physics and applications of conjugated polymers semiconductors

78
1 Physics and applications of conjugated polymers semiconductors 孟孟孟 孟孟孟孟孟孟孟

Upload: kass

Post on 14-Jan-2016

60 views

Category:

Documents


0 download

DESCRIPTION

Physics and applications of conjugated polymers semiconductors. 孟心飛 交通大學物理所. 感謝. 洪勝富 清大電機系 施宙聰 清大物理系 許千樹 交大應化系 陳壽安 清大化工系 翰立光電研發部. Conjugated polymer: organic semiconductor with direct bandgap of 2-3 eV. Outline. Overview Triplet exciton formation Field-effect transistor - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Physics and applications of conjugated polymers semiconductors

1

Physics and applications of conjugated polymers semiconductors

孟心飛 交通大學物理所

Page 2: Physics and applications of conjugated polymers semiconductors

2

感謝洪勝富 清大電機系施宙聰 清大物理系許千樹 交大應化系陳壽安 清大化工系翰立光電研發部

Page 3: Physics and applications of conjugated polymers semiconductors

3

Conjugated polymer:organic semiconductor with direct bandgap of 2-3 eV

Page 4: Physics and applications of conjugated polymers semiconductors

4

Outline Overview

Triplet exciton formation

Field-effect transistor

Multi-color LED

Page 5: Physics and applications of conjugated polymers semiconductors

5

Technologies of conjugated polymers 1970-80, metallic conductivity reached by mo

lecular doping 1990, first polymer LED was made 1998-99, polymer flat-panel-display was dem

onstrated, other opto-electronic devices are underway

Solution processing, large area, light-weight, high-brightness, flexible

Page 6: Physics and applications of conjugated polymers semiconductors

6

Science of conjugated polymers 1D semiconductor Electron-electron and electron-phonon

enhanced in 1D Quasi-particle: solitons, polarons .. Complicated recombination Spin-triplet exciton formation Transport in disordered materials

Page 7: Physics and applications of conjugated polymers semiconductors

7

Page 8: Physics and applications of conjugated polymers semiconductors

8

PPV semiconductor band structure

One -electron for each carbon atom

E(k)

C : 1s2 2s2 2p2

2s,2px,2py sp2 hybridization -bond 2pz -bond

xy

Page 9: Physics and applications of conjugated polymers semiconductors

9

Page 10: Physics and applications of conjugated polymers semiconductors

10

Page 11: Physics and applications of conjugated polymers semiconductors

11

LED Device Operation

Conduction

Valence

Page 12: Physics and applications of conjugated polymers semiconductors

12

Triplet exciton formation in polymer LED

Page 13: Physics and applications of conjugated polymers semiconductors

13

+ _ Exciton (large binding energy)

+ _ Electron-hole pair

photon

Coulomb capture

Radiative decay

Page 14: Physics and applications of conjugated polymers semiconductors

14

Electron spin = 1/2 , Hole spin = 1/2

Exciton spin =

0 (Singlet)1 (Triplet)

Total spin of exciton (electron-hole bound state)

Page 15: Physics and applications of conjugated polymers semiconductors

15

Singlet Triplet

ST

G 3 G

Free electron-hole pair

Ground State

Spin-independent recombination γ= 3

Radiative:light

Nonradiative:heat

Page 16: Physics and applications of conjugated polymers semiconductors

16

Not so simpleT.-M. Hong and H.-F. Meng, Phy. Rev. B, 63, 075206 (2001)

Ground state

S1

T2

T1

sg

tt

tg

2

st1

t1s

Free carrier continuum

s 1-s

Conjugated polymer: S/T splitting EL < ¼ ??

S2

s2t2

s1t2

RadiativeDecay

Non-radiativeDecay

Bottleneck

Page 17: Physics and applications of conjugated polymers semiconductors

17

S

T

sT

G γG

Ground State

Free electron-hole pair

Induced absorptionat near IR (1.3-1.6 eV)

Visible lightemission

Detection of singlet and triplet excitonsNo quantitative relation available!

