photonics: the discipline that is making manufacturing smart · • industry has given strong...

18
Photonics: the discipline that is making manufacturing smart Institute for Applied Laser, Photonics and Surface Technologies ALPS, Fiber Technology Laboratory Dr. Valerio Romano, Professor for Photonics

Upload: others

Post on 25-Jul-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

  • Photonics: the discipline that is making manufacturing smart

    Institute for Applied Laser, Photonics and Surface Technologies ALPS, Fiber Technology Laboratory

    Dr. Valerio Romano, Professor for Photonics

  • Overview

    • Short information on "Photonics" MSE Master

    • Some thoughts on "smartness"• Examples of devices that might be used to implement

    smartness in laser based machines

  • Introduction

    • 2018: important year for photonics in Switzerland:• Industry has given strong signals of commitment towards

    photonics as a key enabling technology ALSO in Switzerland• teaching (MSE Master is being prepared as a profile and will

    start in 2020• profile description is ready; implementation in a course of study will

    start in January 2019

    • Manufacturing technologies impulse programme

    • This workshop:• Thinking about how photonics impacts on manufacturing• How photonics can be implemented in industry by projects,

    research and teaching• How to find a sustainable and effective implementation in

    funding

  • Info: MSE Master Profile Photonics

    • Profile description is in course of formulation and verywell on track

    • 6 of 7 UAS participating• Early 2019 the modules wil be formulated• The contents discussed (not objected by anybody) are:

    • Photonics for machining and manufacturing• Optical measuring• Optoelectronics and Electrooptics• Photonic systems (including design and simulation)• Manufacturing for photonics

    • Planned start in fall 2020 (inscriptions 2019)

  • Photonics and noble prizes...

