pericyclic reactions 6 lectures, year 3, michaelmas...

79
Pericyclic Reactions 1 Pericyclic Reactions 6 Lectures, Year 3, Michaelmas 2016 [email protected] Pericyclic Reac+ons, Oxford Chemistry Primer no. 67; Ian Fleming Organic Chemistry Jonathan Clayden, Nick Greeves, Stuart Warren, Peter Wothers Advanced Organic Chemistry: Reac+ons, Mechanisms and Structures; Jerry March Fron+er Orbitals and Organic Chemical Reac+ons; Ian Fleming Molecular Orbitals & Organic Chemical Reac+ons; Ian Fleming Modern Physical Organic Chemistry; Eric Anslyn and Dennis Docherty π 4 s π 2 s HOMO diene LUMO dienophile 6 electrons no nodes Hückel allowed O O O O O O (4q + 2) s =1 (4r) a =0 Total = 1 odd allowed construcZve overlap h)p://burton.chem.ox.ac.uk/teaching.html

Upload: buiminh

Post on 27-Aug-2018

271 views

Category:

Documents


10 download

TRANSCRIPT

Pericyclic Reactions 1

Pericyclic Reactions 6 Lectures, Year 3, Michaelmas 2016

[email protected]

︎ ︎PericyclicReac+ons,OxfordChemistryPrimerno.67;IanFleming︎OrganicChemistryJonathanClayden,NickGreeves,StuartWarren,PeterWothersAdvancedOrganicChemistry:Reac+ons,MechanismsandStructures;JerryMarchFron+erOrbitalsandOrganicChemicalReac+ons;IanFlemingMolecularOrbitals&OrganicChemicalReac+ons;IanFlemingModernPhysicalOrganicChemistry;EricAnslynandDennisDocherty

π4s

π2s

HOMOdiene

LUMOdienophile

6electronsnonodesHückelallowed✓

O

O

O

O

O

O

(4q+2)s=1(4r)a=0Total=1odd✓allowed construcZveoverlap✓

h)p://burton.chem.ox.ac.uk/teaching.html

Pericyclic Reactions 2

SynopsisThenatureofpericyclicreacZons

ExamplesofpericyclicreacZons

Drawingmolecularorbitals

CorrelaZondiagrams

TheWoodward-Hoffmannrule

FronZerMolecularOrbitals

Möbius-HückelMethod

CycloaddiZons

ElectrocyclicreacZons

Sigmatropicrearrangements

GrouptransferreacZons

Pericyclic Reactions 3

Thenatureofpericyclicreac>onsIonicreacZons–mayormaynothaveanintermediate

SN1reacZonsarestepwiseandhaveadefinedintermediate

XMe

MeMe

NuMe

MeMe

MeMeMe

NuMe

EtH

IMe

EtH

Me

Et HINu

(") (")

SN2reacZonsareconcertedandhavenointermediate

InionicreacZonsthecurlyarrowsidenZfywheretheelectronshavecomefromandwheretheyaregoingandwhichbondshavebeenmadeandwhichbroken.

RadicalreacZonsinvolvethecorrelatedmovementofsingleelectrons

frequentlyshortenedto

XMe

MeMe Me

MeMe Nu

NuMe

MeMe

IMe

EtHNu

Me

Et HINu

($) ($)Nu

Me

EtH + I

+

NN

CN

NC

NN

CN

NC

Pericyclic Reactions 4

PericyclicReac>onsThirddisZnctclassofreacZons

PericyclicreacZons–ReacZonsinwhichallfirst-orderchangesinbondingrelaZonshipstakeplaceinconcertonaclosedcurve.R.B.WoodwardandR.Hoffmann1969.i.e.thereacZonshavecyclictransiZonstatesinwhichallbond-formingandbond-breakingtakeplaceinaconcertedmannerwithouttheformaZonofanintermediate.

O

O

O

O

O

O

H H

PericyclicreacZonsinvolveatransiZonstatewithacyclicarrayofinteracZngorbitals;areorganisaZonofσandπ-bondsoccurswithinthiscyclicarray.

Originallytermed‘nomechanismreacZons’–theycouldnotbeexplainedbystandardnucleophile/electrophilemechanisms.

Noabsolutesenseinwhichtheelectronsflowfromonecomponenttoanother;however,someZmesitismoresensibletopushthearrowsinonlyonedirecZon.

Herecurlyarrowsareusedtoshowwhichbondsarebeingmade/brokenratherthanthedirecZonofflowofelectrons.

Pericyclic Reactions 5

PericyclicReacZons–fourclasses.CycloaddiZons-Twocomponentscometogethertoformtwonewσ-bondsattheendsof

bothcomponentsandjoiningthemtogethertoformaring.

CheletropicreacZonsareasub-classofcycloaddiZonreacZonsinwhichthetwoσ–bondsaremadeorbrokentothesameatom.

ElectrocyclicReacZons–UnimolecularreacZonscharacterisedbytheforma>onofaringfromanopenchainconjugatedsystemwithaσ-bondformingacrosstheendsoftheconjugatedsystem.

O

O

O

O

O

O

NOMe

Me

NOMe

Me

O

CO+

Pericyclic Reactions 6

OHMeO OMeOH

H

H H

OO

Sigmatropicrearrangements–Unimolecularisomerisa>onswhichformallyinvolvetheoverallmovementofaσ-bondfromoneposiZontoanother.

Coperearrangement Claisenrearrangement

[1,5]-hydrideshiK

[3,3] [3,3]

[1,5][3,4]

123

123

123

123

1

23

4

5 1

1 2

3

1 23

4

Grouptransfer–appeartobeamixofasigmatropicrearrangementandacycloaddiZon.Theyarebimolecularandsoarenotsigmatropicrearrangements,andnoringisformedsotheyarenotcycloaddiZons.

Alder-ene-reac>onsdiimidereduc>on

HO

O

O

HO

O

O

SeH

OPhSe

OPhH

HNN

HNN

H H

Pericyclic Reactions 7

X

Me

Me

Me

Me

HMe

HMeH

Me

Me

MeMe

Requireatheory/theoriestoexplaintheseresults

O

O

O

O

O

O

O

O

O

O

O

O

X

heat

heat

MeH Me

HH

Me

HH

[1,5] [1,5]

heat

heat[1,7]

HMe

Me

H

[1,5]

HMe

HMe[1,7]

heat

Pericyclic Reactions 8

HückelMolecularOrbitalTheoryforLinearπ-systems.Applicabletoconjugatedplanarcyclicandacyclicsystems.

Onlytheπ-systemisincluded;theσ-frameworkisignored(inrealityσ-frameworkaffectsπ-system).

UsedtocalculatethewavefuncZons(ψk)andhencerela+veenergiesbytheLCAOmethod.

MO=ψk,AO=ϕiandψ=Σckiϕii.e.ψk=c1ϕ1+c2ϕ2+c3ϕ3+c4ϕ4+c5ϕ5…..k=MOnumber(1→n);i=atomposiZoninπsystem(1→n);n=numberofp-orbitals

ForncontribuZngp-orbitalstherewillbenmolecularorbitals cki=(2/(n+1))1/2•sin(πki/(n+1))

ForeachMOψkΣci2=1(normalisaZon)i.e.thesumofthesquaresofthe

coefficientsforanyMOmustbe1.ForeachAOϕiΣck2=1i.e.thesumofthesquaresofthecoefficientsforanyAOoverallMOsmustbe1.

