physical chemistry ii: quantum chemistry lecture 10

19
Physical Chemistry II: Quantum Chemistry Lecture 10: Quantum Dynamics Demo Yuan-Chung Cheng [email protected] 3/22/2019

Upload: others

Post on 31-May-2022

30 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Physical Chemistry II: Quantum Chemistry Lecture 10

PhysicalChemistryII:QuantumChemistryLecture10:QuantumDynamicsDemo

[email protected]

3/22/2019

Page 2: Physical Chemistry II: Quantum Chemistry Lecture 10

Time-dependentSchrodingerEquation

•  Time-evolutionofaquantumstateisfullydescribedbytheSchrodingerequation:

•  Solvingtheenergyeigenstatesgivestheideal“basis”todescribetime-evolution:Thisisnecessaryforanalyticalsolutions.

i! ∂∂t

Ψ(t) = H Ψ(t)

H φn = En φn

Ψ(t) = cn (0)e−iEnt! φn

n∑

Page 3: Physical Chemistry II: Quantum Chemistry Lecture 10

Time-evolutionofWaveFunctions•  Time-evolutionintheenergyeigenbasis:Easytosolvewhentheenergyeigenstatesareknownçnotaneasytask

•  Wavefunctionsare“COMPLEX”•  Eacheigenstateoscillatesinadifferentfrequency•  Interferencesbetweendifferentoscillatingwavesconstitutesthefullquantumdynamics

Ψ(t) = cn (0)e−iEnt! φn

n∑

Page 4: Physical Chemistry II: Quantum Chemistry Lecture 10

Time-dependentSchrodingerEquation

•  Actually,anyorthonormalbasissetsareequallyvalidforsolvingtheSchrodingerequation

•  NumericallysolvetheSchrodingerequation:1.  Findanumericallyconvenient&efficientbasis2.  ConstructtheHamiltonianmatrixandtheinitial

wavefunctionket(columnvector)inthebasis3.  Findeigenvalues&eigenvectorsoftheHamiltonian

tosolvethetime-independentproblem4.  Propagatethewavefunctionstepbystepintime

usinganefficient&robustalgorithm

Page 5: Physical Chemistry II: Quantum Chemistry Lecture 10

Poorman’sDiscreteVariableRepresentation

•  Thesimplestbasischoiceistousediscretegridpointsinspace

•  Wavefunctionthenrepresentsbyavectorof“pointvalues”

Ψ(x)

1

2

3

4

5

6

7

9

8€

Ψ( 1)

Ψ( 2)€

Ψ( 3)€

Ψ( 4)

Ψ( 5)

Ψ( 6)

Ψ( 7)

Ψ( 9)

Ψ( 8)

Ψ =

Ψ(x1)

Ψ(x2 )

Ψ(x3)

Ψ(x4 )

!

⎜⎜⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟⎟⎟

Page 6: Physical Chemistry II: Quantum Chemistry Lecture 10

Poorman’sDiscreteVariableRepresentation

•  Hamiltonian:•  Thepotentialoperatorisdiagonalinpositionandeasytoconstructinthediscretebasis

V =

V (x1) 0 0 0 !

0 V (x2 ) 0 0 !

0 0 V (x3) 0 !

0 0 0 V (x4 ) !

" " " " #

⎜⎜⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟⎟⎟

H = T +V

Page 7: Physical Chemistry II: Quantum Chemistry Lecture 10

•  Thekineticenergyoperator:

Poorman’sDiscreteVariableRepresentation

T =

2k −k 0 0 !−k 2k −k 0 !0 −k 2k −k !0 0 −k 2k !" " ! ! !

⎜⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟⎟

T = −!2

2md 2

dx2

−!2

2md 2

dx2Ψ(x)

x=xn

≈−!2

2m1Δ

Ψn+1 −Ψn

Δ−Ψn −Ψn−1

Δ

⎝⎜

⎠⎟

=!2

2mΔ22Ψn −Ψn−1 −Ψn+1( )

−1

€ €

+1

Δ

k = !2

2mΔ2

Page 8: Physical Chemistry II: Quantum Chemistry Lecture 10

TimePropagation•  Schrodingerequation:

•  Iterationwithasmalltimestepδt:

•  Normally,analgorithmthatincludeshigher-ordercontributions(e.g.δt2)isusedtoensureefficiencyandaccuracy.Forexample,theCrank-Nicolsonmethodprovidedsignificantimprovementinaccuracy.

i! ∂∂t

Ψ(t) = H Ψ(t)

Ψ(t +δt) ≈ Ψ(t) − iδt!H Ψ(t)

Page 9: Physical Chemistry II: Quantum Chemistry Lecture 10

MatlabExamples

Matlab: http://www.mathworks.com/

Page 10: Physical Chemistry II: Quantum Chemistry Lecture 10

DiscreteVariableRepresentation•  dvr_eigen.m•  Poorman’sDVR:801

pointsfromx=-4tox=4•  KineticOp:

T(n,n)=2*kT(n,n+1)=T(n+1,n)=-k

•  PotentialOp:V(x)onthediagonal

•  DVReigenstatesyieldswavefunctionsdirectly–  Harmonic–  Quarticdoublewell–  Biasedquarticdoublewell–  Anyboundpotential!!

