photovoltaik - neue konzepte - fvee - neue konzepte v. dyakonova, c. j. brabeca, j. hauchb a...

18
PHOTOVOLTAIK - Neue Konzepte V. Dyakonov a , C. J. Brabec a , J. Hauch b a Bayerisches Zentrum für Angewandte Energieforschung e.V. (ZAE Bayern) b Konarka Technolgies Inc FVEE - Jahrestagung 2010: "Forschung für das Zeitalter der erneuerbaren Energien - Jahre FVEE" 20 Jahre 20 Jahre

Upload: lenhi

Post on 08-May-2018

221 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: PHOTOVOLTAIK - Neue Konzepte - FVEE - Neue Konzepte V. Dyakonova, C. J. Brabeca, J. Hauchb a Bayerisches Zentrum für Angewandte Energieforschung e.V. (ZAE Bayern) b Konarka Technolgies

PHOTOVOLTAIK - Neue Konzepte

V. Dyakonova, C. J. Brabeca, J. Hauchb

a Bayerisches Zentrum für Angewandte Energieforschung e.V. (ZAE Bayern)

b Konarka Technolgies Inc

FVEE - Jahrestagung 2010: "Forschung für das Zeitalter der erneuerbaren Energien - Jahre FVEE"

20 Jahre

20 Jahre

Page 2: PHOTOVOLTAIK - Neue Konzepte - FVEE - Neue Konzepte V. Dyakonova, C. J. Brabeca, J. Hauchb a Bayerisches Zentrum für Angewandte Energieforschung e.V. (ZAE Bayern) b Konarka Technolgies

FVEE - Jahrestagung 2010: "Forschung für das Zeitalter der erneuerbaren Energien - Jahre FVEE"

20 Jahre

20 Jahre

• hochabsorbierend

• mechanisch flexibel, leicht

• variable Form und Farbe, Transluzenz

• niedrige Herstellungskosten

• sehr gutes Schwachlichtverhalten

Motivation: warum organische HL?

Page 3: PHOTOVOLTAIK - Neue Konzepte - FVEE - Neue Konzepte V. Dyakonova, C. J. Brabeca, J. Hauchb a Bayerisches Zentrum für Angewandte Energieforschung e.V. (ZAE Bayern) b Konarka Technolgies

FVEE - Jahrestagung 2010: "Forschung für das Zeitalter der erneuerbaren Energien - Jahre FVEE"

20 Jahre

20 Jahre

Im ForschungsVerbund Erneuerbare Energien (FVEE) arbeiten mehrere Institute an der Entwicklung von neuartigen organischen Solarzellen:

ZAE BayernZentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg (ZSW)Fraunhofer ISE Helmholtz-Zentrum Berlin (HZB) Forschungszentrum Jülich (FZJ)

Page 4: PHOTOVOLTAIK - Neue Konzepte - FVEE - Neue Konzepte V. Dyakonova, C. J. Brabeca, J. Hauchb a Bayerisches Zentrum für Angewandte Energieforschung e.V. (ZAE Bayern) b Konarka Technolgies

FVEE - Jahrestagung 2010: "Forschung für das Zeitalter der erneuerbaren Energien - Jahre FVEE"

20 Jahre

20 Jahre

Prinzip: Licht induzierter Ladungstransfer

Page 5: PHOTOVOLTAIK - Neue Konzepte - FVEE - Neue Konzepte V. Dyakonova, C. J. Brabeca, J. Hauchb a Bayerisches Zentrum für Angewandte Energieforschung e.V. (ZAE Bayern) b Konarka Technolgies

FVEE - Jahrestagung 2010: "Forschung für das Zeitalter der erneuerbaren Energien - Jahre FVEE"

20 Jahre

20 Jahre

Aufbau: Zweischicht (bilayer)

Page 6: PHOTOVOLTAIK - Neue Konzepte - FVEE - Neue Konzepte V. Dyakonova, C. J. Brabeca, J. Hauchb a Bayerisches Zentrum für Angewandte Energieforschung e.V. (ZAE Bayern) b Konarka Technolgies

FVEE - Jahrestagung 2010: "Forschung für das Zeitalter der erneuerbaren Energien - Jahre FVEE"

20 Jahre

20 Jahre

Aufbau: Einschicht (single-junction)Bulk-Heterojunction

Page 7: PHOTOVOLTAIK - Neue Konzepte - FVEE - Neue Konzepte V. Dyakonova, C. J. Brabeca, J. Hauchb a Bayerisches Zentrum für Angewandte Energieforschung e.V. (ZAE Bayern) b Konarka Technolgies