EachMOmustbesymmetricoranZsymmetricwithrespecttoanysymmetryoperaZonofthemolecule.

MolecularOrbitalEnergies=Ek=α+mjβ mj=2cos[jπ/(n+1)] j=1,2……n

n

i=1

ϕ1ϕ2ϕ3ϕ4

0.707 $0.707

0.500 0.500$0.707

0.500 0.5000.707

Pericyclic Reactions 9

Todrawamolecularorbitaldiagram:i)  countthenumberofp-orbitals–nii)  countthenumberofelectrons–π-bond=2,unpairedelectron=1,carbanion=2,carbocaZon=0iii)  drawnhorizontallinesstackedontopofoneanothertorepresenttheMOsiv)  drawthemolecularorbitalsasthecombinaZonofp-orbitalswithanincreasingnumberofnodesfrom0for

ψ1ton-1forψnsuchthateachMOissymmetricoran0symmetricwithrespecttoanysymmetryopera0onofthemolecule.

v)  ifthenumberofnodesiseventhentheterminalorbitalcoefficientswillbethesamephasevi)  ifthenumberofnodesisoddthentheterminalcoefficientswillbeofoppositephase

ethene allyl butadiene pentadienyl hexatriene

• • •

non#bonding

ψ1

ψ2

ψ2

ψ1 ψ1ψ1

ψ1

ψ2ψ2

ψ2

ψ3

ψ3

ψ3

ψ3

ψ4

ψ4ψ4

ψ5

ψ6

ψ5

increasingnumberofnodes

0

1

2

3

4

5

Pericyclic Reactions 10

six2patomicorbitalsgive6πmolecularorbitals;n=6,j=1,2,3,4,5,6

1,3,5-Hexatriene

MO no.nodes energy HMOTMO(calculated)

ψ6 5 α-1.80β

ψ5 4 α-1.25β

ψ4 3 α-0.45β

ψ3 2 α+0.45β

ψ2 1 α+1.25β

ψ1 0 α+1.80β

stabilisaZonenergy=Estab=2(3α+3.5β)=6α+7βrememberEstab(ethene)=2α+2β

α

mj=2cos(π/7)=1.80 2cos(2π/7)=1.25 2cos(3π/7)=0.45...... andthecorrespondingnegaZvevalues

energyE=α+1.80β α+1.25β α+0.45β α–0.45β…..etc

0.5210.232 '0.418

'0.418 0.2320.521

0.521&0.232 0.418

&0.418 0.232&0.521

0.232%0.418 %0.521

0.521 0.418%0.232

0.2320.418 0.521

0.521 0.4180.232

0.4180.521 (0.232

0.232 (0.521(0.418

0.418&0.521 0.232

0.232 &0.5210.418

Pericyclic Reactions 11

TheHOMOof(neutral)polyenescanbereadilyconstructedbypuxngnodesonthesinglebonds;hencetheHOMOappearstobealternaZngisolatedπ-bondingpairs.TheLUMOof(neutral)polyenescanbeconstructedbybeginningwithan‘isolated’p-orbitalandthenalternaZng

‘isolated’π-bondingpairsandendingwithan‘isolated’p-orbital.

• • • • • •

HOMO

• • • • • •

LUMO

TheHOMOandLUMOaretermedtheFronZerOrbitals.

CorrelaZonDiagramsDuringapericyclicreacZontheorbitalsofthestarZngmaterialaresmoothlyconvertedintotheorbitalsofthe

product.ThismeansthatthesymmetryoftheorbitalswithrespecttoanysymmetryoperaZonsofthemoleculemustbe

conservedinmovingfromthestarZngmaterial(s)toproduct–thisisthe‘ConservaZonofOrbitalSymmetry’,whichisreadilydepictedinan‘orbitalcorrelaZondiagram’

Pericyclic Reactions 12

DrawbarebonesofreacZon.

ψ1

ψ3

ψ2

ψ4

π

π*

σ1

σ2

π

σ3

σ4

π*

S

S

A

S

A

AA

S

A

S

A

S

σ σ

IdenZfyorbitalsundergoingchange.

Drawsensibleapproachofsubstrates.

IdenZfysymmetryelementsmaintainedduringreacZon.

Rankorbitalsapproximatelybyenergy.

Classifyeachorbitalwithrespecttothesymmetryelement(s)conservedduringreacZon.

ConstructorbitalcorrelaZondiagramconnecZngorbitalsofstarZngmaterialswiththoseclosestinenergyandofthesamesymmetryintheproduct.

IntheDiels-AlderreacZonaplaneofsymmetry,perpendiculartothemolecularplanesofboththedieneanddienophileandpassingthroughthedoublebondofthedienophileandthecentralsinglebondofthediene.

IntheorbitalcorrelaZondiagramoftheDiels-AlderreacZonallinteracZngbondingorbitalsinthediene/dienophilearecorrelatedwithnewbondingorbitalsintheproduct.ThereacZonisthermallyallowed.

Pericyclic Reactions 13

CorrelaZondiagramfor[2+2]cycloaddiZonofalkenes

σ1

σ2

σ1

σ2

π2

π1

π3

π4

σ1

σ2

σ3

σ4

SS

SA

AS

AA

SA

AS

SS

AA

σ1σ2σ1σ2

IdenZfyorbitalsundergoingchange(curlyarrowstelluswhichorbitalstheseare)–π.

Drawsensibleapproachofsubstrates–inthiscasefaceonapproachofthetwoalkenesformaximumorbitaloverlap.

IdenZfysymmetryelementsmaintainedduringreacZon–inthiscasetwoplanesofsymmetry,σ1andσ2.

Rankorbitalsapproximatelybyenergy.

Classifyeachorbitalwithrespecttosymmetryelement(s)conservedduringreacZon.

ConstructorbitalcorrelaZondiagramconnecZngorbitalsofstarZngmaterialswiththoseclosestinenergyandofthesamesymmetryintheproduct.

Herethegroundstateπ12π2

2doesnotcorrelatewiththegroundsateoftheproduct(σ12σ22)butwithadoublyexcitedstateσ12σ32–thethermal[2+2]cycloaddiZonofalkenesisthermallydisallowed.

Formoreoncorrela+ondiagramssee:R.B.Woodward,R.Hoffmann,Angew.Chem.Int.Ed.1969,8,781-932.

Pericyclic Reactions 14

CorrelaZondiagramforelectrocyclicreacZons

Z,E:E,E20,000:1

Longuet-Higgins&Abrahamson,J.Am.Chem.Soc.,1965,87,2045.

Therearetwomodesofopening–conrotatoryordisrotatory

Conrotatory–rota+onaroundtheaxesoftheσ-bonds(do]edlines)occursinthesamedirec+on-throughoutthisprocessthemoleculeretainsaC2-axiswhichpassesthroughtheplaneofthemoleculeandthebreakingσbond.

Disrotatory–rota+onaroundtheaxesoftheσ-bonds(do]edlines)occursinoppositedirec+ons–throughoutthisprocessthemoleculeretainsaplaneofsymmetrywhichisperpendiculartotheplaneofthemoleculeandpassesthroughthebreakingσ-bond

σplanview

C2planview

Me

Me

MeMe

Pericyclic Reactions 15

RRRR R Rconrotatory disrotatory

R R

RR

RR

RR

CorrelaZondiagramforelectrocyclicreacZons.

