peter delfyett seminar: ultrafast coherent optical signal processing using stabilized optical...

Upload: ucsbiee

Post on 04-Apr-2018

230 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/30/2019 Peter Delfyett Seminar: Ultrafast Coherent Optical Signal Processing using Stabilized Optical Frequency Combs from Mode-locked Semiconductor Diode Lasers

    1/84

    Ultrafast Coherent Optical Signal

    Processing using Stabilized OpticalFrequency Combs from Mode-

    locked Diode LasersPeter J. Delfyett

    CREOL, The College of Optics and Photonics, University of Central Florida, Orlando,Florida 32816-2700

    [email protected]

    University of California

    Santa Barbara, CADecember 5, 2012

  • 7/30/2019 Peter Delfyett Seminar: Ultrafast Coherent Optical Signal Processing using Stabilized Optical Frequency Combs from Mode-locked Semiconductor Diode Lasers

    2/84

    2

    Outline

    Motivation Background

    Key Technologies

    Stabilized Optical Frequency Combs

    Arcsine Phase & Linear Intensity Modulators w/ Comb Filter

    Direct Phase Detection (w/o external local oscillator) w/ Comb Filter

    Applications

    Arbitrary Waveform Measurements

    Arbitrary Waveform Generation

    Pattern Recognition using Matched Filtering Techniques

    Summary and Conclusions

  • 7/30/2019 Peter Delfyett Seminar: Ultrafast Coherent Optical Signal Processing using Stabilized Optical Frequency Combs from Mode-locked Semiconductor Diode Lasers

    3/84

  • 7/30/2019 Peter Delfyett Seminar: Ultrafast Coherent Optical Signal Processing using Stabilized Optical Frequency Combs from Mode-locked Semiconductor Diode Lasers

    4/84

    4

    Ultrawideband Communications

    Synthetic Aperture ImagingSensing, Detecting and Response

    Applications Enabled By Optical Frequency Combs

    Advanced Waveform Generation/Measurement

  • 7/30/2019 Peter Delfyett Seminar: Ultrafast Coherent Optical Signal Processing using Stabilized Optical Frequency Combs from Mode-locked Semiconductor Diode Lasers

    5/84

    5

    Time Interleaved Pulse Trains Time Overlaid Pulse Trains

    Interleaved Supermode SpectraOverlaid Supermode Spectra

    Power

    Time

    P

    ower

    Optical Frequency

    Amplitude

    Time

    Powe

    r

    Power

    Time

    Optical Frequency

    Ampli

    tude

    Po

    wer Time

    ei

    ei2

    E(-)

    E(-2)

    E()

    2

    Power

    eit

    eit2t

    fML

    c/L

    TC=L/c

    c/L

    fML

    T= 1/fML

    A1=1

    A2=1

    A3=0.5

    Harmonic Modelocked LasersSchematic Representations

  • 7/30/2019 Peter Delfyett Seminar: Ultrafast Coherent Optical Signal Processing using Stabilized Optical Frequency Combs from Mode-locked Semiconductor Diode Lasers

    6/84

    6

    0 200 400 600 800 1000 1200

    0

    50

    100

    150

    200

    250Intensity of Optical Pulse Train

    Time

    Intensity

    0 100 200 300 400 500 600 700 800 900 1000

    195

    200

    205

    210

    215

    220

    225

    230

    235

    Intensity of Optical Pulse Train

    Time

    Intens

    ity

    210 220 230 240 250 260 270 280 290 300 3100

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    Optical Spectrum of Pulse Train

    Frequency

    Watts/Hz

    20 40 60 80 100 120 140-80

    -60

    -40

    -20

    0

    20

    RF Power Spectrum of Pulse Train

    Frequency

    dB/Hz

    Supermode Noise Spurs

    (a)

    (c)

    (b)

    (d)

    Optical Pulse Train Intensity

    Optical Pulse Train Intensity

    Optical Spectrum of Pulse Train RF Power Spectrum of Pulse Train

  • 7/30/2019 Peter Delfyett Seminar: Ultrafast Coherent Optical Signal Processing using Stabilized Optical Frequency Combs from Mode-locked Semiconductor Diode Lasers

    7/84

    7

    Low Noise Modelocked Diode Lasers

    ViaStabilization of the Frequency Comb

  • 7/30/2019 Peter Delfyett Seminar: Ultrafast Coherent Optical Signal Processing using Stabilized Optical Frequency Combs from Mode-locked Semiconductor Diode Lasers

    8/84

    8

    Fundamentally Modelocked Lasers

    Time

    Optical Frequency

    fmod=c/L=10 GHz

    L

    c/L

    T=100 ps

    ~

    Powe

    r

    Pow

    er

    Log Frequency

    RF Power Spectrum

    Corner frequency moves to

    large offset frequencies w/ short cavities

    1 pulse in the cavity

    Corner

    Frequency

    SOA

    System Noise Floor

    RF Power Spectrum

    Frequency

  • 7/30/2019 Peter Delfyett Seminar: Ultrafast Coherent Optical Signal Processing using Stabilized Optical Frequency Combs from Mode-locked Semiconductor Diode Lasers

    9/84

    9

    Harmonically Modelocked Lasers

    Time

    Optical Frequency

    fmod=Nc/L=10 GHz

    L

    c/L

    T=100 ps

    ~

    SOA

    Power

    Power

    Log Frequency

    RF Power SpectrumSupermodes

    System Noise Floor

    Example: Ring Laser

    Mode Spacing=10 MHz

    fmod= 10 GHz

    N=1000

    N pulses in the cavity

    N Independent longitudinal

    mode groups

    Coupled Modes

    Corner

    Frequency

    10GHzRF Power Spectrum

  • 7/30/2019 Peter Delfyett Seminar: Ultrafast Coherent Optical Signal Processing using Stabilized Optical Frequency Combs from Mode-locked Semiconductor Diode Lasers

    10/84

    10

    Harmonic Modelocking & Supermode

    Suppression

    Fmod=nc/L

    = 10GHz

    L

    T=100 psec

    ~

    Time

    Optical Frequency

    10GHz

    T=100 psec

    Power

    Power

    Time

    Optical Frequency

    10GHz

    T=100 psec

    Power

    Power

    SOA

    =10GHz

    Fmod=nc/L

    =10GHz

    L

    ~

    SupermodeSuppression Filter

    SOA

  • 7/30/2019 Peter Delfyett Seminar: Ultrafast Coherent Optical Signal Processing using Stabilized Optical Frequency Combs from Mode-locked Semiconductor Diode Lasers

    11/84

    11

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    Frequency

    Transmission

    Frequency

    Transm

    ission

    (a)

    (b)

    Nested Optical Cavities

    R1=R2=90%; T1=T2 =10%; FSR2 / FSR1 =8

    Cavity Product Identical to R=99%; T=1%

  • 7/30/2019 Peter Delfyett Seminar: Ultrafast Coherent Optical Signal Processing using Stabilized Optical Frequency Combs from Mode-locked Semiconductor Diode Lasers

    12/84

    12

    Harmonically Mode-locked Lasers &

    Supermode Suppression

    Modulation rate

    The etalon free spectral range must match the mode-locking rate.

    Laser cavity modes must coincide with etalon transmission peaks.

