2009-05-28 · Reinhard Schwienhorst, Michigan State University 3 Introduction • The Standard Model of

46 Reinhard Schwienhorst, Michigan State University

Top Pair Physics• Unique final state:

t

t

W+

W-

b

b

proton antiproton

m+

nm

qq'

leptonb-quark jet

b-quark jetlight quark jet

light quark jet

Neutrino(missing energy)

Page 47: Physics in the Third Generationschwier/talks/seminars/DrakeColloquium... · 2009-05-28 · Reinhard Schwienhorst, Michigan State University 3 Introduction • The Standard Model of

47 Reinhard Schwienhorst, Michigan State University

• Identification of b-quark jets– Soft-lepton-tag

• Reconstruct muon inside jet

– Secondary Vertex Tag• Reconstruct b-meson

decay vertex– Impact Parameter Tag

• Identify tracks from b-decay– lifetime probability

secondaryvertex

impact parameter

muon-in-jet

primaryvertex

B-Quarks as a Tool: b-tagging

Probability to tag a jet in a top event:● b-quark jet: ~55%● light-quark jet: ~0.5%

Page 48: Physics in the Third Generationschwier/talks/seminars/DrakeColloquium... · 2009-05-28 · Reinhard Schwienhorst, Michigan State University 3 Introduction • The Standard Model of

48 Reinhard Schwienhorst, Michigan State University

Top Quark Mass• Reconstruct both top quarks from decay products• Main measurement in lepton+jets mode

– Top 1: l+n+jet Top 2: jet+jet+jets– Many possible jet permutations

• Several measurement techniques– Identify proper permutation– Use all, give weight to each

Page 49: Physics in the Third Generationschwier/talks/seminars/DrakeColloquium... · 2009-05-28 · Reinhard Schwienhorst, Michigan State University 3 Introduction • The Standard Model of

49 Reinhard Schwienhorst, Michigan State University

Implications for Higgs Boson Mass• W boson mass has virtual corrections due to

top quark mass and Higgs boson mass

• W and top mass measurements constrain Higgs:W

Higgs boson

W W

top quark

W b quark

Page 50: Physics in the Third Generationschwier/talks/seminars/DrakeColloquium... · 2009-05-28 · Reinhard Schwienhorst, Michigan State University 3 Introduction • The Standard Model of

50 Reinhard Schwienhorst, Michigan State University

Single Top Physics at the Tevatron• Electroweak Production of Single Top Quarks

• Observe Single Top Production• Measure Production cross section

– Confirm Standard Model Prediction• CKM matrix element V

tb

• Look for Physics beyond the Standard Model• Measure top quark spin

Tevatron Single Top in Run II:

s-channel t-channel q

q'

W t

b

u d

bt

WV

tb

Page 51: Physics in the Third Generationschwier/talks/seminars/DrakeColloquium... · 2009-05-28 · Reinhard Schwienhorst, Michigan State University 3 Introduction • The Standard Model of

51 Reinhard Schwienhorst, Michigan State University

Path towards Single Top Observation• Cross Section is small in

the Standard Model

• Backgrounds are large• Need to use advanced signal-

background separation techniques– Require b-jet tag– Multivariate analysis

<23pb <17.8pb s+t channels)

<25pb <5pb <10.1pb t-channel) 1.98pb

<19pb <6pb<13.6pb s-channel) 0.88pb

DØ (160pb-1) DØ (new) CDF95% C.L. Limits Theory

Page 52: Physics in the Third Generationschwier/talks/seminars/DrakeColloquium... · 2009-05-28 · Reinhard Schwienhorst, Michigan State University 3 Introduction • The Standard Model of

52 Reinhard Schwienhorst, Michigan State University

Outlook: Tevatron Future• Luminosity expected to increase by a factor of ~10

– Collect 4-8fb-1 by 2009– Keep running until the LHC produces Physics results

• B Quark Physics:– Many precision measurements

– Observe Bs mixing

• Top Quark Physics:– Measure top quark mass → further constrain Higgs mass– Discover single top quark production

• Measure CKM matrix element Vtb

• Measure top quark spin

Page 53: Physics in the Third Generationschwier/talks/seminars/DrakeColloquium... · 2009-05-28 · Reinhard Schwienhorst, Michigan State University 3 Introduction • The Standard Model of

53 Reinhard Schwienhorst, Michigan State University

Outlook: The Energy Frontier

Page 54: Physics in the Third Generationschwier/talks/seminars/DrakeColloquium... · 2009-05-28 · Reinhard Schwienhorst, Michigan State University 3 Introduction • The Standard Model of

54 Reinhard Schwienhorst, Michigan State University

Outlook: The Energy Frontier• The LHC at CERN is scheduled to start up in 2007

– Proton-Proton collisions at 14TeV – Bunch crossing every 25ns (40 MHz)

• Main Goals:– Study origin of electroweak symmetry breaking– Find the Higgs boson (if it exists)– Discover supersymmetric particles (if they exist)

• Collect large samples of B quarks– Precision B measurements

• Collect large samples of Top Quarks– Precision Top Mass Measurement– Precision Single Top measurements– Top Quarks as tools

Page 55: Physics in the Third Generationschwier/talks/seminars/DrakeColloquium... · 2009-05-28 · Reinhard Schwienhorst, Michigan State University 3 Introduction • The Standard Model of

55 Reinhard Schwienhorst, Michigan State University

Conclusions/Outlook• This is an exciting time in Particle Physics

– On the threshold of a whole new regime of understanding

• The third generation fermions is at the heart– Origin of mass, matter vs anti-matter, neutrino oscillations

• The Tevatron and detectors are performing well– We are collecting a large dataset at the energy frontier

• The LHC will turn on in a few years– Extend energy frontier by a factor of 10

A decade of discovery ahead!A decade of discovery ahead!

Page 56: Physics in the Third Generationschwier/talks/seminars/DrakeColloquium... · 2009-05-28 · Reinhard Schwienhorst, Michigan State University 3 Introduction • The Standard Model of

56 Reinhard Schwienhorst, Michigan State University

Resources• Quantum Universe

http://interactions.org/quantumuniverse/

• Quarks Unboundhttp://www.aps.org/units/dpf/quarks_unbound/index.html

• Particle Adventurehttp://particleadventure.org/particleadventure/index.html

• Fermilabhttp://www.fnal.gov

• Cernhttp://www.cern.ch