σ

σ*

ψ1

ψ3

ψ2

ψ4

ψ1

ψ3

ψ2

ψ4

underσunderC2

π

π*

RR

RR

RR

RR

RR

RR

RR

RR

C2 σ

molecular)plane

IdenZfyorbitalsundergoingchange(curlyarrows)–σandπ.TheorbitalsundergoingchangeareeithersymmetricoranZsymmetricwithrespecttothe

symmetryelementspreservedduringthereacZon.Rankorbitalsapproximatelybyenergy.Labelorbitalsas‘S’or‘A’.ConstructorbitalcorrelaZondiagramconnecZngorbitalsofstarZngmaterials

withthoseclosestinenergyandofthesamesymmetryintheproduct.

Pericyclic Reactions 16

Intheconrotatorymode,allgroundstatebondingorbitalsincyclobutene(σ2π2)correlatewithgroundstatebondingorbitalsinbutadiene(ψ1

2ψ22)–theconrotatoryopeningofbutadieneisthermallyallowed(favoured).

Inthedisrotatorymode,thegroundstatebondingorbitalsincyclobutene(σ2π2)correlatewithadoublyexcitedstateofbutadiene(ψ1

2ψ32)–thedisrotatoryopeningofbutadieneisthermallyforbidden(disfavoured).

Thephotochemicalringclosureofbutadienetogivecyclobuteneisdisrotatory.The1stexcitedsateofbutadieneisψ1

2ψ21ψ3

1whichcorrelatessmoothlywiththe1stexcitedsateofcyclobutene(σ2π1π*1);underconrotatoryringclosureψ1

2ψ21ψ3

1correlateswithamuchhighenergystateincyclobutene(σ1π2σ*1).

RRRR R Rconrotatory disrotatory

R R

RR

RR

RR

σ

σ*

ψ1

ψ3

ψ2

ψ4

ψ1

ψ3

ψ2

ψ4

underσunderC2

π

π*

AS

S

S

S

A

A A

SS

A

A

A

S

S

A

RR

RR

RR

RR

RR

RR

RR

RRC2 σ

molecular)plane

Pericyclic Reactions 17

CorrelaZondiagramscanbedisZlledintoasimpleruleforpredicZngwhichpericyclicreacZonsare“allowed”.TheWoodward-HoffmannRules:

Drawa‘curlyarrow’mechanismtoidenZfythecomponents.

FortheDiels-AlderreacZontheseare4π(diene)and2π(dienophile).

Drawaconvincing3-Dorbitaldiagramtoshowtheoverlapofthecomponents.

Labelthecomponentsassupraorantarafacial.

SumthecomponentsaccordingtotheWoodward-Hoffmannrule.

Apericyclicchangeinthefirstelectronicallyexcitedstate(i.e.aphotochemicalreacZon)issymmetry-allowedwhenthetotalnumberof(4q+2)sand(4r)acomponentsiseven.

AgroundstatepericyclicreacZonissymmetryallowedwhenthetotalnumberof(4q+2)sand(4r)acomponentsisodd(qandrmustbeintegers).

WewillusetheDiels-AlderreacZontoexemplifytheapplicaZonoftheWoodward-Hoffmannrules.

Pericyclic Reactions 18

HH

(4q+2)s=(4r)a=Total=

Drawa‘curlyarrow’mechanism–thisgenerallyallowsidenZficaZonofthecomponents.

FortheDiels-AlderreacZontheseare4π(diene)and2π(dienophile),

Drawaconvincing3-Dorbitaldiagramtoshowtheoverlapofthecomponents.

Labelthecomponentsassupraorantarafacial.Herethedieneisbeingusedinasuprafacialmanner–thetwonewbondsarebeingformedonthesamefaceofthediene.ThealkeneisalsobeingusedinasuprafacialmannerbeingusedinasuprafacialmannerSumthecomponentsaccordingtotheWoodward-Hoffmannrule

π4s

π2s

π2a

π2s

π2aπ2s

π2s

π2s

π2s

π2s

π2a

Generallysimplesttomaximisesuprafacialcomponentsandnotsubdivideconjugatedsystems.

X

odd✓allowed

101

(4q+2)s=(4r)a=Total=odd✓allowed

303

(4q+2)s=(4r)a=Total=odd✓allowed

101

(4q+2)s=(4r)a=Total=even✗

forbidden

202

Pericyclic Reactions 19

O

O

O

O

O

O

[2+2]cycloaddiZons

Drawaconvincing3-DorbitaldiagramtoshowtheoverlapofthecomponentsLabelthecomponentsassupraorantarafacial.SumthecomponentsaccordingtotheWoodward-Hoffmannrule

π2s

π2s

π2s

π2a

Drawa‘curlyarrow’mechanismtoidenZfythecomponents–2π,2π

heat

π2s

π2a

butgeometricallyunreasonable,thereforedoesnotoccur

Woodward-Hoffmannrulegivesyouthesymmetryallowedorbitaloverlapbutyouhavetodecidewhethertheoverlapyouhavedrawnisgeometricallyreasonable.

X

(4q+2)s=(4r)a=Total=even✗

forbidden(thermally)

202

(4q+2)s=(4r)a=Total=odd✓allowed

(thermally)

101

(4q+2)s=(4r)a=Total=even✓

allowed–photochemically

202

Pericyclic Reactions 20

Nomenclatureforsuprafacialandantarafacialcomponents.

SuprafacialandantarafacialrefertomodesofbondformaZonthatarerespecZvelyonthesamefaceoronoppositefacesofamolecularcomponent.

π-suprafacial π-antarafacial

σ-suprafacial

σ-antarafacial

σ-suprafacial σ-antarafacial ω-suprafacial ω-antarafacial

C H

Pericyclic Reactions 21

MeMe

H H

MeMe

H H

MeMe

H H

Woodward-HoffmannapproachforthermalelectrocyclicreacZons

Drawa‘curlyarrow’mechanismtoidenZfythecomponents–theseare2π(alkene)and2σ(singlebond)

Drawaconvincing3-Dorbitaldiagramtoshowtheoverlapofthecomponents

Labelthecomponentsassupraorantarafacial.

SumthecomponentsaccordingtotheWoodward-Hoffmannrule.

σ2s

π2a

σ2a

π2s

π2s

σ2s

MeMeX

Thermalringopeningofcyclobuteneisconrotatory.Thermaldisrotatoryopeningissymmetryforbidden.

Me

Me

MeMe

(4q+2)s=(4r)a=Total=odd✓allowed

(conrotatory)

101

(4q+2)s=(4r)a=Total=odd✓allowed

(conrotatory)

101

(4q+2)s=(4r)a=Total=even✗

forbiddendisrotatory

202

Pericyclic Reactions 22

Me

O

Me

Woodward-Hoffmannapproachforsigmatropicrearrangements

Drawa‘curlyarrow’mechanismtoidenZfythecomponents–2π,2σ,2π

Drawaconvincing3-Dorbitaldiagramtoshowtheoverlapofthecomponents

Labelthecomponentsassupraorantarafacial.

SumthecomponentsaccordingtotheWoodward-Hoffmannrule.