    Mode spacing

    Etalon transmission

    Laser cavity

    10.24 GHz

    SOA

    IM

    PC I

    PC

    DCF

    DC

    etalon

    PC

    PC

    DCF

    FL

    SOA: semiconductor optical amplifier

    PC: polarization controller

    IM: intensity modulator

    I: isolator

    DCF: dispersion compensating fiber

    FL: fiber launcher

    FL

  • 7/30/2019 Peter Delfyett Seminar: Ultrafast Coherent Optical Signal Processing using Stabilized Optical Frequency Combs from Mode-locked Semiconductor Diode Lasers

    13/84

    13

    Setup

    SOA

    VODOPS

    IM

    II

    PCPC

    PC

    Output

    DC

    PC

    Free Space

    OpticsFPE

    PM

    Cir

    PBS

    PID

    OPS

    PC

    PC

    PD

    640 MHz

    Laser Cavity

    PDH Loop

    I: isolator

    SOA: semiconductor optical

    amplifier

    OPS: Optical phase shifter

    PD: photodetector

    PC: polarization controller

    IM: intensity modulatorPBS: polarization beam splitter

    FPE: Fabry-Perot etalon

    PID: PID controller

    PM: phase modulator

    Cir : optical circulator

    OPS: Optical Phase Shifter

    VOD: Variable Optical DelayDCF: Dispersion Comp. Fiber

    PDH: Pound Drever Hall

    Ultra-low noise osc.

    at 10.287GHz

  • 7/30/2019 Peter Delfyett Seminar: Ultrafast Coherent Optical Signal Processing using Stabilized Optical Frequency Combs from Mode-locked Semiconductor Diode Lasers

    14/84

    14

    Laser is constructed on a optical breadboard and thermally andacoustically isolated with foam insulation.

    Actively MLL with intracavity 1000 Finesse

    etalon

  • 7/30/2019 Peter Delfyett Seminar: Ultrafast Coherent Optical Signal Processing using Stabilized Optical Frequency Combs from Mode-locked Semiconductor Diode Lasers

    15/84

    15

    The pulses are compressed to 1.1 ps autocorrelation FWHM by using a

    dual grating compressor.

    Sampling scope and autocorrelation traces

    Actively MLL with intracavity 1000 Finesse

    etalon

  • 7/30/2019 Peter Delfyett Seminar: Ultrafast Coherent Optical Signal Processing using Stabilized Optical Frequency Combs from Mode-locked Semiconductor Diode Lasers

    16/84

    16

    The 10 dB spectral width of the optical spectrum is ~8.3nm.

    The comb line has a ~50dB signal-to-noise ratio

    Optical spectrum

    Actively MLL with intracavity 1000 Finesse

    etalon

    High Resolution Comb Line

  • 7/30/2019 Peter Delfyett Seminar: Ultrafast Coherent Optical Signal Processing using Stabilized Optical Frequency Combs from Mode-locked Semiconductor Diode Lasers

    17/84

    17

    Timing jitter and amplitude noise:

    Actively MLL with intracavity 1000 Finesse

    etalon

    Integrated timing jitter (1 Hz100 MHz) is ~3fs

    and up to Nyquist it is 14fs.

    Integrated amplitude noise (1 Hz100

    MHz) is 230ppm.

    Note the overall dynamic range of the measurement 1016

  • 7/30/2019 Peter Delfyett Seminar: Ultrafast Coherent Optical Signal Processing using Stabilized Optical Frequency Combs from Mode-locked Semiconductor Diode Lasers

    18/84

    18

    The linewidth of the laser with the 1000 Finesse etalon was measured as ~ 500 Hz

    (Note the relative ratio of the carrier frequency to the linewidth ~ 1012)Stability of 150 kHz over 30 sec

    (NB: Measurements are limited by the CW laser linewidth & stability)

    MLL

    CW laser

    PC RFSA

    OSA

    -20 -10 0 10 20-70

    -60

    -50

    -40

    -30

    -20

    -10

    0

    Amplitude(dBm)

    Frequency (GHz)

    High Resolution Spectrum Analyzer

    CW laser

    Stabilized Frequency Comb lines

    Optical linewidth/stability measurement.

    Actively MLL with intracavity 1000 Finesse

    etalon

    Stability

  • 7/30/2019 Peter Delfyett Seminar: Ultrafast Coherent Optical Signal Processing using Stabilized Optical Frequency Combs from Mode-locked Semiconductor Diode Lasers

    19/84

  • 7/30/2019 Peter Delfyett Seminar: Ultrafast Coherent Optical Signal Processing using Stabilized Optical Frequency Combs from Mode-locked Semiconductor Diode Lasers

    20/84

    20

    SCOW AmplifierSCOWA Slab-Coupled Optical Waveguide Amplifier

    J. J. Plant, et. al. IEEE Phot. Tech. Lett., v. 17, p.735

    (2005)

    W. Loh, et. al. IEEE J. Quant. Electron., v. 47, p. 66

    (2011)

    0 5 10 15 20 25 300

    3

    6

    9

    12

    15

    Pout

    (dBm)

    Gain(dB)

    1 A

    2 A

    3 A

    4 A

  • 7/30/2019 Peter Delfyett Seminar: Ultrafast Coherent Optical Signal Processing using Stabilized Optical Frequency Combs from Mode-locked Semiconductor Diode Lasers

    21/84

    21

    Etalon stabilized HMLLExperimental setup

    CIR: Circulator

    DBM: Double Balanced Mixer

    FPE: Fabry-Perot Etalon

    ISO: Isolator

    LPF: Low-Pass Filter

    OC: Output Coupler (Variable)PC: Polarization controller

    PD: Photodetector

    PID: Proportional-Integral-Differential Controller

    PM: Phase Modulator

    PS: Phase Shifter

    PZT: Piezoelectric Transducer (Fiber Stretcher)

    SOA: Semiconductor Optical Amplifier (SCOWA)

    VOD: Variable Optical Delay

    Pound-Drever-Hall Loop

    Optical Path

    Electrical Path

    SCOWA

    IM

    PC

    PC

    ISO ISO

    FPE (FSR = 10.287 GHz)

    OC

    PS

    PID

    DBM

    PD

    CIR

    LPF

    PM

    PC

    PCPC

    10.287 GHz

    500 MHz

    PC

    Laser Output

    Ultra-low

    noise oscillator

    Long fiber cavity provides narrow resonances

    Fabry-Prot Etalon provides wide mode spacing

    Pound-Drever-Hall loop locks both cavities

    An ultra-low noise oscillator is used to drive the laser

    VODPZT

    I. Ozdur, et. al., PTL, v. 22, pp. 431-433 (2010)

    F. Quinlan, et. al., Opt. Express 14, 5346-5355 (2006)

    PBS

  • 7/30/2019 Peter Delfyett Seminar: Ultrafast Coherent Optical Signal Processing using Stabilized Optical Frequency Combs from Mode-locked Semiconductor Diode Lasers

    22/84

    22

    -80

    -70

    -60

    -50

    -40

    -30

    -20

    Power(dBm)

    Frequency (100 MHz/div)

    Span: 1 GHz

    Res. BW: 1 MHz

    ~60 dB

    High-Resolution Optical SpectrumOptical Spectrum

    1544 1546 1548 1550

    -70

    -60

    -50

    -40

    -30

    -20

    -10

    Power(dBm)

    Wavelength (nm)

    ~60 dB

    10.24 10.26 10.28 10.30 10.32-110

    -100

    -90

    -80

    -70-60

    -50

    -40

    -30

    -20

    -10

    0

    Relative

    Power(dB)

    Frequency (GHz)

    Span: 100 MHz

    Res. BW: 3 kHz

    Radio-Frequency Spectrum

    1 10 100 1k 10k 100k 1M 10M 100M

    -170

    -160

    -150

    -140

    -130-120

    -110

    -100

    -90

    -80

    -70Residual Phase Noise

    Noise Floor

    Poseidon Oscillator Absolute Noise

    L(f)(dBc/Hz)

    Frequency Offset (Hz)

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    IntegratedT

    imingJitter(fs)

    Single sideband phase noise spectrum

    Etalon-

    stabilized

    laser

    (10.287 GHz)

    Etalon-

    stabilized

    laser

    (10.285 GHz)Real-time

    Spectrum

    Analyzer

    Real-time spectrogram

    Time(35s)

    420-2-4

    Frequency Offset (MHz)

    Optical Frequency Stability

    Measurement

    Etalon-based Ultralow-noise Frequency

    Comb Source

  • 7/30/2019 Peter Delfyett Seminar: Ultrafast Coherent Optical Signal Processing using Stabilized Optical Frequency Combs from Mode-locked Semiconductor Diode Lasers

    23/84

    23

    Oscillator characterization

    -40 -30 -20 -10 0 10 20 30 40

    0.0

    0.5

    1.0

    Compressed AC

    Transform Limited AC

    ACTrace(a.u.)