FVEE - Jahrestagung 2010: "Forschung für das Zeitalter der erneuerbaren Energien - Jahre FVEE"

20 Jahre

20 Jahre

Fulle

rene

Aluminium Cathode

Transparent Anode

Polymer

Konzept: bulk-heterojunction (Heterogemisch)

Page 8: PHOTOVOLTAIK - Neue Konzepte - FVEE - Neue Konzepte V. Dyakonova, C. J. Brabeca, J. Hauchb a Bayerisches Zentrum für Angewandte Energieforschung e.V. (ZAE Bayern) b Konarka Technolgies

FVEE - Jahrestagung 2010: "Forschung für das Zeitalter der erneuerbaren Energien - Jahre FVEE"

20 Jahre

20 Jahre

Entwickung 1986: erste organische Solarzelle, C. Tang et al. (ca. 1%)

C. Tang, Kodak-Eastman, Rochester, USA

2007: erste effiziente Polymer-Stapelzelle, A. Heeger et al. (6.5 %) 2002: erste effiziente single-junction Polymersolarzelle, S. Shaheen et al. (2.5 %)

2010: Rekord single-junction Polymersolarzelle, Luping Yu & Solarmer (7.4% - 8.13 %)

2010

660

Page 9: PHOTOVOLTAIK - Neue Konzepte - FVEE - Neue Konzepte V. Dyakonova, C. J. Brabeca, J. Hauchb a Bayerisches Zentrum für Angewandte Energieforschung e.V. (ZAE Bayern) b Konarka Technolgies

FVEE - Jahrestagung 2010: "Forschung für das Zeitalter der erneuerbaren Energien - Jahre FVEE"

20 Jahre

20 Jahre

6,5% Solarzelle

Science 317 (2007) 222

Page 10: PHOTOVOLTAIK - Neue Konzepte - FVEE - Neue Konzepte V. Dyakonova, C. J. Brabeca, J. Hauchb a Bayerisches Zentrum für Angewandte Energieforschung e.V. (ZAE Bayern) b Konarka Technolgies

FVEE - Jahrestagung 2010: "Forschung für das Zeitalter der erneuerbaren Energien - Jahre FVEE"

20 Jahre

20 Jahre

7,4% SolarzelleCOM

MUNIC

ATION

www.MaterialsViews.comwww.advmat.de

of 2.1. The HOMO and LUMO energy levels of PTB7 weredetermined by cyclic voltammetry (CV), which are !5.15 eVand !3.31 eV under calibration to ferrocene (see the SupportingInformation). Although the side chains are branched, thePTB7 has a relatively high hole mobility, which is about5.8" 10!4 cm2V!1 s!1 measured from the space–charge limitedcurrent (SCLC) model (Supporting Information). The absorptionspectrum of pure PTB7 film is showed in Figure 1b. The polymershows strong absorption from 550 to 750 nm. However theabsorption from 300 to 500 nm is relatively weak. To compensatethe absorption of PTB7, PC71BM, which has strong absorptionin the visible range, is used as the acceptor. The resultingPTB7/PC71BM-blend film exhibits a strong absorption covering arange from 300 to about 800 nm.

The solar cell performance is a function of composition. ThePTB7/PC71BM system spin-coated from o-dichlorobenzene(DCB) was first investigated to optimize the donor/acceptor(D/A) ratio. Table 1 shows the effect of the D/Aweight ratio on theperformance of solar cells under the same spin-coating condition(optimized), which lead to film thickness of #100 nm. The initialtest results indicated that the device with a 1:1.5 wt-ratio exhibitsthe best performance with an average short-circuit current (Jsc) of13.56mAcm!2 and a fill factor (FF) of 59.23%, leading to a PCE of6.02%. Voc has increased to 0.75V as expected during moleculedesign, which represents a 34% increase from our original PTB1(0.58V) system reported before.[10] The average PCE was typicallyderived from 12 devices. The best efficiencies of these three D/Awt-ratios are 5.74% (1:1), 6.22% (1:1.5), and 5.58% (1:2),respectively.

