physics 9 | friday, april 8, 2016positron.hep.upenn.edu/.../phys9_notes_20160408.pdf · 4/8/2016...

63
Physics 9 — Friday, April 8, 2016 I Since we have only 3 weeks left, and people are quite eager to work hands-on with circuits, all of our remaining class meetings will be here, in DRL 2N25. I 2N25 is in the same corridor as 2N36 (HW session room), but is closer to 33rd Street, and across the hall. (If you’re here now, then you know that!) I Today, we’ll finish up Wednesday’s worksheet, look over HW10, and do the strips-of-tape experiments from Eric Mazur’s chapter 22. I This week’s reading: electric currents and DC circuits. I Next week’s reading: more circuits, then Arduinos. I Let’s try doing two things in parallel, and see how it goes: we’ll finish the worksheet, and at the same time you can work through Mazur’s experiments with strips of tape and paper.

Upload: others

Post on 16-Aug-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Physics 9 | Friday, April 8, 2016positron.hep.upenn.edu/.../phys9_notes_20160408.pdf · 4/8/2016  · Physics 9 | Friday, April 8, 2016 I Since we have only 3 weeks left, and people

Physics 9 — Friday, April 8, 2016

I Since we have only 3 weeks left, and people are quite eager towork hands-on with circuits, all of our remaining classmeetings will be here, in DRL 2N25.

I 2N25 is in the same corridor as 2N36 (HW session room), butis closer to 33rd Street, and across the hall. (If you’re herenow, then you know that!)

I Today, we’ll finish up Wednesday’s worksheet, look overHW10, and do the strips-of-tape experiments from EricMazur’s chapter 22.

I This week’s reading: electric currents and DC circuits.

I Next week’s reading: more circuits, then Arduinos.

I Let’s try doing two things in parallel, and see how it goes:we’ll finish the worksheet, and at the same time you can workthrough Mazur’s experiments with strips of tape and paper.

Page 2: Physics 9 | Friday, April 8, 2016positron.hep.upenn.edu/.../phys9_notes_20160408.pdf · 4/8/2016  · Physics 9 | Friday, April 8, 2016 I Since we have only 3 weeks left, and people

Electric field due to N charged objects Q1, Q2, . . . , QN

Just as the force experienced by a test charge q (positioned atpoint P) is the vector sum of the forces due to the other charges,the electric field ~E (evaluated at point P) due to N chargedobjects is the vector sum of the contributions from each charge:

~E (P) =∑ ~Fon q

q= k

N∑i=1

Qi

r2iP

riP

That implies that the electric field due to N different sourceobjects is just the superposition (i.e. the vector sum) of theelectric fields due to the individual sources.

Page 3: Physics 9 | Friday, April 8, 2016positron.hep.upenn.edu/.../phys9_notes_20160408.pdf · 4/8/2016  · Physics 9 | Friday, April 8, 2016 I Since we have only 3 weeks left, and people
Page 4: Physics 9 | Friday, April 8, 2016positron.hep.upenn.edu/.../phys9_notes_20160408.pdf · 4/8/2016  · Physics 9 | Friday, April 8, 2016 I Since we have only 3 weeks left, and people

In which direction did you draw your ~E (P) arrow for question 5?

Page 5: Physics 9 | Friday, April 8, 2016positron.hep.upenn.edu/.../phys9_notes_20160408.pdf · 4/8/2016  · Physics 9 | Friday, April 8, 2016 I Since we have only 3 weeks left, and people

OK, now back to Question 6:

Work out the Cartesian components (Ex , Ey ) for the electric field~E at the same point P.