Page 18: Physics and applications of conjugated polymers semiconductors

18

How do we measure γ ?Compare EL and PL rate equations

EL : electric excitationPL : optical excitation

Page 19: Physics and applications of conjugated polymers semiconductors

19

Free electron-hole pair

G: generation rate for singlet exciton

τ s: singlet exciton lifetime

τ t: triplet exciton lifetime

EL ELs

s

EL

s NGN1

ELT

T

EL

T NGN

1

ST

sT

G γG

Ground State

1. EL Rate equation

Page 20: Physics and applications of conjugated polymers semiconductors

20

2. PL Rate equation

:intersystem crossing lifetime.T

S

Tisc

PL

pump

Free electron-hole pair

Ground State

PLT

T

PLS

isc

PL

T NNN11

isc

Page 21: Physics and applications of conjugated polymers semiconductors

21

Steady-state Ns

EL = NtPL

01

ELs

s

NG

01

ELT

T

NG

011

PLT

T

PLS

isc

NN

PLT

ELT

isc

S

N

N

Page 22: Physics and applications of conjugated polymers semiconductors

22

MEH-PPV LED

Glass

PEDOT 40nmITO 80nm

Al 100nm

Ca 10nm

MEH-PPV (100nm or 50nm)

ITOAl

Page 23: Physics and applications of conjugated polymers semiconductors

23

Experiment setup

sample holder

PumpLaser

Beamexpender

Attenuator

lens

lens

Triplet detector

Singlet detector

lens

850nm probe

laser

Function generator

Lock-in

Preamplifier

EL

PL

Page 24: Physics and applications of conjugated polymers semiconductors

24Optical table

Page 25: Physics and applications of conjugated polymers semiconductors

25Infrared semiconductor probe lasers

Page 26: Physics and applications of conjugated polymers semiconductors

26Cooling system (under construction)

Page 27: Physics and applications of conjugated polymers semiconductors

27

EL-induced absorption (EA) spectrum due to the triplet exciton

1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1

2

3

4

5

6

7

8

9

10

R/R

x

10

5 (T

rip

let

exc

iton

ind

uce

d-a

bso

rptio

n)

Probe photon energy (eV)

Page 28: Physics and applications of conjugated polymers semiconductors

28

Triplet and singlet exciton density

-20 0 20 40 60 80 100 120 140 1600

5

10

15

20

25

30

35

6

5.554.543.53

2.5

21.5

1

1

1.5

2

2.5

3

3.5 76.565.55

4.54

Tri

ple

t (

mV

)

Singlet (mV)

100nm EA vs EL 50nm EA vs EL 100nm PA vs PL 50nm PA vs PL

linear

Page 29: Physics and applications of conjugated polymers semiconductors

29

0 2 4 6 8 10 121E-4

1E-3

0.01

0.1

1

0.64 ns (592nm)

Lu

min

esc

en

ce in

ten

sity

(a

.u.)

Time (ns)

Time-resolved PL, s=0.64 ns

Page 30: Physics and applications of conjugated polymers semiconductors

30

1x105 2x105 3x105 4x105 5x105 6x105 7x105 8x1050

2

4

6

8

10

12

14

16

18

20

Tri

ple

t/S

ing

let

ra

tio

E (V/cm)

50nm 100nm

Phys. Rev. Lett., 90, 036601 (2003)

d : thickness of MEH-PPV.

Vbi : built-in voltage

dVVE bi /)(

Page 31: Physics and applications of conjugated polymers semiconductors

31

1S

2S

1T

Free carrier continuum

Ground state

0.1ev

1ev

0.3ev2T1/4 3/4

Phonon bottleneck

1. Field dissociation

Two possible explanations

2. Quenching by polarons

Page 32: Physics and applications of conjugated polymers semiconductors

32

Conclusion

γ is not a constant but a strong universal function of the electric field

γ is much larger than 3 for intermediate bias and smaller than 3 for high bias

Triplet exciton formation is no longer the main limit for the efficiency of a LED operated under high bias

Page 33: Physics and applications of conjugated polymers semiconductors

33

Parallel transport and field effect transistors

Page 34: Physics and applications of conjugated polymers semiconductors

34

Light emitting polymers have very low carrier mobility

Page 35: Physics and applications of conjugated polymers semiconductors

35

Motivation for horizontal structure

Carriers transport by hopping in the sandwich structure – low mobility Carriers transport along the backbone mostly in a horizontal device

structure –high mobility

j

Perpendicular transport(high mobility)

Glass substrate

j

Parallel transport(low mobility)

Glass substrate

Page 36: Physics and applications of conjugated polymers semiconductors

36

Yi-Shiou Chen and Hsin-Fei Meng, Phys. Rev. B, 66, 035191 (2002)

Theoretical basis:High intrachain mobility can be achieved even with many conjugation defects