The performances of solar cells based on a PTB7/PC71BM-blend film are further enhanced by using mixed solventin preparing films. A mixed-solvents approach has been shown to

be effective in several polymer solar cell systems, includingclassical P3HT[12] as well as several high-efficiency low-bandgappolymers.[13] Preliminary study in the PTB7 system showed thatthe PTB7/PC71BM-blend film prepared from mixed solvent ofdichlorobenzene (DCB)/1,8-diiodoctane (DIO) (97%:3% byvolume) increases the fill factor from 60.25% to 68.9%.Figure 2 showes the effect of mixed solvent on the polymersolar cell performance and data are summarized in Table 2. TheJsc enhancement is relatively small, only a 0.14mAcm!2

increment. The PCE increases from 6.22% to 7.18%. However,if chlorobenzene (CB) is used as the solvent, a low current densityof 10.2mAcm!2, as well as a low fill factor of 50.52% wasobserved, which corresponds to a PCE of 3.92%. Thisphenomenon indicates that the solvents affect the polymerpacking.[14] Upon mixing of 3% DIO to the solvent, the solar cellJsc of the resulting blend film was significantly increased to14.5mAcm!2. The fill factor, at the same time, increases to 69%.The combined effect leads to the power-conversion efficiencyof 7.40%. This is the best results in a polymeric solar cell reportedso far.

The dramatic enhancement of the photovoltaic performancesis caused by the change in the morphology of the blend film. Thetransmission electron microscopy (TEM) images (Fig. 3) clearlyshowe that there are large domains (about 100–200 nm indiameter) in the blend film prepared from CB, which willdiminish exciton migration to the donor/acceptor interface and isnot favorable for charge separation. Themorphology of blend filmprepared from CB/DIO is much more uniform and there is nolarge phase separation, showing good miscibility between PTB7

Figure 1. a) Structures of PTB7 and PC71BM. b) Absorption spectraof PTB7 pure polymer film and blend film PTB7/PC71BM in 1:1.5 weightratio.

Figure 2. J–V curves of PTB7/PC71BM devices using (i) DCB only, (ii) DCBwith 3% DIO, (iii) CB, and (iv) CB with 3% DIO as solvents.

Table 1. Photovoltaic parameters of devices with various PTB7/PC71BMweight ratios.

PTB7/PC71BM

(weight ratio)

Voc

[V]

Jsc [mA cm!2]

(average)

PCE [%]

(average)

FF [%]

(average)

PCE [%]

(maximum)

1:1 0.76 13.58 5.63 54.51 5.74

1:1.5 0.75 13.56 6.02 59.23 6.22

1:2 0.75 11.40 5.31 62.16 5.58

Table 2. Device photovoltaic parameters of (i) DCB only, (ii) DCB with 3%DIO, (iii) CB, and (iv) CB with 3%DIO as solvent(s). The Jsc calculated fromEQE spectrum and the error between calculated (calc.) and measured Jsc isalso shown.

Voc[V]

Jsc[mA cm!2]

FF

[%]

PCE

[%]

Jsc (calc.)

[mA cm!2]

Error

[%]

DCB 0.74 13.95 60.25 6.22

DCB$DIO 0.74 14.09 68.85 7.18 13.99 0.74

CB 0.76 10.20 50.52 3.92

CB$DIO 0.74 14.50 68.97 7.40 14.16 2.34

2 ! 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim Adv. Mater. 2010, 22, 1–4

Final page numbers not assigned

COM

MUNIC

ATION

www.MaterialsViews.comwww.advmat.de

of 2.1. The HOMO and LUMO energy levels of PTB7 weredetermined by cyclic voltammetry (CV), which are !5.15 eVand !3.31 eV under calibration to ferrocene (see the SupportingInformation). Although the side chains are branched, thePTB7 has a relatively high hole mobility, which is about5.8" 10!4 cm2V!1 s!1 measured from the space–charge limitedcurrent (SCLC) model (Supporting Information). The absorptionspectrum of pure PTB7 film is showed in Figure 1b. The polymershows strong absorption from 550 to 750 nm. However theabsorption from 300 to 500 nm is relatively weak. To compensatethe absorption of PTB7, PC71BM, which has strong absorptionin the visible range, is used as the acceptor. The resultingPTB7/PC71BM-blend film exhibits a strong absorption covering arange from 300 to about 800 nm.

The solar cell performance is a function of composition. ThePTB7/PC71BM system spin-coated from o-dichlorobenzene(DCB) was first investigated to optimize the donor/acceptor(D/A) ratio. Table 1 shows the effect of the D/Aweight ratio on theperformance of solar cells under the same spin-coating condition(optimized), which lead to film thickness of #100 nm. The initialtest results indicated that the device with a 1:1.5 wt-ratio exhibitsthe best performance with an average short-circuit current (Jsc) of13.56mAcm!2 and a fill factor (FF) of 59.23%, leading to a PCE of6.02%. Voc has increased to 0.75V as expected during moleculedesign, which represents a 34% increase from our original PTB1(0.58V) system reported before.[10] The average PCE was typicallyderived from 12 devices. The best efficiencies of these three D/Awt-ratios are 5.74% (1:1), 6.22% (1:1.5), and 5.58% (1:2),respectively.

