phd defence part 2

33
Second Order Generalized Van Vleck Perturbation Theory Molecular Gradients and Nonadiabatic CouplingTerms Daniel P. Theis University of North Dakota Chemistry Department Grand Forks, ND

Upload: daniel-theis

Post on 06-Aug-2015

146 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: PhD Defence Part 2

Second Order Generalized Van Vleck Perturbation Theory Molecular Gradients

and Nonadiabatic CouplingTerms

Daniel P. TheisUniversity of North Dakota

Chemistry DepartmentGrand Forks, ND

Page 2: PhD Defence Part 2

2

• Introduction

Outline

Hoffmann, M. R. et. al. J. Chem. Phys. 2002, 117, 4133.

• GVVPT2 Gradiengts

• GVVPT2 Nonadiabatic Coupling Terms

Page 3: PhD Defence Part 2

3

1. GVVPT2 is a post-MCSCF, perturbation based electronic structure method.

Benefits of the GVVPT2 Method

Hoffmann, M. R. et. al. J. Chem. Phys. 2002, 117, 4133.

2. GVVPT2 can determine accurate electronic energies for systems with several low lying, nearly degenerate electronic states.

3. GVVPT2 potential energy surfaces are continuous, differentiable functions of the geometry, that ensure the evaluation of molecular gradients.

4. A highly efficient algorithm has been constructed for the GVVPT2 method, which combines the advantages of the macroconfiguration and GUGA techniques.

Page 4: PhD Defence Part 2

4

t

Ltt

MRCI AFT

HMM

HQM

HMQ

HQQ

Hoffmann, M. R. et. al. J. Chem. Phys. 2002, 117, 4133.

MCSCF

The GVVPT Methodology

◦ Relatively Small CSF space, LM

◦ Neglects Dynamic Correlation (LQ)

mILm

mMCI CF

M

◦ Large CSF Space, LT = LM LQ

◦ Includes Dynamic Correlation.

MRCISD

0

MLm

mImmMCImm CEH

0

TLtttt

MRCItt AEH

Page 5: PhD Defence Part 2

5

MLmmm

GV AF

HQM

HMQ

Hoffmann, M. R. et. al. J. Chem. Phys. 2002, 117, 4133.

effMMH

GVVPT Methods

The GVVPT Methodology

HQQ

,ˆ GVVGVV

,0

MLmmmm

GVVeffmm AEH

mmeffmm FHFH

ˆˆˆ

◦ Heff is the same dimension as HMM

◦ Perturbative corrections from HQM, HMQ, and the diagonal elements of HQQ add dynamic correlation.

Page 6: PhD Defence Part 2

6

effQPH

effPQH

effPSH

effSPH

effPPH

effSSH

effSQH

effSQH

effQQH

The GVVPT Methodology

Shavitt, I.; Redmon, L. T. J. Chem. Phys. 1980, 73, 5711.Kuhler, K.; Hoffmann, M. R. J. Math. Chem. 1996, 20, 351.Hoffmann, M. R. et. al. J. Chem. Phys. 2002, 117, 4133.

The effective Hamiltonian is formed by:

• LM = LP ⊕ LS.

Page 7: PhD Defence Part 2

7

effQPH

effPQH

effPSH

effSPH

effPPH

effSSH

effSQH

effSQH

effQQH

0HH XX QP

effQP ee

The GVVPT Methodology

Shavitt, I.; Redmon, L. T. J. Chem. Phys. 1980, 73, 5711.Kuhler, K.; Hoffmann, M. R. J. Math. Chem. 1996, 20, 351.Hoffmann, M. R. et. al. J. Chem. Phys. 2002, 117, 4133.

Xeˆˆ

QPQPPQPQX FXFFXF ˆ

The effective Hamiltonian is formed by:

• LM = LP ⊕ LS.

• Define Ω, X, and XQP such that:ˆ ˆ

Page 8: PhD Defence Part 2

8

effQPH

effPQH

effPSH

effSPH

effPPH

effSSH

effSQH

effSQH

effQQH

• Perturbatively expand Heff and X.

0HH XX QP

effQP ee

The GVVPT Methodology

Shavitt, I.; Redmon, L. T. J. Chem. Phys. 1980, 73, 5711.Kuhler, K.; Hoffmann, M. R. J. Math. Chem. 1996, 20, 351.Hoffmann, M. R. et. al. J. Chem. Phys. 2002, 117, 4133.

Xeˆˆ

QPQPPQPQX FXFFXF ˆ

The effective Hamiltonian is formed by:

• LM = LP ⊕ LS.

