physical sky

21
”Cuando las leyes de la matemática se refieren a la realidad, no son ciertas; cuando son ciertas, no se refieren a la realidad. “ – Albert Einstein. Por: *Catalina García *Jenifer Vanessa Vega DECIMO - C PHYSICAL SKY

Upload: vanessa-vega

Post on 22-Mar-2016

229 views

Category:

Documents


1 download

DESCRIPTION

 

TRANSCRIPT

”Cuando las leyes de la matemática se refieren a la realidad, no son ciertas; cuando son ciertas, no se refieren a la realidad. “ – Albert Einstein.

Por:

*Catalina García

*Jenifer Vanessa Vega

DECIMO - C

PHYSICAL SKY

GRÁFICAS DE ENERGÍA

TIPOS DE ENERGÍAENERGÍA SOLAR Se puede considerar el origen de casi todas las demás energías. De las energías renovables es la que tiene más futuro y la que va a durar por más tiempo y la que seguro que no se va a agotar.

La aplicación principal de la energía solar es el calentamiento de agua para el uso de casa. Esto se produce gracias a unos plafones solares que se colocan en la parte superior del edificio; tienen una capa de vidrio que permite la entrada de las radiaciones del sol. Por el interior de los plafones circula agua fría, la cual se calentará a medida que las radiaciones aumenten, entonces esta agua, pasara a depositarse en un tanque.

La energía solar se convierte en energía eléctrica por las células fotovoltaicas (solares).

ENERGÍA HIDRÁULICA

Se utiliza principalmente para producir energía eléctrica. La energía potencial del agua en su nivel más alto se va perdiendo a medida que el nivel del agua disminuye; el agua gana energía cinética, la cual llega a una turbina de rotación que acciona un generador y produce energía eléctrica.

En estas transformaciones siempre hay pérdidas de energía térmica.

ENERGÍA DE LAS MAREAS (MAREOMOTRIZ)

En lugares de la costa se puede aprovechar la energía de las olas del mar construyendo una presa o barrera. Cuando hay marea alta la presa se abre y cuando la marea baja la presa se cierra. Cuando el nivel de agua baja, se deja salir el agua que hace girar una turbina que acciona un generador y produce

electricidad.ENERGÍA EÓLICA

Esta energía se consigue obtener mediante unos aerogeneradores. La energía del viento se utiliza para hacer girar una turbina que moverá un generador para producir la electricidad. Para que esto ocurra la velocidad del viento tiene que ser entre 5 y 25m/s.

En España el parque eólico de Tarifa (Cádiz) se ha convertido en uno de los más eficaces del mundo. Tiene 250 aerogeneradores y suministra electricidad a 25.000 casas.

La energía eólica también tiene inconvenientes para el medio ambiente: muchas aves quedan atrapadas entre las turbinas y mueren, se producen alteraciones del paisaje y producen ruido.

ENERGIA DE LA BIOMASA

La biomasa es el conjunto de plantas y materiales orgánicos de los cuales podemos obtener energía. La leña está considerada una de las primeras fuentes de energía conocidas. Hoy en día es peligroso el consumo de leña como combustible ya que existe un gran peligro de deforestación de los bosques. Por eso se suele utilizar materiales orgánicos y plantas con un rápido crecimiento para el uso como combustible.

La basura de materia orgánica, agrícola, industrial o doméstica contiene energía que puede ser utilizada para quemar o para fermentar en ausencia de aire en biogeneradores. De ésta manera se obtiene un gas llamado biogás que se utiliza como combustible en muchos países como en China o en Europa.

ENERGÍA GEOTÉRMICA

La energía geotérmica consiste en aprovechar la energía térmica del interior de la Tierra. El interior de la Tierra es caliente como consecuencia de la fusión de las rocas. Se han encontrado rocas a más de 200ºC. El agua caliente también sale al exterior por grietas de las rocas.

La utilización de esta energía se puede hacer:

Utilizando directamente el agua caliente que sale de la Tierra y se conduce a las casas para el uso doméstico.