The performances of solar cells based on a PTB7/PC71BM-blend film are further enhanced by using mixed solventin preparing films. A mixed-solvents approach has been shown to

be effective in several polymer solar cell systems, includingclassical P3HT[12] as well as several high-efficiency low-bandgappolymers.[13] Preliminary study in the PTB7 system showed thatthe PTB7/PC71BM-blend film prepared from mixed solvent ofdichlorobenzene (DCB)/1,8-diiodoctane (DIO) (97%:3% byvolume) increases the fill factor from 60.25% to 68.9%.Figure 2 showes the effect of mixed solvent on the polymersolar cell performance and data are summarized in Table 2. TheJsc enhancement is relatively small, only a 0.14mAcm!2

increment. The PCE increases from 6.22% to 7.18%. However,if chlorobenzene (CB) is used as the solvent, a low current densityof 10.2mAcm!2, as well as a low fill factor of 50.52% wasobserved, which corresponds to a PCE of 3.92%. Thisphenomenon indicates that the solvents affect the polymerpacking.[14] Upon mixing of 3% DIO to the solvent, the solar cellJsc of the resulting blend film was significantly increased to14.5mAcm!2. The fill factor, at the same time, increases to 69%.The combined effect leads to the power-conversion efficiencyof 7.40%. This is the best results in a polymeric solar cell reportedso far.

The dramatic enhancement of the photovoltaic performancesis caused by the change in the morphology of the blend film. Thetransmission electron microscopy (TEM) images (Fig. 3) clearlyshowe that there are large domains (about 100–200 nm indiameter) in the blend film prepared from CB, which willdiminish exciton migration to the donor/acceptor interface and isnot favorable for charge separation. Themorphology of blend filmprepared from CB/DIO is much more uniform and there is nolarge phase separation, showing good miscibility between PTB7

Figure 1. a) Structures of PTB7 and PC71BM. b) Absorption spectraof PTB7 pure polymer film and blend film PTB7/PC71BM in 1:1.5 weightratio.

Figure 2. J–V curves of PTB7/PC71BM devices using (i) DCB only, (ii) DCBwith 3% DIO, (iii) CB, and (iv) CB with 3% DIO as solvents.

Table 1. Photovoltaic parameters of devices with various PTB7/PC71BMweight ratios.

PTB7/PC71BM

(weight ratio)

Voc

[V]

Jsc [mA cm!2]

(average)

PCE [%]

(average)

FF [%]

(average)

PCE [%]

(maximum)

1:1 0.76 13.58 5.63 54.51 5.74

1:1.5 0.75 13.56 6.02 59.23 6.22

1:2 0.75 11.40 5.31 62.16 5.58

Table 2. Device photovoltaic parameters of (i) DCB only, (ii) DCB with 3%DIO, (iii) CB, and (iv) CB with 3%DIO as solvent(s). The Jsc calculated fromEQE spectrum and the error between calculated (calc.) and measured Jsc isalso shown.

Voc[V]

Jsc[mA cm!2]

FF

[%]

PCE

[%]

Jsc (calc.)

[mA cm!2]

Error

[%]

DCB 0.74 13.95 60.25 6.22

DCB$DIO 0.74 14.09 68.85 7.18 13.99 0.74

CB 0.76 10.20 50.52 3.92

CB$DIO 0.74 14.50 68.97 7.40 14.16 2.34

2 ! 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim Adv. Mater. 2010, 22, 1–4

Final page numbers not assigned

COM

MUNIC

ATION

www.MaterialsViews.comwww.advmat.de

of 2.1. The HOMO and LUMO energy levels of PTB7 weredetermined by cyclic voltammetry (CV), which are !5.15 eVand !3.31 eV under calibration to ferrocene (see the SupportingInformation). Although the side chains are branched, thePTB7 has a relatively high hole mobility, which is about5.8" 10!4 cm2V!1 s!1 measured from the space–charge limitedcurrent (SCLC) model (Supporting Information). The absorptionspectrum of pure PTB7 film is showed in Figure 1b. The polymershows strong absorption from 550 to 750 nm. However theabsorption from 300 to 500 nm is relatively weak. To compensatethe absorption of PTB7, PC71BM, which has strong absorptionin the visible range, is used as the acceptor. The resultingPTB7/PC71BM-blend film exhibits a strong absorption covering arange from 300 to about 800 nm.