Woodward-HoffmannruledoesnottellusthatthechairTSislowerinenergythantheboatTS.Youneedtouseyourchemicalknowledge/intuiZontodecidethatachairisgenerallylowerinenergythanthecorrespondingboatandthatitisgenerallymorefavourabletohaveequatorialsubsZtuentsthanaxialsubsZtuentsonachair.

ClaisenrearrangementviachairTSisallowed. ClaisenrearrangementviaboatTSisallowed.

Me

Me

O

Me

Me

O

π2s

π2sπ2s

π2s

σ2sσ2s

π2s

π2sσ2s

OOMe

Me

Me

Me

(4q+2)s=(4r)a=Total=odd✓allowed

303

(4q+2)s=(4r)a=Total=odd✓allowed

303

Pericyclic Reactions 23

O

SPh

Woodward-Hoffmannapproachforsigmatropicrearrangementsandgrouptransfer

Drawa‘curlyarrow’mechanismtoidenZfythecomponents

Drawaconvincing3-Dorbitaldiagramtoshowtheoverlapofthecomponents

Labelthecomponentsassupraorantarafacial.

SumthecomponentsaccordingtotheWoodward-Hoffmannrule.

ene-reacZon(grouptransfer)viaenvelopeTS.

π2s

ω2s

σ2s

O

SPh

H H

π2s

π2sσ2s

[2,3]-sigmatropicrearrangementviaenvelopeTS.

SO Ph

OSPh

HO

O

O

HO

O

O

ForthermalcycloaddiZonsandgrouptransfers:Ifthetotalnumberofelectronsis(4n+2)bothcomponentscanbeusedinasuprafacialmanner. Ifthetotalnumberofelectronsis(4n)oneofthecomponentsissuprafacialandtheotherantarafacial.

ForelectrocyclicreacZons:Thermalelectrocyclicprocesseswillbeconrotatoryifthetotalnumberofelectronsis4nanddisrotatoryifthe

totalnumberofelectronsis(4n+2).

(4q+2)s=(4r)a=Total=odd✓allowed

303

(4q+2)s=(4r)a=Total=odd✓allowed

303

Pericyclic Reactions 24

FronZerMolecularOrbitalapproach–revision‘Astwomoleculesapproacheachother,threemajorforcesoperate:(i)  Theoccupiedorbitalsofonerepeltheoccupiedorbitalsoftheother.(ii)  AnyposiZvechargeononea�ractsanynegaZvechargeontheother(andrepelsanyposiZve)(iii)  Theoccupiedorbitals(especiallytheHOMOs)ofeachinteractwiththeunoccupiedorbitals(especiallythe

LUMOs)oftheother,causingana�racZonbetweenthemolecules.’(fromFleming,MolecularOrbitalsandOrganicChemical

ReacZons)FronZerMolecularOrbitalconsiderstheinteracZonoftheHighestOccupiedMolecularOrbital(HOMO)andtheLowestUnoccupiedMolecularOrbital(LUMO)tobeofoverridingimportance.

HOMOb

LUMOa emptyMOa

filledMOb

emptyMOb

filledMOa

thermalreacZon

ForphotochemicalreacZonsonemoleculeisintheexcitedstate

aψ1

2ψ22

a*ψ1

2ψ21ψ3

1

ψ1

ψ3

ψ2

ψ4HSOMO

LSOMO

excitedstatea groundstateb

LSOMOa

unoccupiedMOψ3HSOMOa

occupiedMOψ2

••••

•• ••••

• •

••

b

LUMO

HOMOψ1

ψ3

ψ2

ψ4

Pericyclic Reactions 25

TheFMOapproach

AssignasingleHOMOandasingleLUMOtothereacZon

Drawaconvincing3-Dorbitaldiagramtoshowtheoverlapofthecomponents

ChecktoseeifthereisconstrucZveoverlapbetweentheorbitals

Drawa‘curlyarrow’mechanismtoidenZfythecomponents

HOMOdiene

LUMOdienophile HOMOdienophile

LUMOdiene

(4q+2)s=1(4r)a=0Total=1odd✓allowed

π4s

π2s

construcZveoverlap✓ construcZveoverlap✓

ToapplytheFMOmethodonehastoassignasingleHOMOandasingleLUMOtothereacZoncomponentsandseehowtheyinteract.TheFMOapproachissimpletoapplytoreacZonswithtwocomponents(e.g.cycloaddiZons,electrocyclicring

opening)butitsapplicaZontosigmatropicrearrangementsandgrouptransferreacZonsissomewhatcontrived.

Pericyclic Reactions 26

HMe

H Me

TheFMOapproach

AssignasingleHOMOandasingleLUMOtothereacZon

Drawaconvincing3-Dorbitaldiagramtoshowtheoverlapofthecomponents

ChecktoseeifthereisconstrucZveoverlapbetweentheorbitals

Drawa‘curlyarrow’mechanismtoidenZfythecomponents

Me

MeHMe

H Me

MeMe

(4q+2)s=1(4r)a=0Total=3odd✓allowed

(conrotatory) σ2a

π2s

Thepreferenceofoneconrotatory(ordisrotatory)modeistermedtorqueoselec+vity(morelater).

HOMOalkene

LUMOalkene LUMOalkene

HOMOsigma

HMe

H MeLUMOsigma

HOMOsigma construcZveoverlap

construcZveoverlap✓

Me

Me

MeMeheat

HMe

H Me

construcZveoverlap✓

Pericyclic Reactions 27

TheFMOapproach

AssignasingleHSOMOandasingleLUMOtothereacZon,(orasingleLSOMOandHOMO)–noteaHSOMOhasthesamephasesasthe‘LUMO’andaLSOMOhasthesamephasesastheHOMO)Drawaconvincing3-Dorbitaldiagramtoshowtheoverlapofthecomponents

ChecktoseeifthereisconstrucZveoverlapbetweentheorbitals

Drawa‘curlyarrow’mechanismtoidenZfythecomponents

(4q+2)s=0(4r)a=0Total=0even✓allowed

photochemically(disrotatory)

π4s

HOMOalkene

LSOMOalkene

construcZveoverlap✓(disrotatory)

MeMe

H H

Me Mehν

Me Me

Pericyclic Reactions 28

TheFMOapproach

AssignasingleHOMOandasingleLUMOtothereacZon

Drawaconvincing3-Dorbitaldiagramtoshowtheoverlapofthecomponents

ChecktoseeifthereisconstrucZveoverlapbetweentheorbitals

Drawa‘curlyarrow’mechanismtoidenZfythecomponents

(4q+2)s=1(4r)a=0Total=3odd✓allowed

Me

Me

O

π2s

π2sσ2s

ψ2

Me

Me

O

HOMObutadiene

HOMO‘π+σ’

LUMOalkene

ψ3

LUMObutadiene

Me

Me

O

LUMO‘π+σ’

HOMOalkene

construcZveoverlap✓ construcZveoverlap✓

OOMe

Me

Me

Me

Me

Me

O

Pericyclic Reactions 29

O

Ph S

O

SPh

O

SPh (4q+2)s=3(4r)a=0Total=3odd✓allowed

π2s

ω2s

σ2s

O

SPh

TheFMOapproach

AssignasingleHOMOandasingleLUMOtothereacZon

Drawaconvincing3-Dorbitaldiagramtoshowtheoverlapofthecomponents

ChecktoseeifthereisconstrucZveoverlapbetweentheorbitals

Drawa‘curlyarrow’mechanismtoidenZfythecomponents

HOMOalkene

LUMO,σ+ωHOMOω

LUMO,alkene+σ

ψ3

LUMObutadiene

ψ3

LUMO4e-allyl

construcZveoverlap✓ construcZveoverlap✓

SO Ph

OSPh

Pericyclic Reactions 30

TheMöbius-HückelMethod

AthermalpericyclicreacZoninvolvingaHückeltopologyisallowedwhenthetotalnumberofelectronsis(4n+2).AthermalpericyclicreacZoninvolvingaMöbiustopologyisallowedwhenthetotalnumberofelectronsis4n.(ForphotochemicalreacZonstherulesarereversed.)