T=zeros(Nx);foridxi=1:(Nx-1)T(idxi,idxi)=2*k;T(idxi,idxi+1)=-1*k;T(idxi+1,idxi)=-1*k;endT(Nx,Nx)=2*k;V=diag(potential(xvec));%HamiltonianH=T+V;%eigenvaluesandvectors[U,E]=eig(H);

Page 11: Physical Chemistry II: Quantum Chemistry Lecture 10

DynamicsviaDVR

•  Poorman’sDVR+Crank-Nicolson

•  Additionaltricks:focusonlowenergyeigenstates

•  Gaussianwavepacketdynamics–  Harmonicpotential–  Quarticdoublewellpotential

–  Biasedquarticpotential

%eigenvaluesandvectors[U,E]=eig(H);%numofeigenstatestouseNred=50%truncatedHamiltonian(diagform)Hred=E(1:Nred,1:Nred);%eigenvectors,usedforbasischangeUred=U(:,1:Nred);%transformPsi_0totheeigenspacePsi_0red=Ured'*Psi_0;

Page 12: Physical Chemistry II: Quantum Chemistry Lecture 10

GaussianWavepacketDynamicsviaDVR

•  Gaussianwavepacket:superpositionofeigenstates,normallynon-stationary

•  Groundstate?(dvr_propagate1.m)

•  LowenergyGaussianwavepacketinaharmonicpotential(dvr_propagate2.m)

– Oscillationsinpositionandwidth(p)– Centerofthewavepacketbehavesclassically

•  Displacedground-stateGaussian(dvr_propagate3.m)

– Minimumuncertaintywavepacket– Width&shapeinvariant:coherentstate

Page 13: Physical Chemistry II: Quantum Chemistry Lecture 10

GaussianWavepacketDynamicsviaDVR

•  HighenergyGaussianwavepacketinaharmonicpotential(dvr_propagate4.m)

– Superpositionofmanymoreeigenstatesbecauseofenergeticaccessibility

– Morecomplexdynamicsduetointerferencesofmodeswithabroaddistributionoffrequencies

– Recurrencesoccurduetosymmetry

•  Quarticdoublewell(dvr_propagate[5,6].m)– Lowenergy:tunneling– Highenergy:scattering

Page 14: Physical Chemistry II: Quantum Chemistry Lecture 10

LimitationsofDVR+CN

•  Infeasiblefortreatinghighdimensionalsystems:N=(Nx)d

•  Unfitforextensivesystems&highlyexcitedstates

•  Difficult&computationallyexpensiveforaccuratelongtimedynamics

•  Inefficientforsystemsexhibitingseparationoftemporalorspatialscales

•  Inefficientforcalculatingrates,yields,…etc.

Page 15: Physical Chemistry II: Quantum Chemistry Lecture 10
Page 16: Physical Chemistry II: Quantum Chemistry Lecture 10

InternetResources

•  MatlabscriptsshowntodayalreadyonCEIBA•  JavaAppletdemoof1DQMsystems:http://www.falstad.com/qm1d

•  JavaAppletdemoof2DQMsystems:http://www.falstad.com/qm2dbox

•  PhETSimulationsofQuantumPhenomena:http://phet.colorado.edu/simulations/index.php?cat=Quantum_Phenomena

Page 17: Physical Chemistry II: Quantum Chemistry Lecture 10

Remarks•  Intuitionsfromclassicalmechanicsstillexplainsmanyquantumphenomena,however,adjustmentsarerequiredforsuperpositions&interferences(coherence),tunneling,measurement…etc.

•  Energyeigenstatesformthebasisfordescribingtimeevolutionofquantumstates

•  Solutionstothetime-independentSchrodingerequationarefundamentaltounderstandquantumphenomenainphysics&chemistry

Page 18: Physical Chemistry II: Quantum Chemistry Lecture 10
Page 19: Physical Chemistry II: Quantum Chemistry Lecture 10

SchemeforTimePropagation

•  tls_prog_exactdiag.m:exactpropagatorthroughdiagonalizingH

•  tls_prog_euler.m:Eulermethod

•  tls_prog_cranknicolson.m:Crank-Nicolsonscheme

•  TLSdynamicsasanexample

•  Implementations•  Stability,accuracy,&efficiency–  Sizeofeachtimestep–  Accuracyatlongertimes–  Efficiencyofthealgorithm

•  Bytheway,TLSdynamics:fixenergygap,varyJ