The solar cell performance is a function of composition. ThePTB7/PC71BM system spin-coated from o-dichlorobenzene(DCB) was first investigated to optimize the donor/acceptor(D/A) ratio. Table 1 shows the effect of the D/Aweight ratio on theperformance of solar cells under the same spin-coating condition(optimized), which lead to film thickness of #100 nm. The initialtest results indicated that the device with a 1:1.5 wt-ratio exhibitsthe best performance with an average short-circuit current (Jsc) of13.56mAcm!2 and a fill factor (FF) of 59.23%, leading to a PCE of6.02%. Voc has increased to 0.75V as expected during moleculedesign, which represents a 34% increase from our original PTB1(0.58V) system reported before.[10] The average PCE was typicallyderived from 12 devices. The best efficiencies of these three D/Awt-ratios are 5.74% (1:1), 6.22% (1:1.5), and 5.58% (1:2),respectively.

The performances of solar cells based on a PTB7/PC71BM-blend film are further enhanced by using mixed solventin preparing films. A mixed-solvents approach has been shown to

be effective in several polymer solar cell systems, includingclassical P3HT[12] as well as several high-efficiency low-bandgappolymers.[13] Preliminary study in the PTB7 system showed thatthe PTB7/PC71BM-blend film prepared from mixed solvent ofdichlorobenzene (DCB)/1,8-diiodoctane (DIO) (97%:3% byvolume) increases the fill factor from 60.25% to 68.9%.Figure 2 showes the effect of mixed solvent on the polymersolar cell performance and data are summarized in Table 2. TheJsc enhancement is relatively small, only a 0.14mAcm!2

increment. The PCE increases from 6.22% to 7.18%. However,if chlorobenzene (CB) is used as the solvent, a low current densityof 10.2mAcm!2, as well as a low fill factor of 50.52% wasobserved, which corresponds to a PCE of 3.92%. Thisphenomenon indicates that the solvents affect the polymerpacking.[14] Upon mixing of 3% DIO to the solvent, the solar cellJsc of the resulting blend film was significantly increased to14.5mAcm!2. The fill factor, at the same time, increases to 69%.The combined effect leads to the power-conversion efficiencyof 7.40%. This is the best results in a polymeric solar cell reportedso far.

The dramatic enhancement of the photovoltaic performancesis caused by the change in the morphology of the blend film. Thetransmission electron microscopy (TEM) images (Fig. 3) clearlyshowe that there are large domains (about 100–200 nm indiameter) in the blend film prepared from CB, which willdiminish exciton migration to the donor/acceptor interface and isnot favorable for charge separation. Themorphology of blend filmprepared from CB/DIO is much more uniform and there is nolarge phase separation, showing good miscibility between PTB7

Figure 1. a) Structures of PTB7 and PC71BM. b) Absorption spectraof PTB7 pure polymer film and blend film PTB7/PC71BM in 1:1.5 weightratio.

Figure 2. J–V curves of PTB7/PC71BM devices using (i) DCB only, (ii) DCBwith 3% DIO, (iii) CB, and (iv) CB with 3% DIO as solvents.

Table 1. Photovoltaic parameters of devices with various PTB7/PC71BMweight ratios.

PTB7/PC71BM

(weight ratio)

Voc

[V]

Jsc [mA cm!2]

(average)

PCE [%]

(average)

FF [%]

(average)

PCE [%]

(maximum)

1:1 0.76 13.58 5.63 54.51 5.74

1:1.5 0.75 13.56 6.02 59.23 6.22

1:2 0.75 11.40 5.31 62.16 5.58

Table 2. Device photovoltaic parameters of (i) DCB only, (ii) DCB with 3%DIO, (iii) CB, and (iv) CB with 3%DIO as solvent(s). The Jsc calculated fromEQE spectrum and the error between calculated (calc.) and measured Jsc isalso shown.

Voc[V]

Jsc[mA cm!2]

FF

[%]

PCE

[%]

Jsc (calc.)

[mA cm!2]

Error

[%]

DCB 0.74 13.95 60.25 6.22

DCB$DIO 0.74 14.09 68.85 7.18 13.99 0.74

CB 0.76 10.20 50.52 3.92

CB$DIO 0.74 14.50 68.97 7.40 14.16 2.34

2 ! 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim Adv. Mater. 2010, 22, 1–4

Final page numbers not assigned

For the Bright Future—Bulk Heterojunction PolymerSolar Cells with Power Conversion Efficiency of 7.4%

By Yongye Liang, Zheng Xu, Jiangbin Xia, Szu-Ting Tsai, Yue Wu, Gang Li,*Claire Ray, and Luping Yu*

Sun is the largest carbon-neutral energy source that has not beenfully utilized. Although there are solar cell devices based oninorganic semiconductor to efficiently harvest solar energy, thecost of these conventional devices is too high to be economicallyviable. This is the major motivation for the development oforganic photovoltaic (OPV) materials and devices, which areenvisioned to exhibit advantages such as low cost, flexibility, andabundant availability.[1] The past success in organic light-emittingdiodes provides scientists with confidence that organic photo-voltaic devices will be a vital alternate to the inorganiccounterpart.