If we let ~EA, ~EB , and ~EC be the electric field created by particle A,by particle B, and by particle C , respectively, then the combinedelectric field is the vector sum of these individual electric fields:

~E (P) = ~EA(P) + ~EB(P) + ~EC (P) =∑

i

kqi

r2iP

riP

Page 6: Physics 9 | Friday, April 8, 2016positron.hep.upenn.edu/.../phys9_notes_20160408.pdf · 4/8/2016  · Physics 9 | Friday, April 8, 2016 I Since we have only 3 weeks left, and people
Page 7: Physics 9 | Friday, April 8, 2016positron.hep.upenn.edu/.../phys9_notes_20160408.pdf · 4/8/2016  · Physics 9 | Friday, April 8, 2016 I Since we have only 3 weeks left, and people
Page 8: Physics 9 | Friday, April 8, 2016positron.hep.upenn.edu/.../phys9_notes_20160408.pdf · 4/8/2016  · Physics 9 | Friday, April 8, 2016 I Since we have only 3 weeks left, and people
Page 9: Physics 9 | Friday, April 8, 2016positron.hep.upenn.edu/.../phys9_notes_20160408.pdf · 4/8/2016  · Physics 9 | Friday, April 8, 2016 I Since we have only 3 weeks left, and people

Motion in electric field.Remember that the vector sum of forces acting ON an objectcauses the object to accelerate:

m~a =∑

~F

In an electric field ~E , the force ~F on an object with charge q is

~F = q~E

If the force ~F = q~E is not balanced by any other force, a chargedobject will accelerate in an electric field:

~a =q

m~E

If some other force ~Fother is also acting (e.g. gravity), then

~a =q

m~E +

1

m~Fother

Page 10: Physics 9 | Friday, April 8, 2016positron.hep.upenn.edu/.../phys9_notes_20160408.pdf · 4/8/2016  · Physics 9 | Friday, April 8, 2016 I Since we have only 3 weeks left, and people

Electric field hockey: may help with ~F = q~Ephet.colorado.edu/en/simulation/electric-hockey

http://www.youtube.com/watch?v=VuG4eG_KaUw

Page 11: Physics 9 | Friday, April 8, 2016positron.hep.upenn.edu/.../phys9_notes_20160408.pdf · 4/8/2016  · Physics 9 | Friday, April 8, 2016 I Since we have only 3 weeks left, and people

E.F.H can draw the electric field e.g. from HW problem 5. (Theblack ⊕ is the “test charge” and doesn’t contribute to ~E .)

Page 12: Physics 9 | Friday, April 8, 2016positron.hep.upenn.edu/.../phys9_notes_20160408.pdf · 4/8/2016  · Physics 9 | Friday, April 8, 2016 I Since we have only 3 weeks left, and people

Notice that in a “vector field diagram” (which Giancoli doesn’tmention, but you can find in Mazur’s chapter 23 if you’reinterested), you draw a separate arrow at each grid point. Thelength of the arrow (or the darkness of the arrow in the case ofElectric Field Hockey) indicates the strength of the field. Thedirection of the arrow indicates the direction of the electric field.

These diagrams appear in HW10 q9 and q10.

Page 13: Physics 9 | Friday, April 8, 2016positron.hep.upenn.edu/.../phys9_notes_20160408.pdf · 4/8/2016  · Physics 9 | Friday, April 8, 2016 I Since we have only 3 weeks left, and people
Page 14: Physics 9 | Friday, April 8, 2016positron.hep.upenn.edu/.../phys9_notes_20160408.pdf · 4/8/2016  · Physics 9 | Friday, April 8, 2016 I Since we have only 3 weeks left, and people

Notice that in a “vector field diagram” (which Giancoli doesn’tmention, but you can find in Mazur’s chapter 23 if you’reinterested), you draw a separate arrow at each grid point. Thelength of the arrow (or the darkness of the arrow in the case ofElectric Field Hockey) indicates the strength of the field. Thedirection of the arrow indicates the direction of the electric field.

More often, instead, you’ll see a drawing of electric field lines,which (for an electrostatic field, caused by stationary (non-moving)electric charges) always originate on positive charges and terminateon negative charges. In a field-line diagram, the direction of theline (the tangent vector, if the line is curved) shows the directionof the electric field. A bigger field magnitude is indicated bymore-closely-spaced field lines; a smaller field magnitude isindicated by less-closely-space field lines.

Page 15: Physics 9 | Friday, April 8, 2016positron.hep.upenn.edu/.../phys9_notes_20160408.pdf · 4/8/2016  · Physics 9 | Friday, April 8, 2016 I Since we have only 3 weeks left, and people

“Flux” of electric field lines.