    Delay (ps)

    p

    = 930 fs

    10.24 10.26 10.28 10.30 10.32

    -100

    -80

    -60

    -40

    -20

    0

    Relative

    Power(dB)

    Frequency (GHz)

    Span: 100 MHz

    Res. BW: 3 kHz

    Pulses are compressible to close to the transform limit

    Photodetected RF tone has >90 dB dynamic range

    Intensity Autocorrelation RF Power Spectrum

  • 7/30/2019 Peter Delfyett Seminar: Ultrafast Coherent Optical Signal Processing using Stabilized Optical Frequency Combs from Mode-locked Semiconductor Diode Lasers

    24/84

    24

    AmplificationOutput power and spectral characteristics

    -60

    -40

    -20

    -60

    -40

    -20

    1552 1554 1556 1558 1560 1562 1564

    -60

    -40

    -20 I=4A, Pout

    =320 mW

    I=4A, Pout

    =214 mW

    Directly from MLL

    OpticalPow

    er(dBm)

    Wavelength (nm)

  • 7/30/2019 Peter Delfyett Seminar: Ultrafast Coherent Optical Signal Processing using Stabilized Optical Frequency Combs from Mode-locked Semiconductor Diode Lasers

    25/84

    25

    1 10 100 1k 10k 100k 1M 10M 100M

    -170

    -160

    -150

    -140

    -130-120

    -110

    -100

    -90

    -80

    -70

    (iv)

    (iii)

    (ii)(i) All-anomalous Cav.

    (ii) Disp. Comp. Cav.

    (iii) All-anomalous and Covega

    (iv) Poseidon Oscillator

    Noise Floor

    L(f)(dB

    c/Hz)

    Frequency Offset (Hz)

    (i)

    0

    2

    4

    6

    8

    10

    IntegratedJitter(fs)

    and SCOWA

    Timing JitterSSB Phase Noise Comparison

  • 7/30/2019 Peter Delfyett Seminar: Ultrafast Coherent Optical Signal Processing using Stabilized Optical Frequency Combs from Mode-locked Semiconductor Diode Lasers

    26/84

    26

    Outline

    Motivation Background

    Key Technologies

    Stabilized Optical Frequency Combs

    Arcsine Phase & Linear Intensity Modulators w/ Comb Filter

    Direct Phase Detection (w/o external local oscillator) w/ Comb Filter Applications

    Arbitrary Waveform Measurements

    Arbitrary Waveform Generation

    Pattern Recognition using Matched Filtering Techniques

    High Precision Laser Radar w/ Unambiguous Ranging &

    Velocimetry

    Summary and Conclusions

  • 7/30/2019 Peter Delfyett Seminar: Ultrafast Coherent Optical Signal Processing using Stabilized Optical Frequency Combs from Mode-locked Semiconductor Diode Lasers

    27/84

    27

    General Ideas for OFC Modulation

    Desirable Modulator Qualities for real time OFC applications:

    Current methods of modulating light intensity:

    Direct modulation of diode driving current Frequency chirp

    External modulation:

    Electro-optic modulators (EOM) Nonlinear modulation transfer function

    and Relatively high V

    Electro-absorption modulators (EAM) Poor optical power handling,

    High insertion loss and Sensitive to temperature and wavelength

    Proposed concept for OFC modulation:

    Injection locking a resonant cavity w/ gain (VCSEL) arcsine phase modulation

    NB: Linear intensity modulator in an interferometric configuration

    - Linear modulation transfer function

    - Large modulation bandwidth

    - Low Insertion Loss (negative..?)

    - Low V

    - Good power handling capability

    - Comb filtering, tunable, arrays

  • 7/30/2019 Peter Delfyett Seminar: Ultrafast Coherent Optical Signal Processing using Stabilized Optical Frequency Combs from Mode-locked Semiconductor Diode Lasers

    28/84

    28

    Injection-Locked Resonant Cavity as an Arcsine Phase

    Modulator

    1

    0

    Master laser

    1

    Slave laser0

    Adlers equation*:

    = 1

    =

    2: locking range

    *A. E. Siegman, Lasers, 1986

    =

    Locking range

    0

    1

    R t C it I t f t i M d l t

  • 7/30/2019 Peter Delfyett Seminar: Ultrafast Coherent Optical Signal Processing using Stabilized Optical Frequency Combs from Mode-locked Semiconductor Diode Lasers

    29/84

    29

    V

    f(t) ~

    /2

    Iin

    V

    T(V)))((sin 1 tf

    I0,1 )2

    )(1(

    tfIIinout

    Resonant cavity linear modulator Phase response

    Stable locking range Calculate SFDR

    f(t) ~

    Iin

    T(V)

    )2

    )cos(1(

    inout II

    Electro-optic Mach-Zehnder modulator

    VtV /)(0

    Resonant Cavity Interferometric ModulatorComparison to a Conventional MZ Modulator

    outI

    outI

    Ph M d l i & Fil i

  • 7/30/2019 Peter Delfyett Seminar: Ultrafast Coherent Optical Signal Processing using Stabilized Optical Frequency Combs from Mode-locked Semiconductor Diode Lasers

    30/84

    30

    Filtering &

    Modulation

    Optical SpectrumRF Spectrum

    f1

    VCSEL

    Bias T

    AC Modulation; f1,

    DC current= I1

    Phase Modulation & Filtering-Channel selection concept

    I()

    f

    P(f)

    Ch. 1

    DC=I1

    Ch. 2

    DC=I2

    Ch. 1

    Ch. N

    Ch. 2

    Comb Modulated Output

    0

    = +f1

    Ph M d l ti & Filt i

  • 7/30/2019 Peter Delfyett Seminar: Ultrafast Coherent Optical Signal Processing using Stabilized Optical Frequency Combs from Mode-locked Semiconductor Diode Lasers

    31/84

    31

    Filtering &

    Modulation

    VCSEL

    Bias T

    AC Modulation; f2

    DC current= I2

    Phase Modulation & Filtering-Channel selection concept

    Ch. 1

    Ch. N

    Ch. 2

    Comb Modulated Output

    RF spectrum

    f2f

    P(f)

    = +f2

    I()

    Ch. 1

    DC=I1

    Ch. 2

    DC=I2

    0

    Optical Spectrum8.6 8.7 8.8 8.9 9.0

    193.405

    193.410

    193.415

    193.420

    193.425

    193.430Measurement

    Linear fit

    Frequenc

    y(THz)

    DC Driving Current (mA)

    Slope ~ 50 GHz/mA

    Frequency vs. Current

    Li M d l

  • 7/30/2019 Peter Delfyett Seminar: Ultrafast Coherent Optical Signal Processing using Stabilized Optical Frequency Combs from Mode-locked Semiconductor Diode Lasers

    32/84

    32

    Linear ModulatorExperimental Results

    0 1 2 3 4 5 6

    -80

    -75

    -70

    -65

    -60

    -55

    -50

    Power(d

    Bm)

    Frequency (GHz)

    10 dB

    0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

    00 0 0 0 0 0 Measurement

    Fit

    Staticphase(radian)

    DC Current Deviation (mA)

    1 GHz

    1.0001 GHz

    CW

    laser

    PID

    RFSA

    VCSEL

    High-res

    OSA

    +

    Bias

    Tee

    EDFA

    IDCRF

    VOA PC

    50/50Iso

    PD

    PD

    90/10

    PZT

    VCSEL: vertical cavity surface emitting laser

    Iso: isolator

    VOA: variable optical attenuator

    PC: polarization controller

    PZT: piezoelectric transducerPD: photo detector

    PID: proportional-integrated-differential controller

    CIR: circulatorOSA: optical spectrum analyzer

    RFSA: RF spectrum analyzer

    CIR

    Spur free dynamic range of ~130 dB.Hz2/3

    Very low V of ~ 2.6 mV

    Multi-gigahertz bandwidth (~ 5 GHz)

