periodic report no.6 contract nas5-98046 period covered … · during the current reporting period...

19
PERIODIC REPORT No.6 Contract NAS5-98046 Period covered" 12 May 2000 - 21 December 2000- Prepared for NASA/Goddard Space Flight Center JB Kumer Principal Investigator Lockheed Martin Advanced technical center (LMATC) LOCKHEED MARTIN MISSILES & SPACE COMPANY Palo Alto, California, 94304-1191 https://ntrs.nasa.gov/search.jsp?R=20020074771 2019-02-09T13:06:10+00:00Z

Upload: phamkhanh

Post on 09-Feb-2019

217 views

Category:

Documents


0 download

TRANSCRIPT

PERIODIC REPORT No.6

Contract NAS5-98046

Period covered" 12 May 2000 - 21 December 2000-

Prepared forNASA/Goddard Space Flight Center

JB Kumer

Principal Investigator

Lockheed Martin Advanced technical center (LMATC)LOCKHEED MARTIN MISSILES & SPACE COMPANY

Palo Alto, California, 94304-1191

https://ntrs.nasa.gov/search.jsp?R=20020074771 2019-02-09T13:06:10+00:00Z

During the current reporting period we continued work on the task T1 described in section E.2.1 on page 2of our UARS NRA proposal 'CLAES product improvement by use of the GSFC Data Assimilation

System (DAS) '. This 1st task is to plug line of sight gradients derived from the CTM for 2/20/92 into the

forward model of our retrieval software (RSW) in order to assess the impact on the retrieved quantities.We are currently nearly finished with this task as we will describe in the present report #6.

In the next reporting period we can work in parallel on completing task T1, and in beginning our secondtask T2, namely"

• Demonstrate the improvement in retrieval of CH 4 and N20 over the time period 18 to 25 February1992 that is achieved by coupling the GEOS-DAS and the CLAES RSW.

Review of report #5:

In review, during the previous reporting period we had focussed on

1. Integrating the CTM data reader that was provided by the DAS personnel into our retrieval SW, and

2. including the CTM gradients in the retrieval of CLAES temperature, which is input for CH 4 retrieval

Regarding item 1" During this period the DAS personnel developed and delivered a CTM data reader to thespecifications described above. Then we made 2 modifications in the CTM data reader. The first to

account for the differences in our vms system vs the DAS unix system. The second to make it run fast.

While implementing the second modification, we found and corrected a mistake in our 4th period work.

Regarding item 2: The EMAF 46914540 CTM temperature gradients and the baseline NMC gradients

are compared on figure 1. In this figure a positive gradient increase along the direction from the tangent

6O

5O

E40

30m

<

2O

10

'°'''''1''1''''''''' '''''''''l'''''''''

\_" CTM Grads

,,,/ _ NMC Grads

....... ,,I,,,,,,,,,I,,,,,,,,,I,,Itll,,,

-2 -1 0 1 2

NMC Temp. Gradients [K/deg]

Figure 1 CTM vs NMC temperature gradients for EMAF 46914540

point to the UARS spacecraft, and the units are

6O

5Or=-.-I

E-_ 40

"O:3

30<

2O

10

' ' /I ' ' ' I ' ' ' I ' '

\_ -CTM

, * i I , , , I , , , I , , ,

-0.2 0.0 0.2 0.4 0.6Temperature [K]

Figure 2 difference in temperature retrieval due to using CTM

vs NMC temperature gradients for EMAF 46914540

K/degree of great circle arc. The major difference in the two sets of temperature gradients is the altitudewhere the sign changes. The difference in temperature when using CTM gradients in its retrieval vs NMCis shown on figure 2.

('*3

60-

50-

40

30

20-

10-

0.0

BASELINE

- CTMTONLYGRADS

- CTMTANDXGRADS

- CTMTONLYG RADS/BASELI NE

TI ME=46914540 msec

II

//

I/

l

S

S

- CTMTANDXG RADS/BASELINE

l

I

0.3I I I

0.6 0.9

CH4 Mixing RatioRatio to Baseline

u'h

kO

<

r.y3

Or.¢3

°I,-i

©

c_>o

o_,i(

o

.,::f.