Page 37: Physics and applications of conjugated polymers semiconductors

37

Parallel hole transport

polymer

glass

Au Au

d

hd = 2 micronh = 100 nm

Page 38: Physics and applications of conjugated polymers semiconductors

38

Page 39: Physics and applications of conjugated polymers semiconductors

39Thermal coater

Page 40: Physics and applications of conjugated polymers semiconductors

40Mask aligner for photo-lithography

Page 41: Physics and applications of conjugated polymers semiconductors

41Spinner

Page 42: Physics and applications of conjugated polymers semiconductors

42

1μm gold source/drain channel on glass or SiO2/ITO

Page 43: Physics and applications of conjugated polymers semiconductors

43

Interdigited1 μm channel

Page 44: Physics and applications of conjugated polymers semiconductors

44

ITO/PPV/Au sandwich device

3

2

8

9

L

V

Hole-only device T=307K SCLC model J= p=510-11m2/Vs

=510-7cm2/Vs

PRB55,R656(1997)

R1=CH3, R2=C10H21

r 0

3

2

8

9

L

V

Page 45: Physics and applications of conjugated polymers semiconductors

45

Space charge limited current

Steady state: J=nqE Poisson’s eq.:

……Mott-Gurney law

ndx

dE

q

dx

dEJE

212

1

2)(0)0( x

JXEE

232

1

9

8,)( L

JVVLV

3

2

8

9

L

VJ

Page 46: Physics and applications of conjugated polymers semiconductors

46

fixed T, variable SD distance d

Ohmic: J=n0 q p E There is little depen

dence between p and d.

0

2000

4000

6000

8000

10000

curr

ent d

ensi

ty J

(A/m

2 )

bias(V)

d=2.5micron d=4.5micron

Page 47: Physics and applications of conjugated polymers semiconductors

47

J-E plot

106 107

102

103

104

curr

ent

den

sity

J(A

/m2 )

field E(V/m)

d=2.5micron d=4.5micron

The slope of J-E curve = n0 q p

n0 :extrinsic carrier density q:electron charge p: hole mobility 由 n0 倒推回 p

p=3.810-3 cm2/Vs

Page 48: Physics and applications of conjugated polymers semiconductors

48

sandwich device:ITO/MEH-PPV/Ca/Al

0.01 0.1 1 10

10-4

10-3

10-2

SCLC

Ohmic

curr

ent d

ensi

ty(A

/m2 )

bias voltage(V)

bias>3V: SCLC J=

=3 L =1200Å p =1.44×10-5cm2V-1s-1

bias<3V: Ohmic J=n0 q p E n0 =7.84×1021m-3

3

2

08

9

L

Vpr

r

Page 49: Physics and applications of conjugated polymers semiconductors

49

Compare with other sandwich devices

0 1x107 2x107 3x107 4x107 5x107 6x107

10-4

10-3

10-2

10-1

100

101

102

103

104

curr

en

t de

nsi

ty J

(A/m

2 )

field E(V/m)

d=2.5micron d=4.5micron Chen (Sandwich) Heeger (MEH-PPV) Friend (PPV)

Our horizontal device:

p=3.810-3 cm2/Vs Chen:

p =1.44×10-5 cm2/Vs Friend:

p =2×10-7 cm2/Vs Hegger:

p =2.24×10-7 cm2/Vs

Page 50: Physics and applications of conjugated polymers semiconductors

50

fixed T, variable d

T=297K There is little

dependence between p and d.

No domain down to 1 micron

0 1x107 2x107 3x107 4x107 5x107 6x107

0.0

5.0x103

1.0x104

1.5x104

2.0x104

2.5x104

curr

en

t de

nsi

ty J

(A/m

2 )

field E(V/m)

d=0.9micron d=2.5micron d=4.5micron d=9.6micron d=14.7micron

Page 51: Physics and applications of conjugated polymers semiconductors

51

Temperature dependence

fixed d, variable temperatured=0.9micronT : from 297K to 235KJ=n0 q p E

0 1x107 2x107 3x107 4x107 5x107 6x107

0.0

5.0x103

1.0x104

1.5x104

2.0x104

2.5x104

curr

en

t de

nsi

ty J

(A/m

2 )

field E(V/m)

297K 282K 267K 256K 235K

Page 52: Physics and applications of conjugated polymers semiconductors

52

fixed d, variable temperature

p= 0exp(-/kBT)=0.233eVHorizontal ~ Sandwich/2

3.2 3.4 3.6 3.8 4.0 4.2 4.410-8

10-7

10-6

d=0.9micron

ho

le m

ob

ility

(m2 /V

s)

1000/T(K-1)

Page 53: Physics and applications of conjugated polymers semiconductors

53

Field effect transistor and its applications

Page 54: Physics and applications of conjugated polymers semiconductors

54

Bottom gate transistor structure

ITO

SiO2

polymer

glass

Au Au

d

hd = 2 micronh = 100 nm

Page 55: Physics and applications of conjugated polymers semiconductors

55

P-type transistorwith hole accumulation

gate

insulator

glass

source drain

channel

VGS<0

Page 56: Physics and applications of conjugated polymers semiconductors

56

Application: active matrix flat-panel-display

Page 57: Physics and applications of conjugated polymers semiconductors

57

Passive matrix display

Scan line

Data line

1.One row each scan2.Fast degradation3.Voltage drop in lines4. Uniformity problem