I |~E | is proportional to the density of electric field lines. Moreclosely spaced lines → bigger |~E |.

I Think of the field lines “flowing” (or radiating, like light) outfrom the (+) charges and into the (−) charges.

I The total “flux” of ~E through a hypothetical closed surface isproportional to the total charge enclosed by that surface.

Where is |~E | largest here?

What are the signs of the twoparticles’ charges?

If you draw a circle thatencloses no net charge, what isthe net flux through the circle?

Page 16: Physics 9 | Friday, April 8, 2016positron.hep.upenn.edu/.../phys9_notes_20160408.pdf · 4/8/2016  · Physics 9 | Friday, April 8, 2016 I Since we have only 3 weeks left, and people

Is net charge enclosed by each circle +, −, or 0 ?

Page 17: Physics 9 | Friday, April 8, 2016positron.hep.upenn.edu/.../phys9_notes_20160408.pdf · 4/8/2016  · Physics 9 | Friday, April 8, 2016 I Since we have only 3 weeks left, and people

Notice the different pattern for two particles of opposite charge(left) vs. two particles of same charge (right).

Page 18: Physics 9 | Friday, April 8, 2016positron.hep.upenn.edu/.../phys9_notes_20160408.pdf · 4/8/2016  · Physics 9 | Friday, April 8, 2016 I Since we have only 3 weeks left, and people

The image shows the electric field around two charged particles,using the “grass seed” representation of field lines. From thispicture you can conclude that

(A) The two charges attract one another.(B) The two charges repel one another.(C) Not enough information to tell whether they repel or attract.

Page 19: Physics 9 | Friday, April 8, 2016positron.hep.upenn.edu/.../phys9_notes_20160408.pdf · 4/8/2016  · Physics 9 | Friday, April 8, 2016 I Since we have only 3 weeks left, and people

(Follow-up: Where are the two particles located? Can you saywhat the signs of the charges are? Can you tell whether the chargemagnitudes are the same or different?)

Page 20: Physics 9 | Friday, April 8, 2016positron.hep.upenn.edu/.../phys9_notes_20160408.pdf · 4/8/2016  · Physics 9 | Friday, April 8, 2016 I Since we have only 3 weeks left, and people

Using superposition, draw ~E at points P1 . . . P4 if q2 = +q1.

Page 21: Physics 9 | Friday, April 8, 2016positron.hep.upenn.edu/.../phys9_notes_20160408.pdf · 4/8/2016  · Physics 9 | Friday, April 8, 2016 I Since we have only 3 weeks left, and people

Using superposition, draw ~E at points P1 . . . P4 if q2 = +2q1.

Page 22: Physics 9 | Friday, April 8, 2016positron.hep.upenn.edu/.../phys9_notes_20160408.pdf · 4/8/2016  · Physics 9 | Friday, April 8, 2016 I Since we have only 3 weeks left, and people

Using superposition, draw ~E at points P1 . . . P4 if q2 = −q1.

Page 23: Physics 9 | Friday, April 8, 2016positron.hep.upenn.edu/.../phys9_notes_20160408.pdf · 4/8/2016  · Physics 9 | Friday, April 8, 2016 I Since we have only 3 weeks left, and people

Is anyone interested in working through this example? Fourcharged particles are arranged in a square (side length 2a), asshown. Find & draw the electric field at the center of the square.

Page 24: Physics 9 | Friday, April 8, 2016positron.hep.upenn.edu/.../phys9_notes_20160408.pdf · 4/8/2016  · Physics 9 | Friday, April 8, 2016 I Since we have only 3 weeks left, and people

(We’ll see on next pagethat Electric FieldHockey can draw the Efield diagram for chargeconfigurations likethis.)