    Possible gain

    PC

    -80 -70 -60 -50 -40 -30 -20

    -160

    -140

    -120

    -100

    -80

    -60

    -40

    -20

    0

    Fundamental

    IM3

    Fundam

    ental&intermodulatio

    n

    power(dBm)

    RF Input (dBm)

    Noise floor

    SFDR = 130

    dB.Hz2/3

  • 7/30/2019 Peter Delfyett Seminar: Ultrafast Coherent Optical Signal Processing using Stabilized Optical Frequency Combs from Mode-locked Semiconductor Diode Lasers

    33/84

    33

    Outline

    Motivation Background

    Key Technologies

    Stabilized Optical Frequency Combs

    Arcsine Phase & Linear Intensity Modulators w/ Comb Filter

    Direct Phase Detection (w/o external local oscillator) w/ Comb Filter Applications

    Arbitrary Waveform Measurements

    Arbitrary Waveform Generation

    Pattern Recognition using Matched Filtering Techniques

    High Precision Laser Radar w/ Unambiguous Ranging &

    Velocimetry

    Summary and Conclusions

    Di t d d l ti f h

  • 7/30/2019 Peter Delfyett Seminar: Ultrafast Coherent Optical Signal Processing using Stabilized Optical Frequency Combs from Mode-locked Semiconductor Diode Lasers

    34/84

    34

    Direct demodulation of phase

    modulated signals

    Operating principle: Detecting light-induced changes in the

    forward voltage of an optically injection locked VCSEL operating

    above threshold.

    Physical origin: Voltage change is due to the change in the

    carrier density in the active region of the VCSEL when driven by

    an external phase modulated light.

    V()

    hl o

    I () &

    ()

    Locking

    range N. Hoghooghi, et. al, IEEE Photonics TechnologyLetters, 22(20), pp. 1509-1511, 2010.

  • 7/30/2019 Peter Delfyett Seminar: Ultrafast Coherent Optical Signal Processing using Stabilized Optical Frequency Combs from Mode-locked Semiconductor Diode Lasers

    35/84

    35

    Phase

    detector

    0

    0

    Optical spectrum RF spectrum

    0

    0

    f1 f2

    VCSEL

    Bias T

    AC voltage

    DC voltage

    Channel filtering concept

    I()

    f

    P(f)

    Ch. 1

    fmod

    =f1

    Ch. 2

    fmod=f2

    Ch. 1

    Ch. N

    Ch. 2

    D d l ti & h l filt i ith

  • 7/30/2019 Peter Delfyett Seminar: Ultrafast Coherent Optical Signal Processing using Stabilized Optical Frequency Combs from Mode-locked Semiconductor Diode Lasers

    36/84

    36

    Demodulation & channel filtering with

    an injection-locked VCSEL

    PC: polarization controller

    PM: phase modulator

    IM: intensity modulator

    CIR: circulator

    OSA: optical spectrum analyzer

    RFSA: RF spectrum analyzer

    CW

    laserIM

    PM

    PM

    PM

    VCSEL

    12.5 GHz

    Ch.3

    (1 GHz)

    Ch.2

    (0.9 GHz) Ch.1(0.8 GHz)

    RFSA

    OSA

    DC

    RF

    CIRBias T

    WDM

    filter N

    x1

    combiner

    PC

    PC

    PC

    PC

    Electrical path

    Optical path

    1538.2 1538.4 1538.6-60

    -50

    -40

    -30

    -20

    -10

    0

    Power(d

    B)

    Wavelength (nm)

    Ch.1Ch.2Ch.3

    VCSEL

    E i t l lt f th h l

  • 7/30/2019 Peter Delfyett Seminar: Ultrafast Coherent Optical Signal Processing using Stabilized Optical Frequency Combs from Mode-locked Semiconductor Diode Lasers

    37/84

    37

    Experimental results of three channel

    system

    1538.1 1538.2 1538.3 1538.4 1538.5-60

    -50

    -40

    -30

    -20

    -10

    0

    Wavelength (nm)

    Power(dB)

    1538.1 1538.2 1538.3 1538.4 1538.5-60

    -50

    -40

    -30

    -20

    -10

    0

    Power(dB)

    Wavelength (nm)

    1538.1 1538.2 1538.3 1538.4 1538.5-60

    -50

    -40

    -30

    -20

    -10

    0

    Power(dB)

    Wavelength (nm)

    Ch.1 Ch.2 Ch.3

    750 800 850 900 950 1000-95

    -90

    -85

    -80

    -75

    -70

    -65

    RBW 30 kHz

    Span 270 MHz

    Power(dBm)

    Frequency (MHz)

    SNR ~ 60

    dBc/Hz

    750 800 850 900 950 1000-95

    -90

    -85

    -80

    -75

    -70

    -65

    Power(dBm)

    Fre uenc MHz

    RBW 30 kHz

    Span 270 MHz

    SNR ~ 60

    dBc/Hz

    750 800 850 900 950 1000-95

    -90

    -85

    -80

    -75

    -70

    -65RBW 30 kHz

    Span 270 MHz

    Power(dBm)

    Fre uenc MHz

    SNR ~ 62

    dBc/Hz

    Optical

    spectra

    Corresponding

    detected RF

    spectra

    First demonstration of direct demodulation and channel filtering of

    phase modulated signals with SNR of 60 dBc/Hz.

  • 7/30/2019 Peter Delfyett Seminar: Ultrafast Coherent Optical Signal Processing using Stabilized Optical Frequency Combs from Mode-locked Semiconductor Diode Lasers

    38/84

    38

    Linear Modulator Concept for Pulsed Light

    Received RF signal

    - A resonant cavity (Fabry-Perot) with multiple resonances, injection locked by a mode-

    locked laser as the frequency comb.

    - By simultaneous modulation of the period combs, one imparts arcsine phase modulation

    on each injected comb.

    1/frep

    MLL

    Fabry-Perot LaserFSR=frep

    FPOpticalFrequency

    FP resonances

    Corresponding phase responses

    Injected comb lines from the MLL

    Imparted phase on each injected combs

  • 7/30/2019 Peter Delfyett Seminar: Ultrafast Coherent Optical Signal Processing using Stabilized Optical Frequency Combs from Mode-locked Semiconductor Diode Lasers

    39/84

    39

    Outline

    Motivation Background

    Key Technologies

    Stabilized Optical Frequency Combs

    Arcsine Phase & Linear Intensity Modulators w/ Comb Filter

    Direct Phase Detection (w/o external local oscillator) w/ Comb Filter

    Applications

    Arbitrary Waveform Measurements

    Arbitrary Waveform Generation

    Pattern Recognition using Matched Filtering Techniques

    Summary and Conclusions

  • 7/30/2019 Peter Delfyett Seminar: Ultrafast Coherent Optical Signal Processing using Stabilized Optical Frequency Combs from Mode-locked Semiconductor Diode Lasers

    40/84

    Multi heterodyne Detection of

  • 7/30/2019 Peter Delfyett Seminar: Ultrafast Coherent Optical Signal Processing using Stabilized Optical Frequency Combs from Mode-locked Semiconductor Diode Lasers

    41/84

    41

    ff(1)rep 2f(1)

    repf(2)rep

    RF

    Power

    Spectr

    alDensity

    f(1)rep

    Photo-

    detection

    + +2

    f(1)rep

    f(2)

    repOpt

    icalPower

    Spec

    tralDensity

    Comb

    Source

    CombSource

    D

    Oscilloscope

    RFSA

    Diagnostics

    frepPLL

    LPF

    (a)

    (b)

    Multi-heterodyne Detection of

    Frequency Combs (Optical Sampling)

    Each pair of comb-lines generates a unique RF beat-note

    The RF beat-note retains the relative phase between the comb-lines

    Multi heterodyne detection of

  • 7/30/2019 Peter Delfyett Seminar: Ultrafast Coherent Optical Signal Processing using Stabilized Optical Frequency Combs from Mode-locked Semiconductor Diode Lasers

    42/84

    42

    Multi-heterodyne detection of

    frequency combsExperimental results Mode-locked laser combs

    Effective repetition rate detuning ~600 kHz

    Total Optical BW ~ 17nm ~2.12THzCompression factor ~ 17,000x

    10 GHz spacing optical comb is mapped into a 600 kHz spacing RF comb

    Optical spectra

    1500 16001475 157515501525Wavelength (nm)

    Power(5dB/div.)