    Schores AlfjorowHerbert Kroemer

    Jack Kilby

    Roy Jay Glauber

    John Lewis Hall

    Theodor Hänsch

    Charles Kuen Kao

    Willard Boyle

    George Elwood Smith

    Andre Geim

    Konstantin Novoselov

    Serge HarocheDavid Wineland

    Isamu Akasaki

    Hiroshi Amano

    Shuji NakamuraArthur Ashkin

    Gérard Mourou

    Donna Strickland

    2014

    2018 Laserphysik

    Manipulation von Quantensystemen

    Blaue dioden

    2009

    opt. Glasfaser

    „für die Erfindung des CCD-Sensors“

    2010 Graphen

    2012

    2000Optoelektronik

    Entwicklung des integrierten Schaltkreises

    2005

    optical coherence

    opt. Spektroskopie, Frequenzkamm

    2018

    Tabelle1

    2000Schores AlfjorowOptoelektronik

    Herbert Kroemer

    Jack KilbyEntwicklung des integrierten Schaltkreises

    2005Roy Jay Glauberoptical coherence

    John Lewis Hallopt. Spektroskopie, Frequenzkamm

    Theodor Hänsch

    2009Charles Kuen Kaoopt. Glasfaser

    Willard Boyle„für die Erfindung des CCD-Sensors“

    George Elwood Smith

    2010Andre GeimGraphen

    Konstantin Novoselov

    2012Serge HarocheManipulation von Quantensystemen

    David Wineland

    2014Isamu AkasakiBlaue Dioden

    Hiroshi Amano

    Shuji Nakamura

    2018Arthur AshkinLaserphysik

    Gérard Mourou

    Donna Strickland

    2000Schores AlfjorowOptoelektronik

    Herbert Kroemer

    Jack KilbyEntwicklung des integrierten Schaltkreises

    2005Roy Jay Glauberoptical coherence

    John Lewis Hallopt. Spektroskopie, Frequenzkamm

    Theodor Hänsch

    2009Charles Kuen Kaoopt. Glasfaser

    Willard Boyle„für die Erfindung des CCD-Sensors“

    George Elwood Smith

    2010Andre GeimGraphen

    Konstantin Novoselov

    2012Serge HarocheManipulation von Quantensystemen

    David Wineland

    2014Isamu AkasakiBlaue dioden

    Hiroshi Amano

    Shuji Nakamura

    2018Arthur AshkinLaserphysik

    Gérard Mourou

    Donna Strickland

    https://de.wikipedia.org/wiki/Schores_Iwanowitsch_Alfjorowhttps://de.wikipedia.org/wiki/Charles_Kuen_Kaohttps://de.wikipedia.org/wiki/Faseroptikhttps://de.wikipedia.org/wiki/Willard_Boylehttps://de.wikipedia.org/wiki/CCD-Sensorhttps://de.wikipedia.org/wiki/George_Elwood_Smithhttps://de.wikipedia.org/wiki/Andre_Geimhttps://de.wikipedia.org/wiki/Graphenhttps://de.wikipedia.org/wiki/Konstantin_Novoselovhttps://de.wikipedia.org/wiki/Serge_Harochehttps://de.wikipedia.org/wiki/David_Winelandhttps://de.wikipedia.org/wiki/Herbert_Kroemerhttps://de.wikipedia.org/wiki/Isamu_Akasakihttps://de.wikipedia.org/wiki/Leuchtdiodehttps://de.wikipedia.org/wiki/Hiroshi_Amanohttps://de.wikipedia.org/wiki/Shuji_Nakamurahttps://de.wikipedia.org/wiki/Arthur_Ashkinhttps://de.wikipedia.org/wiki/G%C3%A9rard_Mourouhttps://de.wikipedia.org/wiki/Donna_Stricklandhttps://de.wikipedia.org/wiki/Laserhttps://de.wikipedia.org/wiki/Schores_Iwanowitsch_Alfjorowhttps://de.wikipedia.org/wiki/Herbert_Kroemerhttps://de.wikipedia.org/wiki/Jack_Kilbyhttps://de.wikipedia.org/wiki/Jack_Kilbyhttps://de.wikipedia.org/wiki/Integrierter_Schaltkreishttps://de.wikipedia.org/wiki/Roy_Jay_Glauberhttps://de.wikipedia.org/wiki/Koh%C3%A4renz_(Physik)https://de.wikipedia.org/wiki/John_Lewis_Hallhttps://de.wikipedia.org/wiki/Frequenzkammhttps://de.wikipedia.org/wiki/Theodor_H%C3%A4nschhttps://de.wikipedia.org/wiki/Charles_Kuen_Kaohttps://de.wikipedia.org/wiki/Faseroptikhttps://de.wikipedia.org/wiki/Willard_Boylehttps://de.wikipedia.org/wiki/Integrierter_Schaltkreishttps://de.wikipedia.org/wiki/CCD-Sensorhttps://de.wikipedia.org/wiki/George_Elwood_Smithhttps://de.wikipedia.org/wiki/Andre_Geimhttps://de.wikipedia.org/wiki/Graphenhttps://de.wikipedia.org/wiki/Konstantin_Novoselovhttps://de.wikipedia.org/wiki/Serge_Harochehttps://de.wikipedia.org/wiki/David_Winelandhttps://de.wikipedia.org/wiki/Isamu_Akasakihttps://de.wikipedia.org/wiki/Hiroshi_Amanohttps://de.wikipedia.org/wiki/Shuji_Nakamurahttps://de.wikipedia.org/wiki/Roy_Jay_Glauberhttps://de.wikipedia.org/wiki/Arthur_Ashkinhttps://de.wikipedia.org/wiki/G%C3%A9rard_Mourouhttps://de.wikipedia.org/wiki/Donna_Stricklandhttps://de.wikipedia.org/wiki/Laserhttps://de.wikipedia.org/wiki/Koh%C3%A4renz_(Physik)https://de.wikipedia.org/wiki/John_Lewis_Hallhttps://de.wikipedia.org/wiki/Frequenzkammhttps://de.wikipedia.org/wiki/Theodor_H%C3%A4nsch

  • Lasers in production: one tool – many applications

  • Virtual factory

    • Virtual factory• Task: create a factory to produce a symbolic object (Einstein)• Solution:

    Data reshapingin our office

    Artwork byRobley Browne

    On «Bundesplatz»

  • What does "smart" mean (for a machine or a process)?• Some people see spiritual aspects behind

    intelligence and smartness...

    • No philosophical discussion on intelligence here.

    • There is no such thing as an "error-free" process• In a manufacturing process, "smart" might mean to make a process

    "autonomous", versatile, error tolerant and self repairing. This involves:• Fast data collection, very fast data transmission, ultrafast data analysis and

    feedback;• digital storage of the process status;• taking repairing measures• resuming the process

    • So "smart" might mean "Being able to collect big amounts of data veryquickly, transferring and analysing them and giving feedback in real time".

