peripheral drift illusion. multiple views hartley and zisserman lowe stereo vision structure from...

35
Peripheral drift illusion

Upload: joshua-neal

Post on 04-Jan-2016

228 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Peripheral drift illusion. Multiple views Hartley and Zisserman Lowe stereo vision structure from motion optical flow

Peripheral drift illusion

Page 2: Peripheral drift illusion. Multiple views Hartley and Zisserman Lowe stereo vision structure from motion optical flow
Page 3: Peripheral drift illusion. Multiple views Hartley and Zisserman Lowe stereo vision structure from motion optical flow

Multiple views

Hartley and Zisserman

Lowestereo visionstructure from motionoptical flow

Page 4: Peripheral drift illusion. Multiple views Hartley and Zisserman Lowe stereo vision structure from motion optical flow

Why multiple views?• Structure and depth are inherently ambiguous from

single views.

Images from Lana Lazebnik

Page 5: Peripheral drift illusion. Multiple views Hartley and Zisserman Lowe stereo vision structure from motion optical flow

Why multiple views?• Structure and depth are inherently ambiguous from

single views.

Optical center

P1P2

P1’=P2’

Page 6: Peripheral drift illusion. Multiple views Hartley and Zisserman Lowe stereo vision structure from motion optical flow

Geometry for a simple stereo system

• First, assuming parallel optical axes, known camera parameters (i.e., calibrated cameras):

Page 7: Peripheral drift illusion. Multiple views Hartley and Zisserman Lowe stereo vision structure from motion optical flow

baseline

optical center (left)

optical center (right)

Focal length

World point

image point (left)

image point (right)

Depth of p

Page 8: Peripheral drift illusion. Multiple views Hartley and Zisserman Lowe stereo vision structure from motion optical flow

• Assume parallel optical axes, known camera parameters (i.e., calibrated cameras). What is expression for Z?

Similar triangles (pl, P, pr) and (Ol, P, Or):

Geometry for a simple stereo system

Z

T

fZ

xxT rl

lr xx

TfZ

disparity

Page 9: Peripheral drift illusion. Multiple views Hartley and Zisserman Lowe stereo vision structure from motion optical flow

Depth from disparity

image I(x,y) image I´(x´,y´)Disparity map D(x,y)

(x´,y´)=(x+D(x,y), y)

So if we could find the corresponding points in two images, we could estimate relative depth…

Page 10: Peripheral drift illusion. Multiple views Hartley and Zisserman Lowe stereo vision structure from motion optical flow

What did we need to know?

• Correspondence for every pixel. Sort of like project 2, but project 2 is “sparse” and we need “dense” correspondence.

• Calibration for the cameras.

Page 11: Peripheral drift illusion. Multiple views Hartley and Zisserman Lowe stereo vision structure from motion optical flow

Where do we need to search?

Page 12: Peripheral drift illusion. Multiple views Hartley and Zisserman Lowe stereo vision structure from motion optical flow

How do we calibrate a camera?312.747 309.140 30.086305.796 311.649 30.356307.694 312.358 30.418310.149 307.186 29.298311.937 310.105 29.216311.202 307.572 30.682307.106 306.876 28.660309.317 312.490 30.230307.435 310.151 29.318308.253 306.300 28.881306.650 309.301 28.905308.069 306.831 29.189309.671 308.834 29.029308.255 309.955 29.267307.546 308.613 28.963311.036 309.206 28.913307.518 308.175 29.069309.950 311.262 29.990312.160 310.772 29.080311.988 312.709 30.514

880 214 43 203270 197886 347745 302943 128476 590419 214317 335783 521235 427665 429655 362427 333412 415746 351434 415525 234716 308602 187

Page 13: Peripheral drift illusion. Multiple views Hartley and Zisserman Lowe stereo vision structure from motion optical flow

World vs Camera coordinates

Page 14: Peripheral drift illusion. Multiple views Hartley and Zisserman Lowe stereo vision structure from motion optical flow

Image formation

Let’s design a camera– Idea 1: put a piece of film in front of an object– Do we get a reasonable image?