    First two sets of RF beat notes

    50 2500 200150100Frequency (MHz)

    Power(dBm)-50

    -60

    -70

    Frequency (MHz)140 160 180

    -50

    -60

    -70

    -80Pow

    er(dBm)

    Pulse Combs Time Domain

  • 7/30/2019 Peter Delfyett Seminar: Ultrafast Coherent Optical Signal Processing using Stabilized Optical Frequency Combs from Mode-locked Semiconductor Diode Lasers

    43/84

    43

    Pulse Combs Time DomainExperimental Results (10 GHz & 250 MHz)

    As the optical pulse is stretched and compressed, the RF

    waveform does the same Optical waveform is mapped to RF

    waveform

    Normal

    Anomalous

    Dispersion

    1 2 3 40 5Time (s)

    Amp

    litude(a.u.)

    Time domain waveform

    Stretched

    Direct output

    Compressed

    Phase Modulated CW Combs

  • 7/30/2019 Peter Delfyett Seminar: Ultrafast Coherent Optical Signal Processing using Stabilized Optical Frequency Combs from Mode-locked Semiconductor Diode Lasers

    44/84

    44

    Phase Modulated CW CombsExperimental Results

    Real time

    oscilloscope

    RFSACW LaserPhase

    Modulator

    ~10 GHz

    Erbium Fiber

    Mode-locked

    Laser

    Multi-heterodyne detection of

  • 7/30/2019 Peter Delfyett Seminar: Ultrafast Coherent Optical Signal Processing using Stabilized Optical Frequency Combs from Mode-locked Semiconductor Diode Lasers

    45/84

    45

    Multi-heterodyne detection of

    frequency combsExperimental results Phase modulation combs

    1 2 3 4Time (s)

    0

    0

    -20

    -40

    20

    40

    A

    mplitude(mV) Time domain waveform

    1 2 3 4Time (s)

    0

    70

    60

    80

    90

    Instantaneous

    Frequency(MHz)

    Instantaneous frequency

    65 70 75 80Frequency (MHz)

    60

    Amplitude(a.u.)

    Fourier transform

    Phase()

    -1

    0

    1

    The optical waveform chirp is mapped to the

    RF waveform

    Spectral phase information can be retrieved

  • 7/30/2019 Peter Delfyett Seminar: Ultrafast Coherent Optical Signal Processing using Stabilized Optical Frequency Combs from Mode-locked Semiconductor Diode Lasers

    46/84

    46

    Outline

    Motivation Background

    Key Technologies

    Stabilized Optical Frequency Combs

    Arcsine Phase & Linear Intensity Modulators w/ Comb Filter

    Direct Phase Detection (w/o external local oscillator) w/ Comb Filter

    Applications

    Arbitrary Waveform Measurements

    Arbitrary Waveform Generation

    Pattern Recognition using Matched Filtering Techniques

    Summary and Conclusions

    Optical DACs using Frequency

  • 7/30/2019 Peter Delfyett Seminar: Ultrafast Coherent Optical Signal Processing using Stabilized Optical Frequency Combs from Mode-locked Semiconductor Diode Lasers

    47/84

    47

    Optical DACs using Frequency

    Comb Filtering Static Approach

    T

    T

    1/T

    1/T

    Time

    Time

    Frequency

    Frequency

    Intensity

    Intensity

    Intensity

    Optical DACs using Frequency

  • 7/30/2019 Peter Delfyett Seminar: Ultrafast Coherent Optical Signal Processing using Stabilized Optical Frequency Combs from Mode-locked Semiconductor Diode Lasers

    48/84

    48

    Modelocked

    Comb Generator

    N Combs

    WDM DeMux Modulator Array

    Maximum Modulation Rate F~WDM Mux

    Arbitrary Waveform

    Instantaneous Bandwidth Nx

    Ultra-Pure CW channels Modulated CW Channels

    Comb Spacing

    Temporal

    Gate

    Pulse Shaping at the Highest Possible Spectral Resolution

    Challenges: Some waveforms require phase modulation well beyond 2

    Optical DACs using Frequency

    Comb Filtering Dynamic Approach

    A Novel Concept for Ultra-High-Speed Optical Pulse Shaping

  • 7/30/2019 Peter Delfyett Seminar: Ultrafast Coherent Optical Signal Processing using Stabilized Optical Frequency Combs from Mode-locked Semiconductor Diode Lasers

    49/84

    49 49

    A Novel Concept for Ultra-High-Speed Optical Pulse Shaping

    Our novel idea is different than the conventional approaches in 4 ways:

    Instead of manipulating the existing optical combs, we regenerate the optical

    combs with the desired amplitudes and phases

    The refresh rate is limited by the modulation speed of the VCSELs (10s of GHz)

    The channel count can easily be scaled by going from 1-D array into 2-D array

    geometry

    Simultaneous modulation and amplification

    Phase / Amplitude

    > 106 increase in

    the refresh rate !!!

    High speed Reconfigurable Optical

  • 7/30/2019 Peter Delfyett Seminar: Ultrafast Coherent Optical Signal Processing using Stabilized Optical Frequency Combs from Mode-locked Semiconductor Diode Lasers

    50/84

    50

    High-speed Reconfigurable Optical

    Arbitrary Waveform Generation

    Four optical comblines, independently modulated and

    coherently combined

    Wavelength demux and mux pair

    6.25 GHz channel spacing

    Each modulator Injection-locked VCSEL with

    current modulation

    Experimental Setup

  • 7/30/2019 Peter Delfyett Seminar: Ultrafast Coherent Optical Signal Processing using Stabilized Optical Frequency Combs from Mode-locked Semiconductor Diode Lasers

    51/84

    51

    1538

    .80

    1538

    .85

    1538

    .90

    1538

    .95

    1539

    .00

    1539

    .05

    1539

    .10

    1539

    .15

    1539

    .20

    1539

    .25

    1539

    .30

    1539

    .35

    1539

    .40

    1539

    .45

    1539

    .50

    1539

    .55

    1539

    .60

    -70

    -60

    -50

    -40

    -30

    -20

    -10

    0

    Pow

    er(dBm)

    Wavelength (nm)

    0.0 0.1 0.2 0.3 0.4 0.5-5.0

    0.0

    5.0

    10.0

    15.0

    20.0

    25.0

    30.0160 ps

    Volta

    ge(mV)

    Time (ns)

    ~30 ps

    Experimental SetupOptical Frequency Comb Source

    Generated by modulation

    of CW laser

    Adjust DC bias voltages,

    RF phases and amplitudes

    to achieve five combs ofequal power

    Experimental Setup

  • 7/30/2019 Peter Delfyett Seminar: Ultrafast Coherent Optical Signal Processing using Stabilized Optical Frequency Combs from Mode-locked Semiconductor Diode Lasers

    52/84

    52

    Experimental SetupDemux, Mux Specifications

    Essex Hyperfine WDM filters

    Fiber-pigtailed input and outputs

    Channel spacing of 6.25 GHz

    Adjacent channel isolation ~ 22

    dB

    Gaussian shaped passband

    3 dB channel bandwidth ~ 3.5

    GHz Mux, Demux are a matched pair

    Intensity Profile of Rapidly

  • 7/30/2019 Peter Delfyett Seminar: Ultrafast Coherent Optical Signal Processing using Stabilized Optical Frequency Combs from Mode-locked Semiconductor Diode Lasers