ENERGIA NUCLEAR

La energía nuclear procede de reacciones de fisión o fusión de átomos en las que se liberan gigantescas cantidades de energía que se usan para producir electricidad. 

ENERGIA LUMINOSA

La energía luminosa (o radiante) procedente del sol se encuentra en la base de casi todas las formas de energía actualmente disponibles: la madera y los alimentos proceden directamente de la energía solar; los combustibles fósiles corresponden a un almacenamiento de energía de duración muy larga, cuya fuente es igualmente el sol: se trata de productos de transformación de organismos que vivieron hace millones de años para llegar al petróleo, al gas o al carbón.

ENERGIA QUIMICA

La energía química deriva directamente de la energía luminosa o solar, bajo la forma potencial de alimentos, vegetales, o combustibles. Esta energía permite por tanto almacenamientos importantes y concentrados de energía. Las formas de utilización más frecuentes son la combustión, que corresponde a una oxidación rápida y completa de materias combustibles con desprendimiento de calor, o la fermentación y la respiración que corresponden a unas oxidaciones más lentas y a veces limitadas. La combustión muy rápida (explosión) se aprovecha en las pólvoras y en los explosivos.

ENERGIA CALORICA

La Energía Calórica es aquella que poseen los cuerpos, cada vez que son expuestos al efecto del calor. También, se puede decir que corresponde a la energía que se transmite entre dos cuerpos que están a diferentes temperaturas, es decir, con distinto nivel calórico.

ENERGIA CINÉTICA

La energía cinética de un cuerpo es una energía que surge en el fenómeno del

movimiento.

ENERGIA MECANICA

Se denomina energía mecánica a la suma de las energías cinética y potencial (de los diversos tipos).

FUNCIONAMIENTO HIDROELÉCTRICO

En el universo, como

consecuencia de los

innumerables fenómenos que en

el ocurren continuamente, se

está produciendo sin cesar una

transformación o intercambio de

energía entre los cuerpos.

Claros ejemplos de estos

sucesos los vemos en los

molinos de viento en los cuales

la energía cinética de las

moléculas de aire se transforma en energía potencial del agua que el molino

eleva.

En una represa la energía potencial del agua, que se encuentra en un embalse a

gran altura, se transforma en energía cinética al caer en el fondo de la represa. Allí

gran parte de su energía cinética se transforma en energía cinética de las turbinas

que hace mover. Esta energía cinética se transforma a su vez en energía eléctrica

en los generadores conectados a las turbinas. La energía eléctrica se distribuye,

mediante alambres conductores,

a las ciudades vecinas. Durante

este proceso de distribución,

parte de la energía eléctrica se

transforma en energía calorífica

que se manifiesta en el

calentamiento de los alambres.

Ya en la ciudad el resto de la

energía eléctrica continua

transformándose en más energía calorífica, en planchas, cocinas eléctricas, etc.,

en energía radiante en las lámparas eléctricas, en energía cinética en los motores,

y así podríamos seguir indefinidamente la historia y evolución de cada una de

estas formas de energía a través del espacio y el tiempo.

Si en cualquier transformación de energía se miden las cantidades de energía de

cada forma que intervienen en el proceso, se comprueba que siempre que

desaparece cierta cantidad de energía de una forma determinada aparece una

cantidad equivalente de otra o varias formas de energía.

El resultado de estos juicios nos conduce a un enunciado muy importante el cual

define que la cantidad total de energía del universo es constante; ni se crea ni se

destruye; únicamente se transforma. Principio físico enunciado por el Alemán

Robert Mayer, En el año de 1842.

TIPOS DE TRABAJO

TRABAJO NETO.- Se  habla de trabajo neto cuando sobre un cuerpo actúan varias fuerzas.

TRABAJO ACTIVO.- Es el realizado por la resultante de las fuerzas activas. Una partícula es considerada activa cuando su dirección forma un ángulo agudo con la del desplazamiento. Esto determina que aumente la rapidez de la partícula cuando esta aplicada.