Ex =√

2kq

a2

Ey = 0

~E =√

2kq

a2i

Page 25: Physics 9 | Friday, April 8, 2016positron.hep.upenn.edu/.../phys9_notes_20160408.pdf · 4/8/2016  · Physics 9 | Friday, April 8, 2016 I Since we have only 3 weeks left, and people
Page 26: Physics 9 | Friday, April 8, 2016positron.hep.upenn.edu/.../phys9_notes_20160408.pdf · 4/8/2016  · Physics 9 | Friday, April 8, 2016 I Since we have only 3 weeks left, and people

Is anyone interested in working through this example? (This one ismuch more tedious!) Four charged particles are arranged in asquare, as shown. Find (and draw) the electric field at the centerof the square.

Page 27: Physics 9 | Friday, April 8, 2016positron.hep.upenn.edu/.../phys9_notes_20160408.pdf · 4/8/2016  · Physics 9 | Friday, April 8, 2016 I Since we have only 3 weeks left, and people

Four charged particles are arranged in a square, as shown. Find(and draw) the electric field at the center of the square.

Ex = 6√

2kq

a2Ey = 2

√2

kq

a2|~E | = 4

√5

kq

a2

Page 28: Physics 9 | Friday, April 8, 2016positron.hep.upenn.edu/.../phys9_notes_20160408.pdf · 4/8/2016  · Physics 9 | Friday, April 8, 2016 I Since we have only 3 weeks left, and people

A faucet tap is turned on at the center. Rank order which closedline has the most (to the least) water flowing across the line perunit time. (The faucet has been on for a long time.)

(A) 1 > 2 > 3 > 4

(B) 1 = 2 > 3 > 4

(C) 1 = 3 > 2 > 4

(D) 4 > 3 > 2 > 1

(E) 1 = 2 = 3 = 4

(F) none of the above

Page 29: Physics 9 | Friday, April 8, 2016positron.hep.upenn.edu/.../phys9_notes_20160408.pdf · 4/8/2016  · Physics 9 | Friday, April 8, 2016 I Since we have only 3 weeks left, and people
Page 30: Physics 9 | Friday, April 8, 2016positron.hep.upenn.edu/.../phys9_notes_20160408.pdf · 4/8/2016  · Physics 9 | Friday, April 8, 2016 I Since we have only 3 weeks left, and people

Back to the tape strips

I Chemical bonds involve the transfer of electrons from oneatom to another, or the sharing of electrons between atoms.

I When a chemical bond is formed between two unlikematerials, electrons tend to be more closely attracted to onekind of atom than the other.

I If you rub unlike insulators together, you transfer someelectrons to whichever material more closely attracts electrons.

Page 31: Physics 9 | Friday, April 8, 2016positron.hep.upenn.edu/.../phys9_notes_20160408.pdf · 4/8/2016  · Physics 9 | Friday, April 8, 2016 I Since we have only 3 weeks left, and people

I http://en.wikipedia.org/wiki/Triboelectric_effect

I fur + plastic leaves negative charge on plastic

I cotton + acrylic leaves positive charge on acrylic

I Rubbing just about any other insulating material against arubber balloon leaves negative charge on the rubber balloon!

I Only a tiny fraction of the electrons are transferred, but thistiny fraction results in a surplus of electrons on one materialand a surplus of positive ions on the other material.

I Surplus electrons deposited on an insulator are stuck wherethey were deposited, unless you rub them off.

I But surplus electrons deposited on a conductor will spreadout, to try to get as far away from one another as possible.

I Since your body contains a lot of water (but not pure water),you are a pretty good conductor (but dry skin is an insulator).So surplus electrons deposited on me will try to spread out asfar as possible!

Page 32: Physics 9 | Friday, April 8, 2016positron.hep.upenn.edu/.../phys9_notes_20160408.pdf · 4/8/2016  · Physics 9 | Friday, April 8, 2016 I Since we have only 3 weeks left, and people

Triboelectric series (who knew?!)most positively chargedairhuman skin (dry)leatherrabbit furglassquartzmicahuman hairnylonwoolleadcat fursilkaluminumpaper(small positive charge)

(small negative charge)woodrubber balloonresinshard rubbernickel, copperbrass, silvergold, platinumsynthetic rubberpolyesterstyrofoamplastic wrapscotch tapevinylteflonsilicone rubbermost negatively charged

Page 33: Physics 9 | Friday, April 8, 2016positron.hep.upenn.edu/.../phys9_notes_20160408.pdf · 4/8/2016  · Physics 9 | Friday, April 8, 2016 I Since we have only 3 weeks left, and people

Be sure to put a “handle” on the end of yourbottom piece of tape, so that it is easy to remove itfrom your desk at the end of class. If we leave tapestuck to the desks at the end of class, thehousekeeping folks may put an end to ourexperiments . . . .