CJ

©

6O ' ' ' i , , , i , , , i , , ,

50

20 /__

10 ..., ...........-0.02 0.00 0.02 0.04 0.06

,CH4 fractionalcnange/deg, or arc

Figure 4 CTM CH 4 gradients

E._. 40(9

"O

30<

Next, the retrieval for CH 4 for the EMAF at 46914540 is

shown on figure 3. This is similar to figure 1 in the report #4,but with corrections as were described in report #5. The black

curve is the baseline temperature used in the retrieval. The

baseline CH 4 forward model uses NMC temperature gradientsand zero CH4 gradients. The red curve CTMONLYGRADS is

computed with the CLAES baseline temperature modified as in

figure 2 by use of CTM gradients, and the CTM temperaturegradients also used in the CH4 retrieval forward model. But

zero CH 4 gradients are used in the CH 4 model. The green curve

CTMTANDXGRADS is computed with CTM input as is

CTMONLYGRADS, but also include the CTM CH 4 gradients.• These are shown in figure 4.The broken red curve shows the

ratio of CTMONLYGRADS to the baseline, and the brokenblue curve is the ratio of CTMTANDXGRADS to the baseline.

It is seen here that the CH 4 gradients make some difference atlow altitudes.

The current reporting period work:

During the current reporting period we have implemented the retrieval using the CTM temperature, CH 4and N20 gradients for the entire day 162 and will discuss the results here.

Zonal mean comparisons:

Zonal means of baseline retrieved CH4 and retrieved by use of forward model that includes CTM

temperature and species (CH 4, N20) horizontal gradients are compared on figures 5 and 6. These are

labeled CTMTANDXGRADS and BASELINE, respectively. Two obvious things we learn from these are

1 there is little difference in a zonal mean sense in the retrieved product

2 The CTMTANDXGRADS is spiky at the high altitudes. So before we commence with a joint retrieval

that couples the GEOS-DAS and the CLAES RSW, we need to fix the 'spikiness problem'. It probably

can be traced to a few EMAFS. There may also be some 'spike' problems at the lower altitudes.

Next on figures 7 & 8 are shown comparisons of CTMTANDXGRADS and CTMONLYGRADS which

again show there is some small difference on including the CH 4 gradients, even in the highly averagedcase of the zonal mean. Finally on figures 9 and 10 the N20 CTMTANDXGRADS and BASELINE zonal

mean comparison is shown. There are differences reminiscent of the CH 4 case as discussed above.

Surface maps"

The CH 4 CTMTANDXGRADS and BASELINE 6.8 mb maps are shown on figures 11 through 14, and

CTM that we have mapped (first into 3A file format) on 6.8 mb on figures 15 and 16. Major points are:

1 The CLAES retrievals show much more ascending to descending difference than does the CTM

2 the CLAES products show an enhanced band going from zero longitude & 50N, to about 100 longitude

and 70N that is not present in the CTM, the CLAES north projecting enhancement at about 260 longitudeis displaced towards about 220 longitude in the CTM, and more enhanced. There is a small common

northward projecting enhancement common to CLAES and CTM at -- 130 longitude. In CLAES this

latter seems more to be part of the major enhancement emanating from zero longitude towards thenortheast.

Points 1 and 2 are supported by maps of N20 on the 6.8 mb surface that, for brevity, are not shown here.

Next the CH 4 CTMTANDxGRADS and BASELINE 3.1 mb maps are shown on figures 17 through

20, and CTM (as above) on 3.1 mb on figures 21 and 22. Major points are"

1generallytheCTM hassmallervaluesnow thantheCLAESproducts2 theCTM & CLAESmorphologylookmorealikeat 3.1mbthanat 6.8mb

3 therelativeenhancementof thefeatureprotrudingto thenortheastfrom aboutzerolong& 40N(callitF1), andof thefeatureprotrudingalmostduenorthatabout100long (call it F2) hasreversed.Thefeaturecenteredatabout200longand70N(call it F3)nowclearlyappearsto beanextensionof thefeatureF2 thatgoesonacrossthepolarregion.

4 TheCTMTANDXGRADShasnoticeablylessascendingto descendingdifferencethandoestheBASELINE

Next theN20 CTMTANDXGRADSandBASELINE 3.1mbmapsareshownon figures23 through26,andCTM (asabove)on3.1mbon figures27and28.Theseareveryconsistentwith theconclusionsdrawnwith regardto CH4asdiscussedabove.

Continuing study"

There are several areas of further study that would prove very productive

We are now at the point where we can set and mn the DAS and the CLAES retrieval SW together (as in

figure 1 from the original proposal, below) so the gradients will be based on the morphology of theCLAES data, and not on the CTM.

_' tNll)|Z ..............l\ ..............

.................................E_: ""mim--Itwill)

............. ii JL_

Day n

• da_

IllJJ] _ _J_.

d.tul Io_,_e,_._ IL__L..._. _.... ,.... t% ...........

1Otc.

EE_

t_

......i

Day n+l

Prior to running with the DAS & CLAES RSW we need to study will focus on• clean up the high altitude 'spikiness' in the CTMTANDXGRADS

• identify candidate mechanisms for producing the ascending to descending differences in CLAES data

Considering the latter, we know that there are portions of the CLAES retrieved H20 where this is a

pathological case. A solution for the condition as with CH 4 & N20 might also help to solve that problemfor H20.