Drawacurlyarrowmechanismtoassigncomponents

Drawaconvincing3-Dorbitaldiagramtoshowtheoverlapofthecomponents(easiesttodrawψ1forallcomponentsandminimisenumberofnodes).

CountthenumberofphaseinversionsintheclosedloopofinteracZngorbitals–asalways,phaseinversionswithinan(atomic)orbitalarenotcounted.

Evennumberofphaseinversions:Hückeltopology

Oddnumberofphaseinversions:Möbiustopology

nophaseinversions,Hückelsystem6electronsallowed✓

Diels-AlderreacZon

nophaseinversions,Hückelsystem4electronsforbidden(thermally)✗

[2+2]cycloaddiZon

nophaseinversionHückelsystem6electronsallowed✓

Sigmatropicrearrangement

Research: Science and Education

1536 Journal of Chemical Education • Vol. 84 No. 9 September 2007 • www.JCE.DivCHED.org

Hückel and Möbius Aromatics

Thus these two great concepts of organic chemistry, aro-maticity and chirality, remained mostly exclusive. EdgarHeilbronner in 1964 (4) and Howard Zimmerman in 1966(5) both came up with radical new suggestions that allow afusion of these concepts. Rather than distributing electronsin a planar ring comprising precisely parallel overlap of 2patomic orbitals, Heilbronner considered what might happenif this array were instead distributed along a Möbius stripbearing a single half (left or right) twist (Figure 3).

Heilbronner applied Hückel’s equations (3) to such a cy-clic Möbius ring, finding that a 4n -electron system wouldbe a closed-shell species like benzene, with no loss of -elec-tron resonance energy compared to the equivalent untwistedHückel ring. A closed-shell 4n 2 electron Möbius ringwas predicted to be less stable than the untwisted Hückelcounterpart.

Like Hückel before him, Heilbronner did not derive asuccinct rule of aromatic stability from these results.Zimmerman (5) was the first to clearly associate the -elec-tron stability of such Möbius rings with an inversion of thearomaticity rules 1 and 2 above. Specifically, populations of4n electrons result in closed-shell (two electrons per en-ergy level) molecules if the 2p atomic orbitals are distributedalong a Möbius strip (rule 1 inverted), whereas 4n 2 -electrons will adopt an open-shell (photochemical) distribu-tion in which two of the electrons will now each occupy aseparate molecular orbital (rule 2 inverted) (5). By adding acorollary for the anti-aromatic cases, rules 5–8 to comple-ment 1–4 can be listed:

5. 4n electrons, thermally (closed shell) aromatic andstable with Möbius topology

6. 4n 2 electrons, photochemically (open shell) aro-matic and stable with Möbius topology

7. 4n 2 electrons, thermally (closed shell) less stablewith Möbius topology

8. 4n electrons, photochemically (open shell) less stablewith Möbius topology.

A useful visual mnemonic first proposed by Frost andMusulin (6) for orbital energies of -electron rings based oninscribing a polygon with one vertex down for the Hückelrules, was memorably extended by Zimmerman (5) to Möbiussystems by redrawing the polygons with one edge down (Fig-ure 4).

Another aspect of Möbius systems that was not directlycommented upon by Heilbronner is that a Möbius strip bear-ing one half-twist is also chiral, in the sense noted above forthe heptahelicene molecule (Figure 2). An ideal Möbius striphas only a C2 axis of symmetry present. The specific absenceof a plane of symmetry means the mirror image of a Möbiusstrip is not superimposable upon the original. In contrast,an ideal planar aromatic molecule of the Hückel type doeshave at least one plane of symmetry, referred to here as a Csmirror plane, which means that its mirror image is superim-posable with the original. Thus in Möbius ringed molecules,we do now have a fusion of two seminal concepts in organicchemistry, that of aromaticity and of chirality!

Figure 2. A heptahelicene and its non-superimposable mirror image.

Figure 3. Heilbronner’s suggestion for a Möbius conjugated sys-tem obtained by electrons located in molecular orbitals resultingfrom 2p atomic orbitals distributed around a Möbius strip bearinga single half-twist, rather than a planar Hückel ring bearing notwist in the orbital basis.

Figure 4. Frost–Musulin and Zimmerman mnemonics for aromatic-ity selection rules. A six-sided polygon is shown for the Hückel caseto coincide with the example shown later in Scheme III (solid ar-rows) and an eight-sided polygon is shown for the Möbius case tocoincide with the dashed arrows in Scheme III.

fromH.S.RzepaJ.Chem.Ed.,2007,84,1535

O

Ph S

Pericyclic Reactions 31

TheMöbius-HückelMethod

AthermalpericyclicreacZoninvolvingaHückeltopologyisallowedwhenthetotalnumberofelectronsis(4n+2).AthermalpericyclicreacZoninvolvingaMöbiustopologyis

allowedwhenthetotalnumberofelectronsis4n.(ForphotochemicalreacZonstherulesarereversed.)

nophaseinversions,Hückelsystem4electronsforbidden(thermally)✗(disrotatory)

onephaseinversionMöbussystem4electronsallowed✓(conrotatory)

electrocyclicreacZons

HMe

H Me

HMe

H Me

HMe

H Me

H

Me

H

Me

Me

Me

MeMe

Pericyclic Reactions 32

OMe

O

CO2Me

H

H

O

MeO MeO

H

O

H

OOMe O

H

OMe

H

O O

H

CycloaddiZons

TheDiels-AlderreacZonisgreatlyacceleratedbyhavinganEDGonthedieneandanEWGonthedienophile.

165°C,17h900atm 150°C,0.5h

100°C,2h 120°C,6h

endo

AlCl3,-78°C‘ortho’and‘para’productspredominate.

‘endo’productspredominate.

LewisacidscatalysethereacZon.

Me

OMe

OMe

OMe

O Me

OMe

O

+

withoutcatalysis 90% 10%withAlCl3 98% 2%

Pericyclic Reactions 33

ψ1

ψ2

ψ2

ψ1 ψ1

ψ2

ψ3

ψ3

ψ4

CycloaddiZons

IncreaserateofreacZonwithEWGondienophile.

α

0.230.43

0.660.58

0.580.58 )0.58

0

066)0.23 )0.43

)0.58

)0.430.66 0.23

)0.58

ψ1

ψ2

ψ3

ψ4O

H

HOMO

LUMO

α+1.00β

α-0.35β

α-1.53β

α+1.88β

α

O

O

HOMO

LUMO

HOMO

LUMO

AnEWG(‘Z’subsZtuent)onthedienophilelowerstheenergyoftheLUMO(andofallorbitals).(HOMOetheneisα+β,LUMOisα–β).ThebestenergymatchisthereforetheHOMOofthedienewith

theLUMOofthedienophile(fulldouble-headedarrow)ratherthantheHOMOofthedienophilewithwiththeLUMOofthediene(dasheddouble-headedarrow).CatalysisbyLewisacidsarisesfromfurtherloweringoftheLUMO

ofthedienophile.