Page 34: Physics 9 | Friday, April 8, 2016positron.hep.upenn.edu/.../phys9_notes_20160408.pdf · 4/8/2016  · Physics 9 | Friday, April 8, 2016 I Since we have only 3 weeks left, and people
Page 35: Physics 9 | Friday, April 8, 2016positron.hep.upenn.edu/.../phys9_notes_20160408.pdf · 4/8/2016  · Physics 9 | Friday, April 8, 2016 I Since we have only 3 weeks left, and people
Page 36: Physics 9 | Friday, April 8, 2016positron.hep.upenn.edu/.../phys9_notes_20160408.pdf · 4/8/2016  · Physics 9 | Friday, April 8, 2016 I Since we have only 3 weeks left, and people
Page 37: Physics 9 | Friday, April 8, 2016positron.hep.upenn.edu/.../phys9_notes_20160408.pdf · 4/8/2016  · Physics 9 | Friday, April 8, 2016 I Since we have only 3 weeks left, and people
Page 38: Physics 9 | Friday, April 8, 2016positron.hep.upenn.edu/.../phys9_notes_20160408.pdf · 4/8/2016  · Physics 9 | Friday, April 8, 2016 I Since we have only 3 weeks left, and people
Page 39: Physics 9 | Friday, April 8, 2016positron.hep.upenn.edu/.../phys9_notes_20160408.pdf · 4/8/2016  · Physics 9 | Friday, April 8, 2016 I Since we have only 3 weeks left, and people
Page 40: Physics 9 | Friday, April 8, 2016positron.hep.upenn.edu/.../phys9_notes_20160408.pdf · 4/8/2016  · Physics 9 | Friday, April 8, 2016 I Since we have only 3 weeks left, and people
Page 41: Physics 9 | Friday, April 8, 2016positron.hep.upenn.edu/.../phys9_notes_20160408.pdf · 4/8/2016  · Physics 9 | Friday, April 8, 2016 I Since we have only 3 weeks left, and people
Page 42: Physics 9 | Friday, April 8, 2016positron.hep.upenn.edu/.../phys9_notes_20160408.pdf · 4/8/2016  · Physics 9 | Friday, April 8, 2016 I Since we have only 3 weeks left, and people
Page 43: Physics 9 | Friday, April 8, 2016positron.hep.upenn.edu/.../phys9_notes_20160408.pdf · 4/8/2016  · Physics 9 | Friday, April 8, 2016 I Since we have only 3 weeks left, and people
Page 44: Physics 9 | Friday, April 8, 2016positron.hep.upenn.edu/.../phys9_notes_20160408.pdf · 4/8/2016  · Physics 9 | Friday, April 8, 2016 I Since we have only 3 weeks left, and people
Page 45: Physics 9 | Friday, April 8, 2016positron.hep.upenn.edu/.../phys9_notes_20160408.pdf · 4/8/2016  · Physics 9 | Friday, April 8, 2016 I Since we have only 3 weeks left, and people
Page 46: Physics 9 | Friday, April 8, 2016positron.hep.upenn.edu/.../phys9_notes_20160408.pdf · 4/8/2016  · Physics 9 | Friday, April 8, 2016 I Since we have only 3 weeks left, and people

The most commonly used way to create a uniform electric field isto use the area between two large, parallel, oppositely-chargedplanes of uniform charge-per-unit-area.

Page 47: Physics 9 | Friday, April 8, 2016positron.hep.upenn.edu/.../phys9_notes_20160408.pdf · 4/8/2016  · Physics 9 | Friday, April 8, 2016 I Since we have only 3 weeks left, and people

Notice that if you do this, a positive particle will “fall” in thedirection that ~E points, just as a rock will fall in the directiongravity points — toward Earth’s surface. To lift up a positiveparticle, you would have to add energy (do + work).