At the heart of the OPV technology advantage is the easiness ofthe fabrication, which holds the promise of very low-costmanufacturing process. A simple, yet successful technique isthe solution-processed bulk heterojunction (BHJ) solar cellcomposed of electron-donating semiconducting polymers andelectron-withdrawing fullerides as active layers.[2] The compositeactive layer can be prepared as a large area in a single step byusing techniques such as spin-coating, inkjet-printing, spray-coating, gravure-coating, roller-casting etc.[3] In the last fifteenyears, a significant progress has been made on the improvementof the power-conversion efficiency (PCE) of polymer BHJ solarcells, and the achieved efficiencies have evolved from less than1% in the poly(phenylene vinylene) (PPV) system in 1995,[2] to4–5% in the poly(3-hexylthiphene) (P3HT) system in 2005,[4] toaround 6%, as reported recently.[5] However, the efficiency ofpolymer solar cells is still significantly lower than their inorganiccounterparts, such as silicon, CdTe and CIGS, which preventspractical applications in large scale.

There are many factors limiting the performance of the BHJsolar cells.[6] Among them, the properties of materials of theactive layer are the most determining factor in the overallperformances of polymer solar cells.[7] Ideally, the polymersshould have a broad absorption in the solar spectrum to ensureeffective harvesting of the solar photons and a high charge-carriers mobility for charge transport. Further, suitable energylevels of the polymer are required that match those of the

fullerides. The polymer should have a low-lying highest occupiedmolecular orbital (HOMO) energy level to provide a largeopen-circuit voltage (Voc) and a suitable lowest unoccupiedmolecular orbital (LUMO) energy level to provide enough offsetfor charge separation. In addition, morphology of the activecomposite layer plays a very important role. It is imperative that abicontinuous network with a domain width approximately twicethat of the exciton diffusion length and a high donor/acceptorinterfaces is formed, which favors the exciton dissociation andtransport of the separated charges to the respective electrode.[8]

Most of the polymers reported to date are far from ideal to fulfillall these requirements.[9]

We have developed a series of novel semiconducting polymersbased on alternating ester substituted thieno[3,4-b]thiophene andbenzodithiophene units.[10] These polymers exhibit a synergisticcombination of properties that lead to an excellent photovoltaiceffect. The stabilization of quinoidal structure from thieno-[3,4-b]thiophene results in a low bandgap of the polymer of about1.6 eV, showing efficient absorption around the region with thehighest photon flux of the solar spectrum (about 700 nm). Therigid backbone results in a good hole mobility of the polymer, andthe side chains on the ester and benzodithiophene enable goodsolubility in organic solution and suitable miscibility with thefulleride acceptor. The introduction of fluorine into thethieno[3,4-b]thiophene provides the polymer with a relativelylow-lying highest occupied molecular orbital (HOMO) energylevel, which offers enhanced Voc. The polymer chain is found tobe stacked on the substrate in the face-down conformation fromgrazing-incidence wide-angle X-ray scattering studies.[11] This isvery different from the polymer alignment in well-studied P3HTsolar cell system and favors charge transport.[11] All theseadvantages of thieno[3,4-b]thiophene and benzodithiophenepolymers (PTBs) make them good candidates for BHJ poly-mer/fullerides solar cell application and a PCE up to 6.1% hasbeen achieved from PTB4/PC61BM prototype devices.[5a]

After an extensive structural optimization we further devel-oped a new polymer from the PTB family, PTB7, which exhibitedan excellent photovoltaic effect. A PCE of about 7.4% has beenachieved from PTB7/PC71BM (see Fig. 1a PC71BM! phenyl-C71-butyric acid methyl ester) solar cell devices, which is the firstpolymer solar cell showing a PCE over 7%. Herein, we describedour systematic studies on the photovoltaic performance of thisnew polymer. The results indicated a great potential and brightfuture for polymer solar cells.