O

AlCl₃

OAlCl₃

OAlCl₃

Pericyclic Reactions 34

ψ1

ψ2

ψ1ψ1

ψ2ψ2

ψ3

ψ3

ψ4

ψ4

ψ5

CycloaddiZons

αα+0.62β

α-0.62β

α–1.62β

α+1.62β

α

HOMO

LUMO

0.37 0.370.600.60

0.60 &0.60&0.370.37

0.60 0.60&0.37&0.37

0.37 &0.370.60&0.60

ψ1

ψ2

ψ3

ψ4InasimilarmannerplacinganEDGonthedieneraisestheenergyoftheHOMOmakingitabe�erenergymatchfortheLUMOofthedienophile.

OMe

HavinganEDGonthedienophile(higherenergyHOMO)andanEWGonthediene(lowerenergyLUMO)isgenerallylesseffecZveatincreasingthelateoftheDiels-AlderreacZon.(Inverseelectrondemand)

Ingeneral:EWG(Z-subsZtuents)lowerHOMO&LUMOenergiesEDG(X-subsZtuents)raiseHOMO&LUMOenergiescarbonconjugaZngsystemse.g.C=C,raiseHOMO&lowerLUMO

Thesegroupsdistortorbitalcoefficients.

Pericyclic Reactions 35

0.500

$0.707

0.500

0.5000.707

0.500

0.707 $0.707

0.37 0.370.600.60

0.60 $0.60$0.370.37

0.60 0.60$0.37$0.37

0.37 $0.370.60$0.60

O

O

O

O

0.55 $0.070.54

0.65 $0.54$0.19

0.44 0.55$0.65

0.19 0.300.30

CycloaddiZonsDiels-AlderreacZonregioselecZvity

0.707 $0.707

0.500 0.500$0.707

0.500 0.5000.707

O

0.230.43

0.660.58

0.580.58 )0.58

0

066)0.23 )0.43

)0.58

)0.430.66 0.23

)0.58

ψ1

ψ2

ψ3

ψ4

αHOMO

LUMO

α+1.00β

α-0.35β

α-1.53β

α+1.88β

HOMO

LUMO

0.370.600.60

&0.60&0.370.37

0.60&0.37&0.37

&0.370.60&0.60

ψ1

ψ2

ψ3

ψ4

largesmall

CoefficientsforacroleinjusttakenasaverageofallylcaZonandbutadienecoefficients–seeFleming.

InthepresenceofaLewisacid(e.g.AlCl3)acroleinwillhavemoreallylcaZoncharacterandhencetheC-terminuscoefficientoftheLUMOwillbelarger.

O

H

AlCl₃

OAlCl₃

OAlCl₃

Pericyclic Reactions 36

0.37 0.370.600.60

0.60 &0.60&0.370.37

0.60 0.60&0.37&0.37

0.37 &0.370.60&0.60

0.50 &0.500.50 &0.50

0.29 0.500.580.50 0.29

0.580.58 &0.58

0.50 0.50&0.50 &0.50

0.29 &0.500.58&0.50 0.29

0.45 &0.260.55

0.15 0.250.290.25

0.59 &0.48

0.55 0.55&0.44

0.33 &0.440.59&0.55

0.30

0.19

&0.19

&0.30

CycloaddiZons

Diels-AlderreacZonregioselecZvity

HOMO

LUMO

OMe

large

0.37 0.370.600.60

0.60 &0.60&0.370.37

0.60 0.60&0.37&0.37

0.37 &0.370.60&0.60

0.50 $0.500.50 $0.50

0.29 0.500.580.50 0.29

0.580.58 $0.58

0.50 0.50$0.50 $0.50

0.29 $0.500.58$0.50 0.29

ψ1

ψ2

ψ3

ψ4

ψ5

Pericyclic Reactions 37

CycloaddiZonsDiels-AlderreacZonregioselecZvity(Z=EWGe.g.CO2Me;X=EDGe.g.OMe.

HOMO

LUMO

Z

Z

X

X

C

C

Z

Z

X

X

C

C

HOMO

LUMO

HOMO

LUMO

HOMOdiene/LUMOdienophileisthepredominantinteracZon

Z X C

Z X CLarge-largeandsmall-smalloverlapisbest.

Asnotedpreviously,inthepresenceofaLewisacid(e.g.AlCl3)C-terminuscoefficientoftheLUMOofaZ-subsZtutedalkenewillbelargerleadingtoincreasedregioseleciZvityintheDiels-AlderreacZon.

Pericyclic Reactions 38

Z

X

CycloaddiZonsDiels-AlderreacZonregioselecZvity(Z=EWGe.g.CO2Me;X=EDGe.g.OMe.

HOMO LUMO

HOMO LUMO

H

OOMe O

H

OMe

X

Z

‘ortho’product

‘para’product

H

OOMe

CNCN

CNCN

HOMO LUMO

Z

Z

H

O

MeO MeO

H

O

H

O

MeO

‘ortho’product

Pericyclic Reactions 39

OMeO H

CycloaddiZonsDiels-AlderreacZontheendorule–endo-productisgenerallythemajorproductwithdienophilescontainingπ-

conjugaZngsubsZtuents.

OMe

O

CO2Me

H

H

CO2Menot

HOMO

LUMO

SecondaryorbitaloverlapisasimpleexplanaZonforthekineZcpreferencefortheendo-adduct–

HO

OMe

endo exoIncaseswherethereacZonreadilyreverses(e.g.DielsAlderreacZonswithfuran)thethermodynamically

preferredexo-adductsareusuallyobtained.

endo-kineZc exo-thermodynamic

O O

O

O

O

O

O

O

O

O

O

O

Pericyclic Reactions 40

HOH

(+)

(+)

H

HHH

CycloaddiZonsElectrostaZcargumentshavealsobeenproposedasareasonableexplanaZonfor‘endo’-selecZvity

OMeO H

H

H

(+)

(+)

(+) HO

OMe

H

H

(+)

(+)

(+)

endo(favoured) exo(disfavoured)

Ph O

H

PhCHO

endo(disfavoured)

exo(disfavoured)

Stericeffectscanfavourtheexoproduct.

O

HMe

Me

O

H

exo

OH Me

H

H

MeO

H

H

H

OMe

O

CO2Me

H

OH H

(+)

(+)

Ph

H HH

endo

endo

exo(favoured)

endo(favoured)

Pericyclic Reactions 41

OMeO

H

H

Me

OAc

HH

H

OMeO

H

H

Me

OAc

HH

H

O

MeH

HH

OAcCHO

CycloaddiZons–DrawingstereochemistryfortheDiels-Alder

O

Me

HH

H

OAc

H

H

H

O

Me

HH

H

OAc

H

H

H

O

Me

HH

H

OAc

H

H

H

12

3

4

56

12

3

4

56

OAcCHO

Me

endo

O

OAc

H

H

H

MeH

HH

OAc O

Me

HBF3•OEt2,*50*°C

?