TRABAJO RESISTIVO.- Es el trabajo realizado por la resultante de las  las fuerzas resistivas. Una fuerza es resistiva cuando su dirección forma un ángulo obtuso con la del desplazamiento esto determina que disminuya la rapidez de la partícula a la cual esta aplicada.

TRABAJO NULO.- El trabajo es nulo cuando uno de los factores de su ecuación es 0. Hay 3 factores los cuales tienen que ser 0 y determinan si el trabajo es nulo y son: La Fuerza ejercida hacia el Cuerpo, El Desplazamiento del Cuerpo, y el Coseno del Ángulo del Cuerpo.

MAQUINASSe denominan máquinas a ciertos aparatos o dispositivos que se utilizan para transformar o compensar una fuerza resistente o levantar un peso en condiciones más favorables.

Es decir, realizar un mismo trabajo con una fuerza aplicada menor, obteniéndose una ventaja mecánica.Esta ventaja mecánica comporta tener que aplicar la fuerza a lo largo de un recorrido (lineal o angular) mayor. Además, hay que aumentar la velocidad para mantener la misma potencia.Las primeras máquinas eran sencillos sistemas que facilitaron a hombres y mujeres sus labores, hoy son conocidas como máquinas simples.La rueda, la palanca, la polea simple, el tornillo, el plano inclinado, el polipasto, el torno y la cuña son algunas máquinas simples. La palanca y el plano inclinado son las más simples de todas ellas.En general, las maquinas simples son usadas para multiplicar la fuerza o cambiar su dirección, para que el trabajo resulte más sencillo, conveniente y seguro.

PALANCA: Una palanca es, en general, una barra rígida que puede girar alrededor de un punto fijo llamado punto de apoyo o fulcro.

POLEA:

La polea sirve para elevar pesos a una cierta altura. Consiste en una rueda por la que pasa una cuerda a la que en uno de sus extremos se fija una carga, que se eleva aplicando una fuerza al otro extremo. Su función es doble, puede disminuir una fuerza, aplicando una menor, o simplemente cambiar la dirección de la fuerza.

RUEDA:

Máquina simple más importante que se conoce, no se sabe quién y cuándo la descubrió o inventó; sin embargo, desde que el hombre utilizó la rueda la tecnología avanzó rápidamente, podemos decir que a nuestro alrededor siempre está presente algún objeto a situación relacionado con la rueda, la rueda es circular. 

PLANO INCLINADO:

El plano inclinado permite levantar una carga mediante una rampa o pendiente. Esta máquina simple descompone la fuerza del peso en dos componentes: la normal (que soporta el plano inclinado) y la paralela al plano (que compensa la fuerza aplicada). De esta manera, el esfuerzo necesario para levantar la carga es menor y, dependiendo de la inclinación de la rampa, la ventaja mecánica es muy considerable.

Galileo GalileiGalileo Galilei (Pisa, 15 de febrero de 15644 – Florencia, 8 de enero de 1642)1 5 fue un astrónomo, filósofo, matemático y físico italiano que estuvo relacionado estrechamente con la revolución científica. Eminente hombre del Renacimiento, mostró interés por casi todas las ciencias y artes (música, literatura, pintura). Sus logros incluyen la mejora del telescopio, gran variedad de observaciones astronómicas, la primera ley del movimiento y un apoyo determinante para el copernicanismo. Ha sido considerado como el «padre de la astronomía moderna», el «padre de la física moderna» y el «padre de la ciencia».

Su trabajo experimental es considerado complementario a los escritos de Francis Bacon en el establecimiento del moderno método científico y su carrera científica es complementaria a la de Johannes Kepler. Su trabajo se considera una ruptura de las teorías asentadas de la física aristotélica y su enfrentamiento con la Inquisición romana de la Iglesia católica suele presentarse como el mejor ejemplo de conflicto entre religión y ciencia en la sociedad occidental.