The structure of PTB7 is shown in Figure 1a. The branchedside chains in ester and benzodithiophene render the polymergood solubility in organic solvents. The weight average molecularweight (Mw) of PTB7 is 97.5 kDa with polydispersity index (PDI)

COM

MUNIC

ATIO

N

www.MaterialsViews.comwww.advmat.de

[*] Prof. L. P. Yu, Dr. Y. Y. Liang, Dr. J. B. Xia, C. RayDepartment of Chemistry and James Franck Institute, The Universityof ChicagoChicago, IL 60637 (USA)E-mail: [email protected]

Dr. G. Li, Dr. Z. Xu, S.-T. Tsai, Dr. Y. WuSolarmer Energy Inc.3445 Fletcher Ave., El Monte, CA, 91731(USA)E-mail: [email protected]

DOI: 10.1002/adma.200903528

Adv. Mater. 2010, 22, 1–4 ! 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 1

Final page numbers not assigned

• thieno [3,4-b] thiophenebenzodithiophene• fullerene derivative of C70

Adv. Mater. 22 (2010) 1- 4

Page 11: PHOTOVOLTAIK - Neue Konzepte - FVEE - Neue Konzepte V. Dyakonova, C. J. Brabeca, J. Hauchb a Bayerisches Zentrum für Angewandte Energieforschung e.V. (ZAE Bayern) b Konarka Technolgies

FVEE - Jahrestagung 2010: "Forschung für das Zeitalter der erneuerbaren Energien - Jahre FVEE"

20 Jahre

20 Jahre

Elementarprozesse OPV

Fulle

rene

Aluminium Cathode

Transparent Anode

Polymer

Fulle

rene

Aluminium Cathode

Transparent Anode

Polymer

Fulle

rene

Aluminium Cathode

Transparent Anode

Polymer

Fulle

rene

Aluminium Cathode

Transparent Anode

Polymer

Page 12: PHOTOVOLTAIK - Neue Konzepte - FVEE - Neue Konzepte V. Dyakonova, C. J. Brabeca, J. Hauchb a Bayerisches Zentrum für Angewandte Energieforschung e.V. (ZAE Bayern) b Konarka Technolgies

FVEE - Jahrestagung 2010: "Forschung für das Zeitalter der erneuerbaren Energien - Jahre FVEE"

20 Jahre

20 Jahre

Produktionstechnologie Industrieprozessrelevante Technologie: Rolle-zu-Rolle-Beschichtung undVerkapselung

Page 13: PHOTOVOLTAIK - Neue Konzepte - FVEE - Neue Konzepte V. Dyakonova, C. J. Brabeca, J. Hauchb a Bayerisches Zentrum für Angewandte Energieforschung e.V. (ZAE Bayern) b Konarka Technolgies

FVEE - Jahrestagung 2010: "Forschung für das Zeitalter der erneuerbaren Energien - Jahre FVEE"

20 Jahre

20 Jahre

Wirkungsgrad

14 14

12 12

10 10

8 8

6 6

4 4

2 2

0 0

Effic

ienc

y (%

)

201020082006200420022000199819961994

Year

UCSB U LinzU Linz

SiemensU Linz

Konarka

Plextronics / KonarkaUCSB / U Lavall

Konarka

SolarmerKonarka

Solarmer

University ofLausanne

Sharp

KonarkaEPFL

(SSDSSC)

OPV (polymer) Dye sensitized solar cells (DSSC)

Seit 2005 beträgt die absolute Steigerungsrate in etwa 0,8%/Jahr

8,3% Tandem, heliatek & IAPP, Dresden

PM am 11.10.10

Kleinmolekül-Tandem, Vakuumprozess

Page 14: PHOTOVOLTAIK - Neue Konzepte - FVEE - Neue Konzepte V. Dyakonova, C. J. Brabeca, J. Hauchb a Bayerisches Zentrum für Angewandte Energieforschung e.V. (ZAE Bayern) b Konarka Technolgies

FVEE - Jahrestagung 2010: "Forschung für das Zeitalter der erneuerbaren Energien - Jahre FVEE"

20 Jahre

20 Jahre

Lebensdauer

• flexible SZ lichtstabil für > 5000 Std. @ 1 sun @ 65 ° C (@ mpp)

h

η

Page 15: PHOTOVOLTAIK - Neue Konzepte - FVEE - Neue Konzepte V. Dyakonova, C. J. Brabeca, J. Hauchb a Bayerisches Zentrum für Angewandte Energieforschung e.V. (ZAE Bayern) b Konarka Technolgies

FVEE - Jahrestagung 2010: "Forschung für das Zeitalter der erneuerbaren Energien - Jahre FVEE"

20 Jahre

20 Jahre

Anwendungen

• Derzeit: Nischenanwendungen im Verbraucherelektronikbereich• Zukunft: gebäudeintegrierte Photovoltaik (GIPV)

Konarka Technologies, Inc.