    53/84

    53

    Intensity Profile of Rapidly

    Updated Optical WaveformsVCSEL 1 2 3 4

    RF frequency (MHz) 4 5 6 7

    VCSEL 1 2 3 4

    RF frequency (MHz) 1562.5 3125 781.25 2343.75

    5.120n 6.400n

    0

    100m

    200m

    Voltage(V)

    Time (s)

    0.0

    0

    1.28

    n

    2.56

    n

    3.84

    n

    5.12

    n

    6.40

    n

    7.68

    n

    8.96

    n0

    100m

    200m

    Voltage(V)

    Time (s)

    Photodetected RF spectrum

    0.00 6.25G 12.50G 18.75G 25.00G

    -60

    -40

    -20

    Power(dBm)

    Frequency (Hz)

    Intensity Profile of Rapidly

  • 7/30/2019 Peter Delfyett Seminar: Ultrafast Coherent Optical Signal Processing using Stabilized Optical Frequency Combs from Mode-locked Semiconductor Diode Lasers

    54/84

    54

    VCSEL 1 2 3 4

    RF frequency (MHz) 1562.5 3125 781.25 2343.75

    194.74

    7

    194.75

    4

    194.76

    0

    194.76

    6

    194.77

    2

    194.77

    8

    194.78

    5

    -60

    -50

    -40

    -30

    -20

    -10

    VCSEL 3 IL 2010-10-13-1.trc

    Power(dBm)

    Frequency (THz)

    Optical Spectrum

    Intensity Profile of Rapidly

    Updated Optical Waveforms

    Reconfigurable Cross Connect Switch /

  • 7/30/2019 Peter Delfyett Seminar: Ultrafast Coherent Optical Signal Processing using Stabilized Optical Frequency Combs from Mode-locked Semiconductor Diode Lasers

    55/84

    55

    Reconfigurable Cross Connect Switch /

    Pulse Shaping Code Reconfiguration

    Information from any wavelength can be arbitrarily switchedbetween channelsat rates approaching channel spacing. 100 times faster that the existing MEMS technology.

    DC3

    DC4

    DC1

    DC2

    DC1

    DC2

    DC3

    DC4

  • 7/30/2019 Peter Delfyett Seminar: Ultrafast Coherent Optical Signal Processing using Stabilized Optical Frequency Combs from Mode-locked Semiconductor Diode Lasers

    56/84

    56

    Outline

    Motivation Background

    Key Technologies

    Stabilized Optical Frequency Combs

    Arcsine Phase & Linear Intensity Modulators w/ Comb Filter

    Direct Phase Detection (w/o external local oscillator) w/ Comb Filter

    Applications

    Arbitrary Waveform Measurements

    Arbitrary Waveform Generation

    Pattern Recognition using Matched Filtering Techniques

    Summary and Conclusions

  • 7/30/2019 Peter Delfyett Seminar: Ultrafast Coherent Optical Signal Processing using Stabilized Optical Frequency Combs from Mode-locked Semiconductor Diode Lasers

    57/84

    57

    Matched Filtering using OFCs

  • 7/30/2019 Peter Delfyett Seminar: Ultrafast Coherent Optical Signal Processing using Stabilized Optical Frequency Combs from Mode-locked Semiconductor Diode Lasers

    58/84

    58

    Comparison to OCDMA Optical Code Division Multiple

    Access (OCDMA) Spectral modulation, temporal

    spread

    Decoding:

    Needs non-linear opticalthresholding because of slow

    response time of photodetectors

    Coherent detection technique

    is linear

    Requires less optical power

    Heritage and Weiner,IEEE JSTQE, 2007

    Jiang et al., IEEE PTL, 2004

    Complete Experimental Setup

  • 7/30/2019 Peter Delfyett Seminar: Ultrafast Coherent Optical Signal Processing using Stabilized Optical Frequency Combs from Mode-locked Semiconductor Diode Lasers

    59/84

    59

    Complete Experimental Setup

    Interference using Orthogonal

  • 7/30/2019 Peter Delfyett Seminar: Ultrafast Coherent Optical Signal Processing using Stabilized Optical Frequency Combs from Mode-locked Semiconductor Diode Lasers

    60/84

    60

    g gCodes Using orthogonal codes gives best contrast between

    different binary sequences

    - PD

    PD

    Differential

    signal

    0,,0,

    1 2 3 4

    0,0,0,0

    1 2 3 4

    1 2 3 4

    1 2 3 4

    0

    - PD

    PD

    Differential

    signal

    0,0,0,0

    1 2 3 4

    0,0,0,0

    1 2 3 4

    1

    1 2 3 4

    1 2 3 4

    1111

    1111

    1111

    1111

    DCode

    CCode

    BCode

    ACode

  • 7/30/2019 Peter Delfyett Seminar: Ultrafast Coherent Optical Signal Processing using Stabilized Optical Frequency Combs from Mode-locked Semiconductor Diode Lasers

    61/84

    61

    5.11

    mismatchmatch

    mismatchmatchQ

    3010

    22

    1

    QerfcBER

    ,Summary of Results of Matched Filtering

  • 7/30/2019 Peter Delfyett Seminar: Ultrafast Coherent Optical Signal Processing using Stabilized Optical Frequency Combs from Mode-locked Semiconductor Diode Lasers

    62/84

    62

    Outline

    Motivation Background

    Key Technologies

    Stabilized Optical Frequency Combs

    Arcsine Phase & Linear Intensity Modulators w/ Comb Filter

    Direct Phase Detection (w/o external local oscillator) w/ Comb Filter

    Applications

    Arbitrary Waveform Measurements

    Arbitrary Waveform Generation

    Pattern Recognition using Matched Filtering Techniques

    Summary and Conclusions

  • 7/30/2019 Peter Delfyett Seminar: Ultrafast Coherent Optical Signal Processing using Stabilized Optical Frequency Combs from Mode-locked Semiconductor Diode Lasers

    63/84

    63

    Summary Demonstrated key technologies and applications using OFCs

    Key Technologies Stabilized optical frequency combs (1.5 fsec jitter; 60 dBc/Hz)

    Applications

    Arbitrary waveform measurements (A to D Converter )

    Reconstruction of Incoherent (Independent) Sources

    Arbitrary waveform generation (D to A Converter) Fastest true real-time waveform generation (Mod Rates: >3GHz; IB: >22 GHz)

    Matched filtering w/ differential photodetection (BER=10-30)

  • 7/30/2019 Peter Delfyett Seminar: Ultrafast Coherent Optical Signal Processing using Stabilized Optical Frequency Combs from Mode-locked Semiconductor Diode Lasers

    64/84

    64

    Fundamentals of Injection Locking

  • 7/30/2019 Peter Delfyett Seminar: Ultrafast Coherent Optical Signal Processing using Stabilized Optical Frequency Combs from Mode-locked Semiconductor Diode Lasers

    65/84

    65

    Optical intensity and

    phase response vs. controlled via

    current modulation ofVCSEL

    Intensity change is small Phase difference betweenmaster and slave light, 0 :

    j gUsing VCSELs as Modulators

    Locking range = L

    fr 1

    A.E. Siegman,Lasers, Chap. 29, University Science Books, 1986

    F. Mogensen, et al.,IEEE J. Quantum Electronics., vol. 21, 1985

    Phase response

    Output intensity

    tansin

    11

    0

    f

    L

    Linewidth enhancement factor

    Phase

    =1fr f

    10 cot

    2

    Slave Laser

    (VCSEL)

    Master

    Laser

    Resonant Cavity Interferometric Modulator

  • 7/30/2019 Peter Delfyett Seminar: Ultrafast Coherent Optical Signal Processing using Stabilized Optical Frequency Combs from Mode-locked Semiconductor Diode Lasers