Tras dar algunas clases particulares de matemáticas en Florencia y en Siena, trató de obtener un empleo regular en las universidades de Bolonia, Padua y en la propia Florencia. En 1589 consiguió por fin una plaza en el Estudio de Pisa, donde su descontento por el paupérrimo sueldo percibido no pudo menos que ponerse de manifiesto en un poema satírico contra la vestimenta académica. En Pisa compuso Galileo un texto sobre el movimiento, que mantuvo inédito, en el cual, dentro aún del marco de la mecánica medieval, criticó las explicaciones aristotélicas de la caída de los cuerpos y del movimiento de los proyectiles; en continuidad con esa crítica, una cierta tradición historiográfica ha forjado la anécdota (hoy generalmente considerada como inverosímil) de Galileo refutando materialmente a Aristóteles mediante el procedimiento de lanzar distintos pesos desde lo alto del Campanile, ante las miradas contrariadas de los peripatéticos...

En 1591 la muerte de su padre significó para Galileo la obligación de responsabilizarse de su familia y atender a la dote de su hermana Virginia. Comenzaron así una serie de dificultades económicas que no harían más que agravarse en los años siguientes; en 1601 hubo de proveer a la dote de su hermana Livia sin la colaboración de su hermano Michelangelo, quien había marchado a Polonia con dinero que Galileo le había prestado y que nunca le devolvió (por el contrario, se estableció más tarde en Alemania, gracias de nuevo a la ayuda de su hermano, y envió luego a vivir con él a toda su familia).

La necesidad de dinero en esa época se vio aumentada por el nacimiento de los tres hijos del propio Galileo: Virginia (1600), Livia (1601) y Vincenzo (1606), habidos de su unión con Marina Gamba, que duró de 1599 a 1610 y con quien no llegó a casarse. Todo ello hizo insuficiente la pequeña mejora conseguida por Galileo en su remuneración al ser elegido, en 1592, para la cátedra de matemáticas de la Universidad de Padua por las autoridades venecianas que la regentaban. Hubo de recurrir a las clases particulares, a los anticipos e, incluso, a los préstamos. Pese a todo, la estancia de Galileo en Padua, que se prolongó hasta 1610, constituyó el período más creativo, intenso y hasta feliz de su vida.

En Padua tuvo ocasión Galileo de ocuparse de cuestiones técnicas como la arquitectura militar, la castrametación, la topografía y otros temas afines de los que trató en sus clases particulares. De entonces datan también diversas invenciones, como la de una máquina para elevar agua, un termoscopio y un procedimiento mecánico de cálculo que expuso en su primera obra impresa: Le operazioni del compasso geometrico e militare, 1606. Diseñado en un principio para resolver un problema práctico de artillería, el instrumento no tardó en ser perfeccionado por Galileo, que amplió su uso en la solución de muchos otros problemas. La utilidad del dispositivo, en un momento en que no se habían introducido todavía los logaritmos, le permitió obtener algunos ingresos mediante su fabricación y comercialización.

En 1602 Galileo reemprendió sus estudios sobre el movimiento, ocupándose del isocronismo del péndulo y del desplazamiento a lo largo de un plano inclinado, con el objeto de establecer cuál era la ley de caída de los graves. Fue entonces, y hasta 1609, cuando desarrolló las ideas que treinta años más tarde, constituirían el núcleo de sus Discorsi.

ISAAC NEWTON Isaac Newton nació en las primeras horas del 25 de diciembre de 1642 (4 de enero de 1643, según el calendario gregoriano), en la pequeña aldea de Woolsthorpe, en el Lincolnshire. Su padre, un pequeño terrateniente, acababa de fallecer a comienzos de octubre, tras haber contraído matrimonio en abril del mismo año con Hannah Ayscough, procedente de una familia en otro tiempo acomodada. Cuando el pequeño Isaac acababa de cumplir tres años, su madre contrajo de nuevo matrimonio con el reverendo Barnabas Smith, rector de North Witham, lo que tuvo como consecuencia un hecho que influiría decisivamente en el desarrollo del carácter de Newton: Hannah se trasladó a la casa de su nuevo marido y su hijo quedó en Woolsthorpe al cuidado de su abuela materna.