• Define Ω, X, and XQP such that:ˆ ˆ

)2()2(21)2(

MMMMMMeffMM ZZHH

PMQPMQPMMPMMM CXHCCIZ )1()2( 2

GVVPT2 Effective Hamiltonian

Page 9: PhD Defence Part 2

9Hoffmann, M. R. et. al. J. Chem. Phys. 2002, 117, 4133.

The Origen of GVVPT2’s Stable Potential Energy Curves

)1(qIX

I

em

a

2a

3a

4a

-4a

-3a

-2a

-a

a = HqI

I

Iq

II

qIqI

ee

HHX

mm

0

)1(

QIQMCIQQQI E HIHX

1)1(

Kuhler, K.; Hoffmann, M. R. J. Math. Chem. 1996, 20, 351.

Page 10: PhD Defence Part 2

10Hoffmann, M. R. et. al. J. Chem. Phys. 2002, 117, 4133.

)1(qIX

I

em

a

2a

3a

4a

-4a

-3a

-2a

-a

a = HqI

I

IqqI

eE

HX

m)1(

e

eeeLq

qIIII HE

m

xxxx mmm22

41

21 )()()()( ◦

QIQMCIQQQI E HIHX

1)1(

Kuhler, K.; Hoffmann, M. R. J. Math. Chem. 1996, 20, 351.

The Origen of GVVPT2’s Stable Potential Energy Curves

Page 11: PhD Defence Part 2

11

qII

qI HDXem)1(

Hoffmann, M. R. et. al. J. Chem. Phys. 2002, 117, 4133.

I

II

e

e

e E

ED

m

mm

tanh

)1(qIX

I

em

a

2a

3a

4a

-4a

-3a

-2a

-a

a = HqI

QIQMCIQQQI E HIHX

1)1(

Kuhler, K.; Hoffmann, M. R. J. Math. Chem. 1996, 20, 351.

The Origen of GVVPT2’s Stable Potential Energy Curves

Page 12: PhD Defence Part 2

12

where each j is determine from

e1(x;(x)) = 0e2(x;(x)) = 0E = E(x;(x))

Determining Energy Gradients

Helgaker, T.; Jørgensen, P. Theor. Chim. Acta. 1989, 75, 111.

Page 13: PhD Defence Part 2

13

j a

j

jaa x

E

x

E

dx

dE

)(; xλx

where each j is determine from

e1(x;(x)) = 0e2(x;(x)) = 0E = E(x;(x))

0

)(;

j a

j

j

i

a

i

a

i

x

e

x

e

dx

de

xλx

a

j

x

where each is determined from

Determining Energy Gradients

Helgaker, T.; Jørgensen, P. Theor. Chim. Acta. 1989, 75, 111.

Page 14: PhD Defence Part 2

14

i

ii eEL )(;)()(;)(),(; xλxxxλxxξxλx

0

j

L

0)(;

xλxi

i

eL

where the values for i and j are determined by requiring

and

The Lagrangian Approach of Determining Energy Gradients

Helgaker, T.; Jørgensen, P. Theor. Chim. Acta. 1989, 75, 111.

Page 15: PhD Defence Part 2

15

The Lagrangian Approach of Determining Energy Gradients

i

ii eEL )(;)()(;)(),(; xλxxxλxxξxλx

0

j

L

0)(;

xλxi

i

eL

where the values for i and j are determined by requiring

and

Under these conditions

aaa x

L

dx

dL

dx

dE

)(; xλx

Helgaker, T.; Jørgensen, P. Theor. Chim. Acta. 1989, 75, 111.

Page 16: PhD Defence Part 2

16

The Lagrangian Approach of Determining Energy Gradients

i

ii eEL )(;)()(;)(),(; xλxxxλxxξxλx

0

j

L

0)(;

xλxi

i

eL

where the values for i and j are determined by requiring

and

Under these conditions

aaa x

L

dx

dL

dx

dE

)(; xλx

Helgaker, T.; Jørgensen, P. Theor. Chim. Acta. 1989, 75, 111.