Slide source: Seitz

Page 15: Peripheral drift illusion. Multiple views Hartley and Zisserman Lowe stereo vision structure from motion optical flow

Pinhole camera

Idea 2: add a barrier to block off most of the rays– This reduces blurring– The opening known as the aperture

Slide source: Seitz

Page 16: Peripheral drift illusion. Multiple views Hartley and Zisserman Lowe stereo vision structure from motion optical flow

Projection: world coordinatesimage coordinates

Camera Center (tx, ty, tz)

Z

Y

X

P.

.

. f Z

Y

v

up

.Optical Center (u0, v0)

v

u

X

Page 17: Peripheral drift illusion. Multiple views Hartley and Zisserman Lowe stereo vision structure from motion optical flow

Homogeneous coordinates

Conversion

Converting to homogeneous coordinates

homogeneous image coordinates

homogeneous scene coordinates

Converting from homogeneous coordinates

Page 18: Peripheral drift illusion. Multiple views Hartley and Zisserman Lowe stereo vision structure from motion optical flow

World vs Camera coordinates

Page 19: Peripheral drift illusion. Multiple views Hartley and Zisserman Lowe stereo vision structure from motion optical flow

Slide Credit: Saverese

Projection matrix

XtRKx x: Image Coordinates: (u,v,1)K: Intrinsic Matrix (3x3)R: Rotation (3x3) t: Translation (3x1)X: World Coordinates: (X,Y,Z,1)

Ow

iw

kw

jwR,T

Page 20: Peripheral drift illusion. Multiple views Hartley and Zisserman Lowe stereo vision structure from motion optical flow

X0IKx

10100

000

000

1z

y

x

f

f

v

u

w

K

Slide Credit: Saverese

Projection matrix

Intrinsic Assumptions• Unit aspect ratio• Optical center at (0,0)• No skew

Extrinsic Assumptions• No rotation• Camera at (0,0,0)

Page 21: Peripheral drift illusion. Multiple views Hartley and Zisserman Lowe stereo vision structure from motion optical flow

Remove assumption: known optical center

X0IKx

10100

00

00

10

0

z

y

x

vf

uf

v

u

w

Intrinsic Assumptions• Unit aspect ratio• No skew

Extrinsic Assumptions• No rotation• Camera at (0,0,0)

Page 22: Peripheral drift illusion. Multiple views Hartley and Zisserman Lowe stereo vision structure from motion optical flow

Remove assumption: square pixels

X0IKx

10100

00

00

10

0

z

y

x

v

u

v

u

w

Intrinsic Assumptions• No skew

Extrinsic Assumptions• No rotation• Camera at (0,0,0)

Page 23: Peripheral drift illusion. Multiple views Hartley and Zisserman Lowe stereo vision structure from motion optical flow

Remove assumption: non-skewed pixels

X0IKx

10100

00

0

10

0

z

y

x

v

us

v

u

w

Intrinsic Assumptions Extrinsic Assumptions• No rotation• Camera at (0,0,0)

Note: different books use different notation for parameters

Page 24: Peripheral drift illusion. Multiple views Hartley and Zisserman Lowe stereo vision structure from motion optical flow

Oriented and Translated Camera

Ow

iw

kw

jw

t

R

Page 25: Peripheral drift illusion. Multiple views Hartley and Zisserman Lowe stereo vision structure from motion optical flow

Allow camera translation

XtIKx

1100

010

001

100

0

0

10

0

z

y

x

t

t

t

v

u

v

u

w

z

y

x

Intrinsic Assumptions Extrinsic Assumptions• No rotation

Page 26: Peripheral drift illusion. Multiple views Hartley and Zisserman Lowe stereo vision structure from motion optical flow

3D Rotation of Points

Rotation around the coordinate axes, counter-clockwise:

100

0cossin

0sincos

)(

cos0sin

010

sin0cos

)(

cossin0

sincos0

001

)(

z

y

x

R

R

R

p

p’

g

y

z

Slide Credit: Saverese

Page 27: Peripheral drift illusion. Multiple views Hartley and Zisserman Lowe stereo vision structure from motion optical flow

Allow camera rotation

XtRKx

1100

0

1 333231

232221

131211

0

0

z

y

x

trrr

trrr

trrr

v

us

v

u

w

z

y

x

Page 28: Peripheral drift illusion. Multiple views Hartley and Zisserman Lowe stereo vision structure from motion optical flow