    66/84

    66

    - Theory

    )(sin)( 1011m

    0: slave frequency

    1: master frequency

    )2

    )cos(1(

    inI

    )2

    )(1()

    2

    )2/))((cos(sin1(

    1 tfI

    tfII ininout

    Linear Modulator

    ))((sin1

    tf

    inI

    inI outI

    Mach-Zehnder Interferometer

    Injection-locked laser phase response

    1

    /2

    -/2

    o

    -1 LockingRange

    Put them together

    Resonant Cavity Interferometric Modulator

  • 7/30/2019 Peter Delfyett Seminar: Ultrafast Coherent Optical Signal Processing using Stabilized Optical Frequency Combs from Mode-locked Semiconductor Diode Lasers

    67/84

    67

    V

    f(t) ~

    /2

    Iin

    V

    T(V)

    ))((sin 1 tf

    I0,1 )2

    )(1(

    tfIIinout

    Resonant cavity linear modulator Phase response

    Stable locking range Calculate SFDR

    f(t) ~

    Iin

    T(V)

    )2

    )cos(1

    (

    inout II

    Electro-optic Mach-Zehnder modulator

    VtV /)(0

    - Comparison to a conventional MZ modulator

    outI

    outI

    Phase Modulation & Filtering

  • 7/30/2019 Peter Delfyett Seminar: Ultrafast Coherent Optical Signal Processing using Stabilized Optical Frequency Combs from Mode-locked Semiconductor Diode Lasers

    68/84

    68

    Filtering &

    Modulation

    Optical SpectrumRF Spectrum

    f1

    VCSEL

    Bias T

    AC Modulation; f1,

    DC current= I1

    ase odu at o & te g-Channel selection concept

    I()

    f

    P(f)

    Ch. 1

    DC=I1

    Ch. 2

    DC=I2

    Ch. 1

    Ch. N

    Ch. 2 Comb Modulated Output

    0

    = +f1

    Phase Modulation & Filtering

  • 7/30/2019 Peter Delfyett Seminar: Ultrafast Coherent Optical Signal Processing using Stabilized Optical Frequency Combs from Mode-locked Semiconductor Diode Lasers

    69/84

    69

    Filtering &Modulation

    VCSEL

    Bias T

    AC Modulation; f2

    DC current= I2

    g-Channel selection concept

    Ch. 1

    Ch. N

    Ch. 2

    Comb Modulated Output

    RF spectrum

    f2f

    P(f)= +f2 I()

    Ch. 1DC=I

    1

    Ch. 2

    DC=I2

    0

    Optical Spectrum8.6 8.7 8.8 8.9 9.0

    193.405

    193.410

    193.415

    193.420

    193.425

    193.430Measurement

    Linear fit

    Frequen

    cy(THz)

    DC Driving Current (mA)

    Slope ~ 50 GHz/mA

    Frequency vs. Current

    f

  • 7/30/2019 Peter Delfyett Seminar: Ultrafast Coherent Optical Signal Processing using Stabilized Optical Frequency Combs from Mode-locked Semiconductor Diode Lasers

    70/84

    70

    Linear interferometric modulator setup

    CW

    laser

    Piezo

    driver

    RFSA

    VCSEL

    High-res

    OSA

    Bias

    Tee

    IDC

    RF

    VOA PC

    50/50Iso

    PDPZT

    CIR

    PC

    VCSEL: vertical cavity surface emitting

    laser

    Iso: isolator

    VOA: variable optical attenuator

    PC: polarization controller

    PZT: piezoelectric transducer

    PD: photo detector

    CIR: circulator

    High-res OSA: High resolution optical

    spectrum analyzer

    RFSA: RF spectrum analyzer

    Electrical path

    Optical path

    0 1 2 3 4 5 6

    -80

    -75

    -70

    -65

    -60

    -55

    -50

    Power(dBm

    )

    Frequency (GHz)

    10 dB

    0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

    00 0 0 0 0 0 Measurement

    Fit

    Staticphase(radian)

    DC Current Deviation (mA)

    0.00 0.05 0.10 0.15 0.20 0.250.15

    0.20

    0.25

    0.30

    0.35

    0.40

    Voltage(V)

    Time(sec)

    V ~ 2.6 mV

    -10 dB bandwidth

    ~5 GHz

    How to measure linearity of a modulator?

  • 7/30/2019 Peter Delfyett Seminar: Ultrafast Coherent Optical Signal Processing using Stabilized Optical Frequency Combs from Mode-locked Semiconductor Diode Lasers

    71/84

    71

    V(t)

    F

    1 2 2221 31 32

    221212

    2

    1

    21-2

    22-1

    32

    31

    22

    21

    =

    +

    +

    +

    Noise floor

    Spur-free

    dynamic range(SFDR)

    How to measure linearity of a modulator?-Two-tone experiment

    Iin IoutModulator

    N. Hoghooghi and P. J. Delfyett, IEEE Journal of Lightwave

    Technology, 29(22), pp.3421-342, 2011.

    A l li k l i li d l t

  • 7/30/2019 Peter Delfyett Seminar: Ultrafast Coherent Optical Signal Processing using Stabilized Optical Frequency Combs from Mode-locked Semiconductor Diode Lasers

    72/84

    72

    Analog link employing linear modulator

    1 GHz

    1.0001 GHz

    CW

    laser

    PID

    RFSA

    VCSELHigh-res

    OSA

    +

    Bias

    Tee

    EDFA

    IDCRF

    VOAPC

    50/50Iso

    PD

    PD90/10

    PZT

    CIR

    PC

    VCSEL: vertical cavity surface emitting laser

    Iso: isolator

    VOA: variable optical attenuator

    PC: polarization controller

    PZT: piezoelectric transducer

    PD: photo detector

    PID: proportional-integrated-differential controller

    CIR: circulator

    OSA: optical spectrum analyzer

    RFSA: RF spectrum analyzer

    1 km of

    fiber

    Electrical path

    Optical path

    Spur-free dynamic range measurement

  • 7/30/2019 Peter Delfyett Seminar: Ultrafast Coherent Optical Signal Processing using Stabilized Optical Frequency Combs from Mode-locked Semiconductor Diode Lasers

    73/84

    73

    Spur free dynamic range measurement

    of the link

    -80 -70 -60 -50 -40 -30 -20

    -160

    -140

    -120

    -100

    -80

    -60

    -40

    -20

    0

    Fundamental

    IM3

    Fundamental&intermodulation

    power

    (dBm)

    RF Input (dBm)

    Noise floor

    Power of the fundamental is a factor of >3,000,000^2

    higher than third-order intermodulation power.

    Order of the magnitude better than DARPA project

    goal.

    0.999 1.000 1.001 1.002

    -60

    -50

    -40

    -30

    -20

    -100

    10

    Power(dBm)

    Frequency (GHz)

    Sample RF spectrum

    10 20 30 40 50 60 70 80 90 100

    -160

    -150

    -140

    -130

    -120

    -110

    -100

    -90

    -80

    RIN[dBc/Hz]

    10 20 30 40 50 60 70 80 90 1000

    0.05

    0.1

    0.15

    0.2

    0.25

    Frequency Offset [MHz]

    IntegratedR

    MSRIN(%)

    RIN

    SFDR = 130 dB.Hz2/3

    Modelocking Basics

  • 7/30/2019 Peter Delfyett Seminar: Ultrafast Coherent Optical Signal Processing using Stabilized Optical Frequency Combs from Mode-locked Semiconductor Diode Lasers

    74/84

    74

    L

    c/2L

    gA Review

    Optical CavityAllowed Modes

    Laser Medium

    Laser Cavity

    Spontaneous Emission Spectrum

    Laser Spectrum

    Modelocking Basics

  • 7/30/2019 Peter Delfyett Seminar: Ultrafast Coherent Optical Signal Processing using Stabilized Optical Frequency Combs from Mode-locked Semiconductor Diode Lasers

    75/84

    75

    c=o=2

    m o

    oo+ mo- m

    T=2L/c

    P

    =2/

    E-Field

    E-Field Spectrum

    Modulated

    E-Field

    E-Field Spectrum

    Modelocked Spectrum

    Modulator

    A Review

    Coherent Optical Signal Processing &

  • 7/30/2019 Peter Delfyett Seminar: Ultrafast Coherent Optical Signal Processing using Stabilized Optical Frequency Combs from Mode-locked Semiconductor Diode Lasers

    76/84

    76

    Communications using Optical Frequency Combs

    What are optical frequency combs?