Me

HH

H

OAc

H

H

H

Pericyclic Reactions 42

TreaZngtheketeneasavinylcaZonallowsageometricallymorereasonableoverlaptoorthogonalorbitals

O

CycloaddiZonsKetenesundergo(thermal)[2+2]-cycloaddiZonswithalkenesprovidinganexcellentmethodforcyclobutanesynthesis.

• OCl

ClOCl

Cl

HH

H

H

• OCl

ClOCl

Cl

HH

ThesimplestexplanaZonforthisreacZonisthattheorbitalsoftheketeneareusedasanantarafacialcomponent.

O(4q+2)s=

(4r)a=Total=odd✓allowed

101

π2s

π2aπ2s

π2a

Cl Cl

O

Cl Cl

OO

R

R

ClCl

R R

O

π2s

π2a

(4q+2)s=(4r)a=Total=odd✓allowed

101

ω0s

Pericyclic Reactions 43

OO

O

OC

C

OC

C

CycloaddiZonsKeteneFronZerOrbitals

HOMO(C=Cπ)

LUMO(C=Oπ*)

LUMO+1(C=Cπ*)

HOMOalkene

LUMO+1ketene

construcZveoverlap✓

HOMOalkene LUMOalkene

LUMOketene HOMOketeneWithketenesitisprobablethatthelowlyingC=Oπ*orbitalisinvolvedinthereacZon.

• OH

H OHH

Othercumulatedπsystemswhichcontainacentralsp-hybridisedcarbonatom(e.g.allenes,vinylcaZons)alsoreadilyundergo[2+2]cycloaddiZon.

OC

C

Pericyclic Reactions 44

Cl

H

O O •Cl

H

•Cl

H

O

Withanunsymmetricalketene,thelargerketenesubsZtuentwillpointawayfromtheplaneofthealkene.

CycloaddiZons

HOMOdiene

LUMO+1ketene

construcZveoverlap✓

InreacZonsofunsymmetricalalkenesthelessstericallydemandingC=OpartoftheketenewillbeorientedabovethelargeralkenesubsZtuents.

Ketenesreadilyreactwithcyclopentadienetogivecyclobutanes.

(4q+2)s=(4r)a=Total=odd✓allowed

101

RegioselecZvitycanbepredictedfromsimple“arrow-pushing”arguments(theC=Ocarbonofketenesisveryelectrophilic),orfromlookingatFMOcoefficients.

•O

Cl H

H

H

O

Cl

Cl

H

O

π2s

π2a

Pericyclic Reactions 45

•H

Cl

O

•O

Cl H

H

H

O

Cl

O

HCl

O

H

Cl

O

HCl

Certainketenesappeartoreactwithcyclopentadieneviabotha[2+2]cycloaddiZon,anda[4+2]cycloaddiZonfollowedbyaClaisenrearrangementmechanism.

CycloaddiZonsAnotherpossiblemechanismisaheteroDiels-AlderreacZonfollowedbyaClaisenrearrangement.

construcZveoverlap✓(4q+2)s=

(4r)a=Total=odd✓allowed

101

π2s

π4s

HOMOdiene

LUMOketene

σ2sπ2s

π2s

HCl

O

HCl

O

Pericyclic Reactions 46

Oxyallyl-diene

construcZveoverlap✓disrotatory

(4q+2)s=(4r)a=Total=odd✓allowed

disrotatory

101

HOMOsigma

LUMOω

σ2s

ω0s O

O OO

O

OO O

O

HOMOdiene

LUMOallylcaZon

construcZveoverlap✓

O

(4q+2)s=(4r)a=Total=odd✓allowed

101

π2s

π4s

Pericyclic Reactions 47

Ph

Ph

Ph

Br

AgBF4

Ph

Ph

Ph

Allylanion-alkeneandreverseprocess

AllylcaZon-diene

HOMOallylanion

LUMOalkene

construcZveoverlap✓

(4q+2)s=(4r)a=Total=odd✓allowed

101

π2s

π4sπ2s

Ph

H

LDA,%45%°C

PhPh

PhPh

Ph

Ph

HPh

Ph

Ph

π4s

Pericyclic Reactions 48

Ph

OO

O

O

O

O Ph

H O

OPh

BuLi+ PhCO2

Allylanion-alkene(reverseprocess)

HOMOω

LUMOσ+σ

construcZveoverlap✓(4q+2)s=

(4r)a=Total=odd✓allowed

303

σ2s

σ2s ω2s

ψ3

LUMObutadiene

O

O

HOMOcarboxylate

LUMOalkene

construcZveoverlap✓

ItcanbeeasiertoanalysethereversereacZon.

PhO

O

O

OPh

Pericyclic Reactions 49

1,3-DipolarcycloaddiZons.

sp-hybridizedcentralatom

ZY

Xπ4sπ2s X Y Z X Y Z X Y Z

1,3-dipole

nitrileylids

NRN

Cl

R

H B

nitrileoxides

N ORN

Cl

R

O H B

nitrileimines

N NHR

diazoalkanes

N NR

R

H2NN

R

RArSO2N3 +

R R

alkylazides

N N NR

X RN N N

nitrousoxide

N N O

oxidaZon

Pericyclic Reactions 50

1,3-DipolarcycloaddiZons.

sp2-hybridizedcentralatom

π4sπ2s

1,3-dipole

azomethineylids azomethineimines

carbonyloxides carbonylylids

ozone

XY

Z XY Z X

YZ

ZY

X

NR

NNH

R

OO

O

nitrones

NO

R

OO

O

Pericyclic Reactions 51

Ozonolysis

OO

O

OO

O

π4s

π2s(4q+2)s=

(4r)a=Total=odd✓allowed

101

OO

O

HOMOalkene

LUMOozone

ψ3

LUMOallylanion

construcZveoverlap✓

OO

O

OO

O

HOMOcarbonylLUMOcarbonyl

construcZveoverlap✓

OO

C

O

HOMOcarbonylylid

construcZveoverlap✓

LUMOcarbonylylid

•ψ2

HOMOallylanion

OO

O

OO

O

ω2sσ2sσ2s

Pericyclic Reactions 52

Azomethineylids.

σ2s

ω2a

(4q+2)s=(4r)a=Total=odd✓allowed

conrotatory

101

HOMOω

LUMOσ

construcZveoverlap✓conrotatory

Ph

CO2EtEtO2C

H H

ψ2

ψ1

ψ3

Ph

CO2EtEtO2C

H H

N

EtO2C CO2Et

H H

Ph

CO2Et

N CO2EtPh

Ph Ph

CO2Et

N CO2EtPh

NEtO2C CO2Et

Ph Ph

Ph

[π2sπ4s]

Pericyclic Reactions 53

NH2OHN

NC

OCN

NNC

OCN

NNC

OHCN

NitronecycloaddiZons.NitronesarereadilyformedbetweenaldehydesandsubsZtutedhydroxylamines.

RNHOH

O

R' H

N

R' H

O R+ N

HR'

RO

ONR

R'

ThenitronecycloaddiZoncanpredominantlyHOMOnitroneLUMOdipolarophile,orLUMOnitroneHOMOdipolarophiledependingonthesubsZtuentsonthedipolarophile.

Stockmansynthesisofhistrionicotoxin;J.Am.Chem.Soc.,2006,128,12656.