Degrees of freedom

XtRKx

1100

0

1 333231

232221

131211

0

0

z

y

x

trrr

trrr

trrr

v

us

v

u

w

z

y

x

5 6

Page 29: Peripheral drift illusion. Multiple views Hartley and Zisserman Lowe stereo vision structure from motion optical flow

Beyond Pinholes: Radial Distortion• Common in wide-angle lenses or for

special applications (e.g., security)• Creates non-linear terms in

projection• Usually handled by through solving

for non-linear terms and then correcting image

Image from Martin Habbecke

Corrected Barrel Distortion

Page 30: Peripheral drift illusion. Multiple views Hartley and Zisserman Lowe stereo vision structure from motion optical flow

How to calibrate the camera?

1****

****

****

Z

Y

X

s

sv

su

XtRKx

Page 31: Peripheral drift illusion. Multiple views Hartley and Zisserman Lowe stereo vision structure from motion optical flow

Calibrating the Camera

Use an scene with known geometry– Correspond image points to 3d points– Get least squares solution (or non-linear solution)

134333231

24232221

14131211

Z

Y

X

mmmm

mmmm

mmmm

s

sv

su

Page 32: Peripheral drift illusion. Multiple views Hartley and Zisserman Lowe stereo vision structure from motion optical flow

How do we calibrate a camera?

312.747 309.140 30.086305.796 311.649 30.356307.694 312.358 30.418310.149 307.186 29.298311.937 310.105 29.216311.202 307.572 30.682307.106 306.876 28.660309.317 312.490 30.230307.435 310.151 29.318308.253 306.300 28.881306.650 309.301 28.905308.069 306.831 29.189309.671 308.834 29.029308.255 309.955 29.267307.546 308.613 28.963311.036 309.206 28.913307.518 308.175 29.069309.950 311.262 29.990312.160 310.772 29.080311.988 312.709 30.514

880 214 43 203270 197886 347745 302943 128476 590419 214317 335783 521235 427665 429655 362427 333412 415746 351434 415525 234716 308602 187

Page 33: Peripheral drift illusion. Multiple views Hartley and Zisserman Lowe stereo vision structure from motion optical flow

0

0

0

0

10000

00001

10000

00001

34

33

32

31

24

23

22

21

14

13

12

11

1111111111

1111111111

m

m

m

m

m

m

m

m

m

m

m

m

vZvYvXvZYX

uZuYuXuZYX

vZvYvXvZYX

uZuYuXuZYX

nnnnnnnnnn

nnnnnnnnnn

Method 1 – homogeneous linear system

• Solve for m’s entries using linear least squaresAx=0 form

134333231

24232221

14131211

Z

Y

X

mmmm

mmmm

mmmm

s

sv

su

[U, S, V] = svd(A);M = V(:,end);M = reshape(M,[],3)';

Page 34: Peripheral drift illusion. Multiple views Hartley and Zisserman Lowe stereo vision structure from motion optical flow

Method 2 – nonhomogeneous linear system

• Solve for m’s entries using linear least squares

n

n

nnnnnnnnn

nnnnnnnnn

v

u

v

u

m

m

m

m

m

m

m

m

m

m

m

ZvYvXvZYX

ZuYuXuZYX

ZvYvXvZYX

ZuYuXuZYX

1

1

33

32

31

24

23

22

21

14

13

12

11

111111111

111111111

10000

00001

10000

00001

Ax=b form

11333231

24232221

14131211

Z

Y

X

mmm

mmmm

mmmm

s

sv

su

M = A\Y;M = [M;1];M = reshape(M,[],3)';

Page 35: Peripheral drift illusion. Multiple views Hartley and Zisserman Lowe stereo vision structure from motion optical flow

Calibration with linear method• Advantages

– Easy to formulate and solve– Provides initialization for non-linear methods

• Disadvantages– Doesn’t directly give you camera parameters– Doesn’t model radial distortion– Can’t impose constraints, such as known focal length

• Non-linear methods are preferred– Define error as difference between projected points and measured points– Minimize error using Newton’s method or other non-linear optimization