Page 58: Physics and applications of conjugated polymers semiconductors

58

One active matrix

Scan line

Data line

Pixel

Switching TFT

Driving TFT

Page 59: Physics and applications of conjugated polymers semiconductors

59

Design by Cambridge and Seiko-Epson

Page 60: Physics and applications of conjugated polymers semiconductors

60

Our design : Pixel and FET share same semiconductor

Side view

S SD D

G GITO

PPV

Metal

I I

Page 61: Physics and applications of conjugated polymers semiconductors

61

Transistor target

LED turn-on current density j = 10 mA/cm2

Pixel area A = 0.1x0.1 mm2

Driving current = A j = 1 A = 1000 nA

Page 62: Physics and applications of conjugated polymers semiconductors

62

MEH-PPV FET characteristicsVsd < 0

FL023

Page 63: Physics and applications of conjugated polymers semiconductors

63

FET characteristicsVsd > 0

FL016

1 A

Page 64: Physics and applications of conjugated polymers semiconductors

64

Frequency response SetupSetup::

FunctionFunctiongeneratorgenerator

FunctionFunctiongeneratorgenerator

G

SiO2

S D

oscilloscopeoscilloscopeoscilloscopeoscilloscope

MEH-PPVMEH-PPV

R1

Page 65: Physics and applications of conjugated polymers semiconductors

65

1KHz frequency response: not bad

Gate Gate voltagevoltage

RR1 1

VoltageVoltage

Page 66: Physics and applications of conjugated polymers semiconductors

66

Conclusion

• Same-polymer pixel+FET is possible• Simplified active-matrix display design• Processing on flexible substrate is

possible

Page 67: Physics and applications of conjugated polymers semiconductors

67

Voltage-tunable full-color PLED

Page 68: Physics and applications of conjugated polymers semiconductors

68

Motivation

Full color display without pixel patterning

Signaling Lighting

Page 69: Physics and applications of conjugated polymers semiconductors

69

Working principle

Hole mobility is much larger than electron mobility

Electron mobility increases rapidly with field

Recombination zone pushed by field

Page 70: Physics and applications of conjugated polymers semiconductors

70

Suitable structurewith electron blockade

e

h

e

h

ITO4.8~5.0

AU5.2

Ca: 2.9MgAg: 3.7

AL: 4.2

Page 71: Physics and applications of conjugated polymers semiconductors

71

Red(610~640nm, 2.03~1.94eV) 1. MEH-PPV: 605nm, 2.8—5.0eV

~1.0%(PRB, 53, 15815(1996))

Page 72: Physics and applications of conjugated polymers semiconductors

72

Green(505~555nm, 2.46~2.23eV) 1. A proprietary material of Dow Chem.

536nm, ??--??eV, ~0.9% (SM, 111, 159(2000))

Page 73: Physics and applications of conjugated polymers semiconductors

73

Blue(460~480nm, 2.70~2.58eV)

2.PFO: 440nm, (SM, 125, 55(2002))

2.12—5.8eV(APL, 73, 2453(1998))

2.95—5.9eV, ~1.2% (JCP, 116,1700(2002))

Page 74: Physics and applications of conjugated polymers semiconductors

74

Electron blocking PVK: 1.2—6.1eV(APL, 65, 1272(1994)),

tetrahydrofuran(THF), chloroform (APL, 74, 3613(1999)),

trichloroethane(JAP, 79, 934(1996))

Page 75: Physics and applications of conjugated polymers semiconductors

75

4V

9V

11V

13V

Page 76: Physics and applications of conjugated polymers semiconductors

76

5v 9v 13v

17v 20v

Page 77: Physics and applications of conjugated polymers semiconductors

77

PEDOT/PVK/PFO/PF/MEH

300 400 500 600 700 800

0.0

0.2

0.4

0.6

0.8

1.0

Y A

xis

Title

X Axis Title

4V 592 6V 588 8V 584 10V 580 12V 576 14V 572 16V 568 18V 556

Page 78: Physics and applications of conjugated polymers semiconductors

78

PEDOT/PVK/PFO/G/MEH

300 400 500 600 700 800

0.0

0.2

0.4

0.6

0.8

1.0

Y A

xis

Title

wavelength

6V 584 8V 576 10V 572 12V 572 14V 568 16V 560 18V 556 20V 552