Portable chargingPortable charging

Recharge-Our-World,Nomad® Outdoor Charger

Neuber‘s

Bubble Bags

Konarka Technologies, Inc.

Shading Structures & BIPVShading Structures & BIPVSkyshades –Greg Norman Headquarters

3-form/Lundberg DesignSan Francisco Bus Shelter

Arch Aluminum & GlassCurtain Wall

Konarka Technologies, Inc.

Portable chargingPortable charging

Recharge-Our-World,Nomad® Outdoor Charger

Neuber‘s

Bubble Bags

Konarka Technologies, Inc.

Shading Structures & BIPVShading Structures & BIPVSkyshades –Greg Norman Headquarters

3-form/Lundberg DesignSan Francisco Bus Shelter

Arch Aluminum & GlassCurtain Wall

Konarka Technologies, Inc.

Portable chargingPortable charging

Recharge-Our-World,Nomad® Outdoor Charger

Neuber‘s

Bubble Bags

Konarka Technologies, Inc.

Shading Structures & BIPVShading Structures & BIPVSkyshades –Greg Norman Headquarters

3-form/Lundberg DesignSan Francisco Bus Shelter

Arch Aluminum & GlassCurtain Wall

Konarka Technologies, Inc.

Portable chargingPortable charging

Recharge-Our-World,Nomad® Outdoor Charger

Neuber‘s

Bubble Bags

Konarka Technologies, Inc.

Shading Structures & BIPVShading Structures & BIPVSkyshades –Greg Norman Headquarters

3-form/Lundberg DesignSan Francisco Bus Shelter

Arch Aluminum & GlassCurtain Wall

Page 16: PHOTOVOLTAIK - Neue Konzepte - FVEE - Neue Konzepte V. Dyakonova, C. J. Brabeca, J. Hauchb a Bayerisches Zentrum für Angewandte Energieforschung e.V. (ZAE Bayern) b Konarka Technolgies

FVEE - Jahrestagung 2010: "Forschung für das Zeitalter der erneuerbaren Energien - Jahre FVEE"

20 Jahre

20 Jahre

Zielsetzungen (Beitrag zum 6.EFP)

• Steigerung des Wirkungsgrads von Solarzellen auf 14% bzw. von Modulen auf 8-10 % bis 2015

• Steigerung der Lebensdauer auf > 10 Jahre• Entwicklung der Produktionstechnik (Rolle-zu-Rolle) für organische

Solarmodule (polymere, molekulare, vakuumprozessierbare Systeme)• Entwicklung von günstigen Barrierenfolien mit niedrigen Permeabilitäten

und hoher Stabilität der Barrierematerialien zur Verkapselung organischer Solarmodule

• Entwicklung von gedruckten, transparenten Elektroden mit hoher Leitfähigkeit

Page 17: PHOTOVOLTAIK - Neue Konzepte - FVEE - Neue Konzepte V. Dyakonova, C. J. Brabeca, J. Hauchb a Bayerisches Zentrum für Angewandte Energieforschung e.V. (ZAE Bayern) b Konarka Technolgies

FVEE - Jahrestagung 2010: "Forschung für das Zeitalter der erneuerbaren Energien - Jahre FVEE"

20 Jahre

20 Jahre

FuE-Bedarf (Beitrag zum 6.EFP)

• Entwicklung von maßgeschneiderten organischen p- und n-Materialien mit geeigneten opto-elektronischen Eigenschaften

• Erhöhung der intrinsischen Lebensdauer von organischen Absorbermaterialien

• Kontrolle über die Morphologie der Absorberschicht im Nanometer- bzw. Subnanometerbereich

• Technologieentwicklung für lösungsmittel-prozessierbare organische Tandem-Solarzellen

• Entwicklung industrieprozessrelevanter Technologien: Rolle-zu-Rolle-Beschichtung und Verkapselung

erstellt zusammen mit Dr. Michael Powalla (ZSW)

Page 18: PHOTOVOLTAIK - Neue Konzepte - FVEE - Neue Konzepte V. Dyakonova, C. J. Brabeca, J. Hauchb a Bayerisches Zentrum für Angewandte Energieforschung e.V. (ZAE Bayern) b Konarka Technolgies

FVEE - Jahrestagung 2010: "Forschung für das Zeitalter der erneuerbaren Energien - Jahre FVEE"

20 Jahre

20 Jahre

Finanzielle Unterstützung