It wouldbeinterestingto exercisethecapabilityto usetheCTM gradientsthatwehavedevelopedsofarfor H20, to assesshow gradientsmight influencethatproblem.

Also,weplanto discussresultsto datewith ourDAS Co-Is,andwith ourcontractmonitorAnneDouglassto sharpenour focusontheworkwewill doin finishingthiseffort.

O'Q

r,/3

L/I

N <©

0

0

Procure AliRude (km)

.'L........... _ ....

>,i .......

Procure Aititucle(kin)

>M t..........

Xo

>Pressure Attitude (kin)

og g g g g

=°°I................................a. t. ,/-__ g

_ \_ o<.-_ , .....

)--4

_a_ _______a_ i ...... l ,.

o

k_

o

k_

_<_

i.

0

Pressure Altilude (kin)

,_,,,,,,,_ ,,,,,,.,.,,, ,._,._,,,,, ,,,,,.,,,,

--=:

8

Pressure Altitude (kin)

og g _ _

_g .......<

Pressure Altitude (km)

og g g g

!'o .... . .............0

At_de(_n)

g g g g g

Pressure Altitude (kin)

og g g g g

?,.. __ o 03

g m

................................. 111 Z

° m

Pressure Altitude (kin)

<

_ _l_

%Z

. g:

o

Pressure Altitude (kin)

o_

0 -

ro

{3

Pressure Altitude (kin}

.... ._._._,,,

mr-"

Zm

> ....................................l/ ,f_".........................I L/I :::........._ ................................................t :_i_,_ ...................................._ ."......................../7ji_:,_io _/' .... I_!I/lI __ _!__;'....... ....................................."_

.............. _.... II/ / . L 'm

CTMTAN DXG RAD IENTS_ASC_D 162

....40

20 Y .

10-40 -20 0 2o 4o 6,o 8o

20 so (BLK/GR-1) %

1612

8 4o40

-40 -20 0 20 40 60 80

',oI _.., -- ,o_ ! _.,.._._..._3o: ....... ........ " 30 .....

e i <_|_o _o;

10 ........................ 10i .........0 50 '100 150 200 250 300 0 50 100 150 200 250 300

PPBV PPBV

so _1_ _T.......................= _2.00 sor_. [J_T.....= ,_8.00,"......................

g 40 _ ,,o.. -- '

10 ...................... 10 ......................0 50 100 150 200 250 300 0 50 100 i50 200 250 300

PPBV PPBV

BASELINE

,o_',:r:.-:,'32:00_.................._40 . ,,

i:liI L20, _...,!0 50 100 150 200 250 300

PPBV

_',,o_°_ %_.__._._,.[:r._-i_,:&...............

",ol................0 50, 100 150 200 250 3o0

PPBV

_,_40 ...............

L... L,_

0 5o lOO 150 o00 25o 3ooPPBV

CTMTAN DXG RADI ENTS_DSC_D 162, 2O

50 _ ........................... i i.6 50

30 ....

10, - .

(BLK/GR-1) %

-40 '2'0 0 20 40 60 80Latitude

t0 ...................... 10i .................... I... :] .... i0 SO _00 _50 2O0 2S0 3OO 0 SO _00 _50 2O0 2S0 3OO

PPBV PPBV

BASELINE

_i 6'#.::;_2._ ................

!,o i

0 5o lOO 150 2oo 25O 3OOPPBV

o,,

1o ........ ' ......o 5o ioo 15o 2o0 25o 3oo

PPBV

'°_ ...................,o::........ .._.0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 I00 150 200 250 300

PPBV PPBV PPBV

Figures 9 and 10 N20 zonal mean comparison CTMTANDxGRADS and BASELINE

CLAES CH4 @6.8hPa on 20-Feb-1992 ascendingBASELINE

8O

7O

6O

3O

Oz_x

L)