Del odio que ello le hizo concebir a Newton contra su madre y el reverendo Smith da buena cuenta el que en una lista de «pecados» de los que se autoinculpó a los diecinueve años, el número trece fuera el haber deseado incendiarles su casa con ellos dentro. Cuando Newton contaba doce años, su madre, otra vez viuda, regresó a Woolsthorpe, trayendo consigo una sustanciosa herencia que le había legado su segundo marido (y de la que Newton se beneficiaría a la muerte de ella en 1679), además de tres hermanastros para Isaac, dos niñas y un niño.

La manzana de Newton

Un año más tarde Newton fue inscrito en la King's School de la cercana población de Grantham. Hay testimonios de que en los años que allí pasó alojado en la casa del farmacéutico, se desarrolló su poco usual habilidad mecánica, que

ejercitó en la construcción de diversos mecanismos (el más citado es un reloj de agua) y juguetes (las famosas cometas, a cuya cola ataba linternas que por las noches asustaban a sus convecinos). También se produjo un importante cambio en su carácter: su inicial indiferencia por los estudios, surgida probablemente de la timidez y el retraimiento, se cambió en feroz espíritu competitivo que le llevó a ser el primero de la clase, a raíz de una pelea con un compañero de la que salió vencedor.

Fue un muchacho «sobrio, silencioso, meditativo», que prefirió construir utensilios, para que las niñas jugaran con sus muñecas, a compartir las diversiones de los demás muchachos, según el testimonio de una de sus compañeras femeninas infantiles, quien, cuando ya era una anciana, se atribuyó una relación sentimental adolescente con Newton, la única que se le conoce con una mujer.

Cumplidos los dieciséis años, su madre lo hizo regresar a casa para que empezara a ocuparse de los asuntos de la heredad. Sin embargo, el joven Isaac no se mostró en absoluto interesado por asumir sus responsabilidades como terrateniente; su madre, aconsejada por el maestro de Newton y por su propio hermano, accedió a que regresara a la escuela para preparar su ingreso en la universidad.

Éste se produjo en junio de 1661, cuando Newton fue admitido en el Trinity College de Cambridge, y se matriculó como fámulo, ganando su manutención a cambio de servicios domésticos, pese a que su situación económica no parece que lo exigiera así. Allí empezó a recibir una educación convencional en los principios de la filosofía aristotélica (por aquel entonces, los centros que destacaban en materia de estudios científicos se hallaban en Oxford y Londres), pero en 1663 se despertó su interés por las cuestiones relativas a la investigación experimental de la naturaleza, que estudió por su cuenta.

Manuscrito de Newton

Fruto de esos esfuerzos independientes fueron sus primeras notas acerca de lo que luego sería su cálculo de fluxiones, estimuladas quizá por algunas de las

clases del matemático y teólogo Isaac Barrow; sin embargo, Newton hubo de ser examinado por Barrow en 1664 al aspirar a una beca y no consiguió entonces inspirarle ninguna opinión especialmente favorable.

Al declararse en Londres la gran epidemia de peste de 1665, Cambridge cerró sus puertas y Newton regresó a Woolsthorpe. En marzo de 1666 se reincorporó al Trinity, que de nuevo interrumpió sus actividades en junio al reaparecer la peste, y no reemprendió definitivamente sus estudios hasta abril de 1667. En una carta póstuma, el propio Newton describió los años de 1665 y 1666 como su «época más fecunda de invención», durante la cual «pensaba en las matemáticas y en la filosofía mucho más que en ningún otro tiempo desde entonces».

El método de fluxiones, la teoría de los colores y las primeras ideas sobre la atracción gravitatoria, relacionadas con la permanencia de la Luna en su órbita en torno a la Tierra, fueron los logros que Newton mencionó como fechados en esos años, y él mismo se encargó de propagar, también hacia el final de su vida, la anécdota que relaciona sus primeros pensamientos sobre la ley de la gravedad con la observación casual de una manzana cayendo de alguno de los frutales de su jardín (Voltaire fue el encargado de propagar en letra impresa la historia, que conocía por la sobrina de Newton).