  • Powder characterisation

    Determination of the heat conductivity of a powderby a laser probe beam.

    Optical determination of the laser penetration depthas a function of densification and granulometryof a metallic powder.

    Projektarbeit «Pulvercharakterisierung» (PA1) Christian Marti, FS 2016

    A. Streek, HS Mittweida

    Also possible from backscattered dataduring the process

  • Example: Surface inspection of powder bedProject work «Visuelle Überwachung des SLM Prozesses» (PA1) Matthias Fontanellaz, FS 2016

    Shadows from obliquely incident light

    Schatten-Differenzbild Binarisiertes Bild zur Höhenberechnung

    Performance Mapping of the complete SLM chamber with 50µm resolution Min. detection heigth: 300µm Höhe (limited by computer

    capacity) Measurement uncertainty: 23µm

    Detection of delamination

  • Real-time 2D Quotient pyrometry for SLM process

    • Temperatures can be measuredat wavelengths that are transmittedby the process optics

    • 2D thermal maps in real-time

    • High data rate needed

    • Wireless?

  • SLM real-time thermal process inspectionBachelor Thesis «Real-time Überwachung des SLM Prozesses» H. Hodak & A. Keller, FS 2016Master Project work (EVA) Marco Jordi, 2017

    Y.S. Lee / W. Zhang, 2015

    ▶ Mapping of the temperature distribution in and around the melt pool during laserirradiation

    ▶ Detection of instabilities in the melt pool

  • Multi-beam delivery through HC fibers

    Cregan et al., Science 285, p. 1537, (1999) P.J. Roberts et al., Opt. Express 13, p. 236 (2005)

    Photonic bandgap fibre• Ultralow loss

    (~1 dB/km demonstrated)• ~100 nm transmission

    window

    Benabid et al., Science 298, p. 399, (2002)

    Kagomé fibre• Higher loss

    (~0.1-1 dB/m typical)• ~1000 nm transmission

    window

    Debord et al., Opt. Lett. 39 (21), p. 6245, (2014)

    “Single-ring fibre”• Ease of fabrication• Simple structure to model• Losses and transmission

    windows comparable to best kagomé fibres

    Pryamikov et al., Opt. Express 19(2), p. 1441, (2011)

  • Delivering laser radiation in a wide range of wavelengths (UV - NIR) pulselengths (CW - femtoseconds)

    through the same fiber.

    Using the same fiber for the diagnostic signal

    New generation of hollow core fibers

  • Potential benefits of "smartness" in laser based manufacturing

    • Self-correcting processes• Product-adapted process parameters• High energy effectivness

    SLS part produced in a collaboration between EPFL/IAP (Ø15mm) Ø15mm, 200 25µm layers

    P = 1.4W, f=2kHz,v=40mm/s

  • Continuous wave interaction:3 watts average power

    Near infrared pulsed laser sintering : Experiments Slide 16

    Higher quality at lower power...

    Pulsed interaction2 watts average power

    100 µm

    1 mm1 mm

    100 µm

    1 mm

  • Sintered with Nd:YAG,

    195 mW average power (critical)

    150 ps pulses, 80 MHz

    Sintered with Nd:YAG,

    275 mW average power

    150 ps pulses, 80 MHz

    Consolidation of nanopowder with ps-pulses

  • Summary• In connection with laser based manufacturing "smart"

    means not only optimizing processes themselves but also continuously monitoring them and generating feedbackin real-time

    • Photonics offers a wide range of tools to do that and in connection with digital data methods it can do itintelligenty.

    • Fast transmission and processing of BIG amounts of digital data is necessary to implement "smartness"

    Thank you for your attention

    Photonics: the discipline that is making �manufacturing smartOverviewIntroductionInfo: MSE Master Profile Photonics Photonics and noble prizes...Lasers in production: one tool – many applicationsVirtual factoryWhat does "smart" mean (for a machine or a process)?Powder characterisationExample: Surface inspection of powder bedReal-time 2D Quotient pyrometry for SLM processSLM real-time thermal process inspectionMulti-beam delivery through HC fibersNew generation of hollow core fibersPotential benefits of "smartness" in laser based manufacturingHigher quality at lower power...Consolidation of nanopowder with ps-pulsesFoliennummer 18