Page 48: Physics 9 | Friday, April 8, 2016positron.hep.upenn.edu/.../phys9_notes_20160408.pdf · 4/8/2016  · Physics 9 | Friday, April 8, 2016 I Since we have only 3 weeks left, and people

Suppose I move a charged particle vertically upward in the regionwhere ~E is uniform and points downward. The work-per-unit-charge that I have to do to move the particle up is:

(A) positive

(B) negative

(C) zero

Page 49: Physics 9 | Friday, April 8, 2016positron.hep.upenn.edu/.../phys9_notes_20160408.pdf · 4/8/2016  · Physics 9 | Friday, April 8, 2016 I Since we have only 3 weeks left, and people

Suppose I move a charged particle vertically downward in theregion where ~E is uniform and points downward. Thework-per-unit- charge that I have to do to move the particle is:

(A) positive

(B) negative

(C) zero

Page 50: Physics 9 | Friday, April 8, 2016positron.hep.upenn.edu/.../phys9_notes_20160408.pdf · 4/8/2016  · Physics 9 | Friday, April 8, 2016 I Since we have only 3 weeks left, and people

Suppose I move a charged particle horizontally in the regionwhere ~E is uniform and points downward. The work-per-unit-charge that I have to do to move the particle is:

(A) positive

(B) negative

(C) zero

Page 51: Physics 9 | Friday, April 8, 2016positron.hep.upenn.edu/.../phys9_notes_20160408.pdf · 4/8/2016  · Physics 9 | Friday, April 8, 2016 I Since we have only 3 weeks left, and people

Electrostatic potential is analogous to altitude. Gravity points inthe direction in which altitude decreases most quickly. ~E points inthe direction in which “voltage” decreases most quickly.Equipotential lines are perpendicular to ~E .

Page 52: Physics 9 | Friday, April 8, 2016positron.hep.upenn.edu/.../phys9_notes_20160408.pdf · 4/8/2016  · Physics 9 | Friday, April 8, 2016 I Since we have only 3 weeks left, and people

Contour lines on a topo map are always perpendicular to gravity.Contour lines are lines of constant elevation. Moving along acontour line, you do no work against gravity. Along a contour line,G.P.E. (per unit mass) is constant.

Page 53: Physics 9 | Friday, April 8, 2016positron.hep.upenn.edu/.../phys9_notes_20160408.pdf · 4/8/2016  · Physics 9 | Friday, April 8, 2016 I Since we have only 3 weeks left, and people

Equipotential lines (constant V ) are perpendicular to ~E . Movingalong an equipotential, you do no work against ~E . Along anequipotential, E.P.E. (per unit charge) is constant.

Page 54: Physics 9 | Friday, April 8, 2016positron.hep.upenn.edu/.../phys9_notes_20160408.pdf · 4/8/2016  · Physics 9 | Friday, April 8, 2016 I Since we have only 3 weeks left, and people

Equipotential lines (constant V ) are perpendicular to ~E . Movingalong an equipotential, you do no work against ~E . Along anequipotential, E.P.E. (per unit charge) is constant.

Page 55: Physics 9 | Friday, April 8, 2016positron.hep.upenn.edu/.../phys9_notes_20160408.pdf · 4/8/2016  · Physics 9 | Friday, April 8, 2016 I Since we have only 3 weeks left, and people

I am standing in a uniform electric field, of magnitude 1 N/C,which points downward. I climb up 1 meter. What is the potentialdifference, V1→2 = V2 − V1, between my old location and my newlocation? (Note: 1 N/C is the same as 1 volt per meter.)

(A) V1→2 = +1 volt

(B) V1→2 = −1 volt

(C) V1→2 = 0 volts

Page 56: Physics 9 | Friday, April 8, 2016positron.hep.upenn.edu/.../phys9_notes_20160408.pdf · 4/8/2016  · Physics 9 | Friday, April 8, 2016 I Since we have only 3 weeks left, and people

The “potential difference” between point a and point b is minusthe work-per-unit-charge done by the electric field in moving a testparticle from a to b.