    Coherent, stabilized cw optical frequencies generated on a periodic frequency grid, (e.g.,

    a set of longitudinal modes from a modelocked laser).

    Why re-visit coherent communications/signal processing?

    Allows the use of E(t) as compared to I(t) high spectral efficiency.

    (80x -200xincrease)

    Coherent combs of stabilized optical frequencies are easily obtainable from mode-

    locked lasers.

    Channel conditioning can be done simply ((frequency stabilization of the entire comb as

    compared to individual lasers).

    Sets of combs at separate locations can be made coherent (frequency and phase)

    Modelocked Spectrum

    T=2L/c

    P=2/Modulator

    Optical Frequency Combs

    Ultrafast Photonics Group

  • 7/30/2019 Peter Delfyett Seminar: Ultrafast Coherent Optical Signal Processing using Stabilized Optical Frequency Combs from Mode-locked Semiconductor Diode Lasers

    77/84

    77

    Ultrafast Photonics Group

    Fundamental PhysicsQuantum Dot

    Ultrafast Light- Matter

    Dynamics

    New Device DevelopmentQ-Dot Optical Amplifiers

    Modulators & Photodetectors

    Active Optical Filters

    Systems ApplicationsOptical Networks for Signal Processing &

    Communications

    Optical Sampling for A-to-D Converters

    Arbitrary Waveform Generation

    Precision Laser Radar

    [email protected]://creol.ucf.edu

    http://up.creol.ucf.edu

    Stabilized Comb Source Specs

  • 7/30/2019 Peter Delfyett Seminar: Ultrafast Coherent Optical Signal Processing using Stabilized Optical Frequency Combs from Mode-locked Semiconductor Diode Lasers

    78/84

    78

    Stabilized Comb Source Specs

    1.1ps pulse width with and 50 dB suppresion

    to the next observable optical mode.

    500 Hz optical linewidth and sub 150 kHzmaximum frequency deviation in 30 seconds.

    3 fs integrated timing jitter from (1 Hz100

    MHz) and 14 fs timing jitter extrapolated toNyquist (1 Hz 5.14 GHz).

    Simultaneous optical frequency stabilization and supermode suppression

    of a 10.287 GHz harmonically mode-locked laser with:

    Ozdur I., et al, A semiconductor based 10-GHz optical comb source with 3 fs integrated timing jitter

    (1Hz-100MHz) and ~500 Hz comb linewidthPhotonic Technology Letters Vol. 22, No. 6, March 15, 2010.

    Oscillator characterization

  • 7/30/2019 Peter Delfyett Seminar: Ultrafast Coherent Optical Signal Processing using Stabilized Optical Frequency Combs from Mode-locked Semiconductor Diode Lasers

    79/84

    79

    Oscillator characterizationOptical Spectra

    1550 1555 1560

    -80

    -70

    -60

    -50

    -40

    -30

    Power(dBm)

    Wavelength (nm)

    Optical Spectrum

    0 10 20 30 40 50 60

    -0.2

    -0.1

    0

    0.1

    0.2

    time (s)

    FrequencyOffset(MHz)

    Spectrogram

    -1.0 -0.5 0.0 0.5 1.0

    -80

    -70

    -60-50

    -40

    -30

    -20

    -10

    0

    Rel.Po

    wer(dB)

    Frequency Offset (MHz)

    Span: 2 MHz

    Res. BW. 100 Hz

    Single comb-line

    beat-note2 kHz FWHM Lorentzian

    1 kHz FWHM Lorentzian

    Phase and amplitude noise

  • 7/30/2019 Peter Delfyett Seminar: Ultrafast Coherent Optical Signal Processing using Stabilized Optical Frequency Combs from Mode-locked Semiconductor Diode Lasers

    80/84

    80

    Phase and amplitude noise

    1 10 100 1k 10k 100k 1M 10M 100M

    -170

    -160

    -150

    -140

    -130

    -120

    -110

    -100

    -90

    -80

    -70

    -60

    L(f)(d

    Bc/Hz)

    Frequency Offset (Hz)

    0

    2

    4

    6

    8Directly from MLL

    Amplified (Pout

    ~ 200 mW)

    Integrated

    TimingJitter(fs)

    Single Sideband Phase Noise

    1 10 100 1k 10k 100k 1M 10M 100M

    -170

    -160

    -150

    -140

    -130

    -120

    -110

    -100

    -90

    -80

    -70

    -60

    M(f)(dBc/Hz)

    Frequency Offset (Hz)

    Directly from MLL

    Amplified

    0.00

    0.02

    0.04

    0.06

    0.08

    0.10

    Integrated

    AMNoise(%)

    Pulse-to-pulse energy fluctuations

    Oscillator characterization

  • 7/30/2019 Peter Delfyett Seminar: Ultrafast Coherent Optical Signal Processing using Stabilized Optical Frequency Combs from Mode-locked Semiconductor Diode Lasers

    81/84

    81

    Oscillator characterizationPulses

    -40 -30 -20 -10 0 10 20 30 40

    0.0

    0.5

    1.0

    Compressed AC

    Transform Limited AC

    ACT

    race(a.u.)

    Delay (ps)

    p

    = 930 fs

    10.24 10.26 10.28 10.30 10.32

    -100

    -80

    -60

    -40

    -20

    0

    Relativ

    ePower(dB)

    Frequency (GHz)

    Span: 100 MHz

    Res. BW: 3 kHz

    Pulses are compressible to close to the transform limit

    Photodetected RF tone has >90 dB dynamic range

    Conclusions

  • 7/30/2019 Peter Delfyett Seminar: Ultrafast Coherent Optical Signal Processing using Stabilized Optical Frequency Combs from Mode-locked Semiconductor Diode Lasers

    82/84

    82

    Conclusions An optical comb source has been built with:

    Stable (instability < 300 kHz @ 194 THz over 60 s), low line-width (< 1

    kHz) optical comb

    High repetition rate (10 GHz) optical pulse-train

    Short pulses generated from a dispersion compensated cavity (p 5 mW per comb-line)

    No evident degradation in Phase (14 fs jitter integrated to Nyquist) and

    Amplitude Noise (< 0.03%, 1 Hz to 100 MHz)

    Linear Intensity Modulator

  • 7/30/2019 Peter Delfyett Seminar: Ultrafast Coherent Optical Signal Processing using Stabilized Optical Frequency Combs from Mode-locked Semiconductor Diode Lasers

    83/84

    83

    System Configuration

    -Iso: Isolator

    -PC: Polarization Controller-PS: Optical Phase Shifter

    -VOA: Variable Optical Attenuator

    -TEC: Temperature Controller

    -Cir : Circulator

    -VCSEL: Vertical Cavity Surface Emitting Laser

    -RFSA: Radio Frequency Spectrum Analyzer

    -OSA: Optical Spectrum Analyzer

    Concept of Photonic Arbitrary Waveform Generation

  • 7/30/2019 Peter Delfyett Seminar: Ultrafast Coherent Optical Signal Processing using Stabilized Optical Frequency Combs from Mode-locked Semiconductor Diode Lasers

    84/84

    Static Fourier Analysis

    K

    k

    kktkA

    Atf

    1

    00 )cos(2

    )(

    k: periodic frequency components

    Ak: amplitude of the kth frequency component

    kphase of the kth frequency component

    Performance Characteristics

    Limited to periodic signals

    Minimum periodicity ~ Mode spacing - filter spacing

    Accuracy determined by number of combs