n

n

n

n

nn

n

n

E

E

E

eee

eee

eee

2

1

0

01

01

21

22

2

2

1

11

2

1

1

)(

)(

)(

x

x

x

Page 17: PhD Defence Part 2

17

MLmMP

rveffmmmm

GVV HAAE )(,)(,)(;)()()( xCxΔxΔxxxx•

Electron Structure Parameters that are used in the GVVPT2 Calculations

Page 18: PhD Defence Part 2

18

MLmMP

rveffmmmm

GVV HAAE )(,)(,)(;)()()( xCxΔxΔxxxx•

Electron Structure Parameters that are used in the GVVPT2 Calculations

MLm

mIrv

mMPrvMC

I CF )()(,)(;)(,)(,)(; xxΔxΔxxCxΔxΔxCmI(x) ~•

Page 19: PhD Defence Part 2

19

MLmMP

rveffmmmm

GVV HAAE )(,)(,)(;)()()( xCxΔxΔxxxx•

Electron Structure Parameters that are used in the GVVPT2 Calculations

MLm

mIrv

mMPrvMC

I CF )()(,)(;)(,)(,)(; xxΔxΔxxCxΔxΔxCmI(x) ~•

~)(and )( xx abr

ijv

iGk

kiomok

rvmoi )(exp)()(,)(; xΔxxΔxΔx

v

r

ik kGG Gk

kiomok )(exp)( xΔx

•iGiNote:

Page 20: PhD Defence Part 2

20

MLmMP

rveffmmmm

GVV HAAE )(,)(,)(;)()()( xCxΔxΔxxxx•

Electron Structure Parameters that are used in the GVVPT2 Calculations

MLm

mIrv

mMPrvMC

I CF )()(,)(;)(,)(,)(; xxΔxΔxxCxΔxΔxCmI(x) ~•

~)(and )( xx abr

ijv

iGk

kiomok

rvmoi )(exp)()(,)(; xΔxxΔxΔx

v

r

ik kGG Gk

kiomok )(exp)( xΔx

•iGiNote:

OMO

ijklb

omoijklA

omoijkl

OMO

ijB

omoijA

omoijAB FeFgFEFhH

~)(

~ˆ~)()( 2

1 xxx

Page 21: PhD Defence Part 2

21

~ 1)( 2 MLm

mIC x 0)(

MLm

ImMCImmmm CEH xand

The Constraint Equations that are used by the GVVPT2 and MRCI Calculations

CmI(x)•

Page 22: PhD Defence Part 2

22

0)()(1)( 2

M M

LmIm

LmIm

MCImmmmmI CCEHe xxx CmI(x)• ~

The Constraint Equations that are used by the GVVPT2 and MRCI Calculations

Page 23: PhD Defence Part 2

23

0)()(1)( 2

M M

LmIm

LmIm

MCImmmmmI CCEHe xxx CmI(x)•

~)(xijv••

~

0)(ˆˆ),()()( xxxx MCIjiij

MCI

N

IIij EEHwe

P

The Constraint Equations that are used by the GVVPT2 and MRCI Calculations

Page 24: PhD Defence Part 2

24

0)()(1)( 2

M M

LmIm

LmIm

MCImmmmmI CCEHe xxx CmI(x)•

~)(xijv••

~

The Constraint Equations that are used by the GVVPT2 and MRCI Calculations

)(xabr ~ 0)()()()()( 2

1 OCC

klakblabklklababab gghfe xxxxx •

0)(ˆˆ),()()( xxxx MCIjiij

MCI

N

IIij EEHwe

P

Page 25: PhD Defence Part 2

25

PN

I

MO

i

aIii

GVViI

MCI

GVVMO

ij

aijkl

GVVijkl

MO

ij

aij

GVVij

a

GVV

fPghx

E21•

PN

I

MO

k ijv

IkkGVV

kIMCI

GVV

MO

xyzjxyz

GVVixyz

MO

xjx

GVVix

MO

xyzixyz

GVVjxyz

MO

xix

GVVjx

ijv

GVV

fP

ghghE

21

2222

Efficiently Evaluating the Partial Derivatives of EGVV

Page 26: PhD Defence Part 2

26

PN

I

MO

i

aIii

GVViI

MCI

GVVMO

ij

aijkl

GVVijkl

MO

ij

aij

GVVij

a

GVV

fPghx

E21•

PN

I

MO

k ijv

IkkGVV

kIMCI

GVV

MO

xyzjxyz

GVVixyz

MO

xjx

GVVix

MO

xyzixyz

GVVjxyz

MO

xix

GVVjx

ijv

GVV

fP

ghghE

21

2222

MIPMMIPMMCP

GVVMIMm

PmMCP

GVVQ

mI

IQMCI

GVV

mI

GVV

A

CC

E

CHXHXCΦAHX

HXΦHβX

212

Efficiently Evaluating the Partial Derivatives of EGVV

Page 27: PhD Defence Part 2

27

Qe e M

P

e

L q Lm

N

IqjiijmMIQMqmI

GVVij FEEFW

m m

m CH ˆ21

Efficiently Evaluating the Partial Derivatives of EGVV

Qe e M

P

e

L q Lm

N

IqjilkjiklijlkijklmMIQMqmI

GVVijkl FeeeeFW

m m

m CHˆˆ

81

Qe e

e

L qmqMIQMqImI HX

m m

m CHHX

Qe e

e

L qmqMIQMqIQ

mI

IQ HVC m m

m CHHβX

GVVPT2 Energies – Slowest Step

GVVPT2 vij, rab, and CmI Derivatives – Slowest Steps

~ 2 × time of (HX)mI

~ 1 × time of (HX)mI

Page 28: PhD Defence Part 2

28

Molecule Analytical Values Deviation from Numerical Values

Geometry Description X Y Z X Y Z

H2CO C -0.171726 0.205990 0.000000 -6.90×10-7 -8.00×10-8 0.00

CH1 Str. (+0.5 Å) O 0.081525 -0.025708 0.000000 3.70×10-7 4.20×10-7 0.00

H1 0.240019 -0.424267 0.000000 -6.00×10-8 7.00×10-8 0.00

H2 -0.149818 0.243985 0.000000 9.00×10-8 -1.20×10-7 0.00

LiH (X 1+) H 0.000000 0.000000 -0.014113 0.00 0.00 0.00

Avoided Crossing Li 0.000000 0.000000 0.014113 0.00 0.00 0.00

LiH (A 1+) H 0.000000 0.000000 -0.004441 0.00 0.00 0.00

Avoided Crossing Li 0.000000 0.000000 0.004441 0.00 0.00 0.00

• cc-pVTZ Basis Set

Technical Details: H2CO (Cs – Broken Sym.)

• RCO = 1.205 Å, RCH = 1.611 Å, and RCH = 1.111 Å.

• 2 Val. Groups {612 40; 611 41; 610 42}

HCH = 116.1o and OCH = 121.9o1 2

• Roos Aug. TZ Basis Set

Technical Details: LiH (C∞v)

• 9:1 SA-MCSCF MOs

• (2:10)-CAS + 1 Core Orb.

• RLiH = 3.400 Å

Analytical GVVPT2 Gradients for H2CO and LiH

Page 29: PhD Defence Part 2

29

The Lagrangian Approach of Determining Nonadiabatic Coupling Terms

i

ii eg )(;)()(;)(),(; xλxxxλxxξxλx L

where g'(x) is a function that makes

0

jL

andSetting 0

iL

, makes:

aaaaa xdx

d

dx

dg

dx

d

dx

d

)()()()()(

21 xxxxx LL

aaa dx

d

dx

d

dx

dg )()()(21 xxx

Page 30: PhD Defence Part 2

30

The Lagrangian Approach of Determining Nonadiabatic Coupling Terms

i

ii eg )(;)()(;)(),(; xλxxxλxxξxλx L

where g'(x) is a function that makes

MeffMMGVGVMMPMMPPMMPM

GV

EECCg AxHxFFxxAx )(

1)()()()( 2

1

aaa dx

d

dx

d

dx

dg )()()(21 xxx

For GVVPT2

Page 31: PhD Defence Part 2

31

The Lagrangian Approach of Determining Nonadiabatic Coupling Terms

i

ii eg )(;)()(;)(),(; xλxxxλxxξxλx L

where g'(x) is a function that makes

MeffMMGVGVMMPMMPPMMPM

GV

EECCg AxHxFFxxAx )(

1)()()()( 2

1

aaa dx

d

dx

d

dx

dg )()()(21 xxx

For GVVPT2

)()()(ˆ)( )2()2( xAxFxx MMGV

Page 32: PhD Defence Part 2

• Geometry optimizations, gradients calculations, and frequency calculations verify that the GVVPT2 method accurately describes the chemically important regions of most potential energy surfaces.

Conclusions

32

• The GVVPT2 gradients are continuous across potential energy surfaces, including regions of avoided crossings.

• Analytic formulas for GVVPT2 molecular gradients and nonadiabatic coupling terms have been developed which scale at approximately 2-3 times the speed of the GVVPT2 energy.

• Computational implementation of GVVPT2 analytic gradients show excellent agreement with finite difference calculations.

Page 33: PhD Defence Part 2

Dr. Mark R. HoffmannDr. Yuriy G. Khait

Patrick TamukangRashel MokambeJason HicksErik Timmian

Dr. Theresa WindusDr. Klaus Ruedenberg

Acknowledgements

33