Vab = − 1

q

∫ b

a

~FE · d~ = −∫ b

a

~E · d~

More intuitively, Vab is (plus) the work-per-unit-charge that anexternal agent (like me) would have to do to move a particle froma to b. I would be working against the electric field to do this.

But a much easier-to-remember definition of voltage is “electricpotential energy per unit charge.”

Just as ~E is electric force per unit charge, V is electric potentialenergy per unit charge.

V =UE

q

Moving a positive particle to higher V means moving it to aposition of higher electric potential energy.

Page 57: Physics 9 | Friday, April 8, 2016positron.hep.upenn.edu/.../phys9_notes_20160408.pdf · 4/8/2016  · Physics 9 | Friday, April 8, 2016 I Since we have only 3 weeks left, and people

Near Earth’s surface, gravitational potential energy is

UG = m g h

G.P.E. per unit mass would be just (U/m) = gh, which isproportional to altitude. Moving an object (no matter what mass)along a contour of equal gh does not require doing any workagainst gravity, and does not change the object’s G.P.E.

In a uniform downward-pointing electric field, electric potentialenergy is

UE = q E y

E.P.E. per unit charge would be just V = (U/q) = E y . So if ~E isuniform and points down, then potential (or “voltage”) V isanalogous to altitude. Moving perpendicular to ~E does not requiredoing any work against ~E , and does not change E.P.E. So“equipotential” lines (constant V) are always perpendicular to ~E .

Page 58: Physics 9 | Friday, April 8, 2016positron.hep.upenn.edu/.../phys9_notes_20160408.pdf · 4/8/2016  · Physics 9 | Friday, April 8, 2016 I Since we have only 3 weeks left, and people

Inside a wire, positively charged particles are moving to the right.What is the direction of the electric current (symbol I , unit =ampere, or “amp”) ?

(A) up(B) down(C) left

(D) right(E) into the page(F) out of the page

(G) zero

Page 59: Physics 9 | Friday, April 8, 2016positron.hep.upenn.edu/.../phys9_notes_20160408.pdf · 4/8/2016  · Physics 9 | Friday, April 8, 2016 I Since we have only 3 weeks left, and people

Inside a wire, negatively charged particles are moving to the right.What is the direction of the electric current?

(A) up(B) down(C) left

(D) right(E) into the page(F) out of the page

(G) zero

Page 60: Physics 9 | Friday, April 8, 2016positron.hep.upenn.edu/.../phys9_notes_20160408.pdf · 4/8/2016  · Physics 9 | Friday, April 8, 2016 I Since we have only 3 weeks left, and people

Inside a wire, positively charged particles are moving to the right.An equal number of negatively charged particles is moving to theleft, at the same speed. The electric current is

(A) flowing to the right

(B) flowing to the left

(C) zero

Page 61: Physics 9 | Friday, April 8, 2016positron.hep.upenn.edu/.../phys9_notes_20160408.pdf · 4/8/2016  · Physics 9 | Friday, April 8, 2016 I Since we have only 3 weeks left, and people
Page 62: Physics 9 | Friday, April 8, 2016positron.hep.upenn.edu/.../phys9_notes_20160408.pdf · 4/8/2016  · Physics 9 | Friday, April 8, 2016 I Since we have only 3 weeks left, and people
Page 63: Physics 9 | Friday, April 8, 2016positron.hep.upenn.edu/.../phys9_notes_20160408.pdf · 4/8/2016  · Physics 9 | Friday, April 8, 2016 I Since we have only 3 weeks left, and people

Physics 9 — Friday, April 8, 2016

I Since we have only 3 weeks left, and people are quite eager towork hands-on with circuits, all of our remaining classmeetings will be here, in DRL 2N25.

I 2N25 is in the same corridor as 2N36 (HW session room), butis closer to 33rd Street, and across the hall. (If you’re herenow, then you know that!)

I Today, we’ll finish up Wednesday’s worksheet, look overHW10, and do the strips-of-tape experiments from EricMazur’s chapter 22.

I This week’s reading: electric currents and DC circuits.

I Next week’s reading: more circuits, then Arduinos.