20

0 100 200 300Longitude

1.25

© 1.151.05

0.950.85O 0.75

_ 0.650.550.45

CLAES CH4 @6.8hPa on 20-Feb-1992 dscendingBASELINE

80

70

6O

= 50

"J 40

3O

Z W

0

o

20

0 i00

Long_ude

1.251.151.050.950.850.75

Figures 11 and 12 CH4 baseline on 6.8 mb

CLAES CH4 @T6.8hPa on 20-Feb-1992 ascendingC_ _TkNDXGR__iEI_IT_

80

20

0 1_ 200 300

Long_ude

1.25

CLAES CH4 @6.8hPa on 20-Feb-1992 dscendingCTMTAN DXG RADI ENTS

80

50

40

3O

20

0 100 2_ _0

Longitude

! .25

_o 1.15

z w 0.95q 0.850 0.75_ 0.65I

o _ 0.550.45

Figures 13 and 14 CH4 CTMTANDXGRADS on 6.8 mb

CLAES CH4 @6 hPa on 20-Feb-1992 ascending3AT_CTM_CH4_D162_6P8HPA

0

7O

6O"O

._ 50

40

30

20

0 100 200 300Longitude

Oz_x

Io

- H " •CLAES C 4 @6 hPa on 20-Feb-1992 dscendlng3AT_CTM_CH4_D 162_6P8H PA

80

70

Q 60

50

J 40

20

0 1_ 2oo 300Longitude

0zxm

0

1.25

Figures 15 and 16 CH4 CTM on 6.8 mb

CLAES CH4 @3.1 hPa on 20-Feb-1992 ascendingBASELINE

8O

70

60(D

"O

_= 5O

-J 40

3O

20

0 100 200 300Longffude

(9Zm

xu

Zo

1.25

© 1.151.05

LU 0.95o 0.8s'IP"

O 0.75

I_ 0.65a:: 0.55

0.45

CLAES CH4 @3.1 hPa on 20-Feb-1992 dscendingBASELINE

80

70

60"0::3= 50

._140

30

20

0 100 200Longffude

3OO

1.251.15

r,,.9 _ 1.05z m 0.95__ q 0.85

O 0.75

o.6so 0.550.45

Figures 17 and 18 CH 4 baseline on 3.1 mb

CLAES CH4 @ 3. ! hPa on 20-Feb-1992 ascendingCTMTANDXGRADI ENTS

80

7O

60"O

50

_J4O

3O

20

0 100 200 300Longitude

Oz_x

o

1.251.15

_+ 1.05

o.gs,.: 0.85O 0.75

0.65a:: 0.55

0.45

CLAES CH4 @3.1 hPa on 20-Feb-1992 dscendingCTMTANDXGRAD! ENTS

8O

70

60(D

:3._ 50

._14O

30

20

0 100 200Longitude

300

0z_x

I0

Figures 19 and 20 CH 4 CTMTANDXGRADS on 3.1 mb

CLAES CF 4 @3.'1, ,hPa on 20- Feb-1 992 asoendingCTM3A

80

7O

B0-8"-I

.__ 50

-J 40

3O

2O

o oo 300200

Longitude

03

z w

0.750.70

0.B5

0.BOo.55

CLAES CF4 @3.1 h Pa on 20- Feb-'1992 dsoendingCTM3A

80

7O

B0-8

50

..J4O

2O

0 " 00 200

Longitude

:;30O

0.750.70

_o 0-65

_ 0.B0z uJ

-- _ 0,50

0.400.35

0.300:25

Figures 21 and 22 CH 4 CTM on 3.1 mb

CLAES N20 @3 hPa on 20-Feb-1992 ascending3AT_C LAES_D 162_N20_BASE LINE_3M B

80

70

60"0

._. 50

_.140

3O

20

0 100 200 300

Longitude

5045

o_ 40L9 _ 35z LU,_, q 30

" 25oc_ 15z m'< 10

50

CLAES N20 @3 hPa on 20-Feb-1992 dscending3AT_C LA ES_D 162_N20_V9N MCG RD_3M B

80

70

60"O

-4-" 50

-.I40

30

20

o 1oo 200

Longitude

300

5045

o_ 40oZ i,U,_ 0.30

'- 250 020oJ t5Z lo

50

Figures 23 and 24 N20 baseline on 3.1 mb

CLAES N20 @3 hPa on 20-Feb-1992 ascendina3AT_C LAES_D 162_N20_CTMTANDXG R_3 M B

8O

70

60 ¸(D

"O

._- 50

-J40

30

20

0 100 200 300

Longitude

CLAES N20 @3 hPa on 20-Feb-1992 dscendina3AT_C LAES_D 162_N20_CTMTAN DXG R_3MB

80

70

• 60"0

= 50

J 4O

30

20

0 1100 200 _0Longitude

Figures 25 and 26 N20 CTMTANDXGRADS on 3.1 mb

CLAES N20 @3.1

8O

7O

B0-8

50

_d4O

3O

0 "O0

hPa on2O-Feb-'1992 ascendingCTM3A

200 300

Longitude

009O

m- 80

4- 70z w Bo

0 40

20

"0

CLAES N20 @3.1

80

7O

B0

_ 50S

-J 40

3O

2o13 " 00

hPa on 2 O-Feb-1892 dscen din gCTM3A

O_o

_ -!"z w

I'"

_ 0

20 O

Lo_itude

"0090

80

70

B0

50

40

Figures 27 and 28 N=O CTM on 3.1 mb

Latitude

0 0

% Difference