N

HOH

NO

NOH

O

CNCN

N CNNC

ON CN

NC

O

N

O

heat180°C

Pericyclic Reactions 54

N

CNMe

OMe

O

NOMe

CNMe

O

Gin’sNomininesynthesis–J.Am.Chem.Soc.,2006,128,8734.

N

H

H

Me

H

HOH

H

HN

X

H

HH

MeCN

MeN

OOMe

CN

MeN

OOMe

CN

N

H

H

Me

H

O

OMe

N

CNMe

OMe

OCN

N

H

H

Me

H O

OMe

NOMe

CNMe

O 1

3.6

Pericyclic Reactions 55

N

H

H

Me

H

N

H

H

Gin’sNomininesynthesis–J.Am.Chem.Soc.,2006,128,8734.

i)#NaBH4ii)#SOCl2

i)#Bu3SnH,#AIBN

i)#DIBALii)#Ph3P=CH2

CN

N

H

H

Me

H

O

OMeCN

N

H

H

Me

H

Cl

OMeCN

N

H

H

Me

H

OMe

N

H

H

Me

H

OMe

H

N

H

H

Me

H

OMe

H

N

H

H

Me

H

O

H

N

H

H

Me

H

H

O

H

Na,$NH3,$iPrOHH+,$H2O

NH

,"MeOH

189

N

H

H

Me

H

H

N

H

Pericyclic Reactions 56

O

CheletropicReacZons

Asub-classofcycloaddiZon/cycloreversionreacZonsinwhichthetwoσ–bondsaremadeorbrokentothesameatom.

O

CO+

MoreimportantarethereacZonsofsingletcarbeneswithalkeneswhicharestereospecific.

Cl

Cl

MeMe

MeMe

Cl Cl

Cl Cl

π2s

ω0a

ω2s(4q+2)s=

(4r)a=Total=odd✓allowed

213

Cl

Cl

LUMOalkene

HOMOcarbene

construcZveoverlap✓

Cl

ClLUMOcarbene

HOMOalkene

construcZveoverlap✓

SideonapproachofthecarbeneisrequiredforconservaZonoforbitalsymmetry.

π2s

π2a

ω0s

(4q+2)s=(4r)a=Total=odd✓allowed

101

c.f.ketenesasvinylcaZons

Cl Cl

O

Cl Cl

OO

R

R

ClCl

R R

Pericyclic Reactions 57

O

S O

CheletropicReacZons

TheotherimportantcheletropicreacZonsinvolvethereversibleaddiZonofsulfurdioxidetopolyenes.

ω2s (4q+2)s=(4r)a=Total=odd✓allowed

101

LUMOdiene

HOMOSO2

construcZveoverlap✓

LUMOSO2

HOMOdiene

construcZveoverlap✓

SO2SO2

SO2SO2

π4sO

S O

O

S OHOMO–lonepair

LUMO

O

S O

O

S O

heatandpressure

heatandpressure

Pericyclic Reactions 58

SO2

heatSO2

heat

%&SO2%&SO2

OS

O

OS

O

CheletropicReacZons

WithtrienestheextrusionprocessdominatesbutconsideringthereverseprocessthereacZonmustbeantarafacialwithrespecttothetrienecomponent.

ω2s

(4q+2)s=(4r)a=Total=odd✓allowed

101

LUMOtriene

HOMOSO2

construcZveoverlap✓

LUMOSO2

HOMOtriene

construcZveoverlap✓

π6a

HOMO–lonepair

LUMO

OS

O

SO O

X toostrained;ca.104ZmeslessreacZvethan SO2

LUMOhexatriene

Pericyclic Reactions 59

CheletropicReacZonsinSynthesis

SO2

OOMeMe O

H

Me O

H

Me O

H H

H

OOMe

MeO

Me

HHO

Me

SO2Me

H

OOMe

MeO

Me

HHO

Me

Me

O

OMe

Me

O

Me

HHO

Me

Me

H

H

HO

OMe

MeO

Me

HO

MeHMe

H

exo

endo

Steroidsynthesis

Colombiasin

Pericyclic Reactions 60

MeMe

Me

Me

Me

Me

Me

Me

ElectrocyclicreacZons

Thermalelectrocyclicprocesseswillbeconrotatoryifthetotalnumberofelectronsis4nanddisrotatoryifthetotalnumberofelectronsis(4n+2)–thisisreversedforphotochemicalreacZons.

AllelectrocyclicreacZonsareallowed(providedtheyarearenotconstrainedbythegeometryoftheproduct).

(4q+2)s=(4r)a=Total=odd✓allowed

disrotatory

101

MeMe

π6s

HMeMe

(4q+2)s=(4r)a=Total=odd✓allowed

disrotatory

101

π6s

140°C,5h 140°C,5h

Me MeH HH

Me

H

Me

(4q+2)s=(4r)a=Total=odd✓allowed

conrotatory

101X

butgeometricallyconstrainedthereforedoesnotoccur.

H H

MeMe

π2a

σ2s

Pericyclic Reactions 61

Me

Me MeMe

Ph

Ph

Ph

Ph

ElectrocyclicreacZons(4q+2)s=

(4r)a=Total=even✓allowed

conrotatory

000

π4shν PhPh

Me Meσ2a

PhPh

Me Me

HSOMOdiene

LUMOσ

construcZveoverlap✓conrotatory

CyclopropylcaZon/allylcaZoninterconversion

TheionisaZonofcyclopropylhalidesandtosylatesisaconcertedprocesstogiveallylcaZons(i.e.discretecyclopropylcaZonsarenotformed).

ThereacZoncanbeviewedasaninternalsubsZtuZoninwhichtheelectronsinaσ-bond(HOMO)feedintotheC-Xσ*(LUMO).

ThereacZonisdisrotatoryandthesenseofrotaZon(torquoselecZvity)isspecified–thisdictatesthegeometryoftheallylcaZonandcanhavealargeinfluenceonreacZonrate.

Cl Cl Cl

Lewisacidlowtemperature

ψ2

ψ1

ψ3

Pericyclic Reactions 62

Cl

H

H

Me

Me

Cl

Me

Me

H

H

ElectrocyclicreacZons

(4q+2)s=(4r)a=Total=

odd✓allowed

disrotatory

101

ω0sHOMOσ

LUMOσconstrucZveoverlap✓disrotatory

Cl

Me

H

H

Me

construcZveoverlap✓disrotatory

Cl

H

H

Me

Me

Cl Cl Cl

construcZveoverlap✓disrotatory

σ2s

X

Influenceonrates–solvolysisinaceZcacid

OTs

HH

HH

OTs

HH

MeH

OTs

MeH

HH

OTs

HH

MeMe

OTs

MeH

HMe

OTs

MeMe

HH

1 6 133 2 450 37000

Pericyclic Reactions 63

OMe3SiFeCl3

OMe3SiFeCl3 Me3Si

OFeCl3

H H H H

H

O

H H

H

ElectrocyclicreacZons-pentadienylsystems.

CaZonic-NazarovreacZon.

6πelectrocyclicringclosure

relaZveconfiguraZonsetbypericyclicreacZon

H H

O (4q+2)s=(4r)a=Total=odd✓allowed

conrotatory

011

π4a

H H

O

HOMOallylcaZon

LUMOalkene

construcZveoverlap✓conrotatory

ThermalNazarovcyclisaZonisconrotatory;photochemicalNazarovreacZonisdisrotatory.

Anionic.

N N

Ph

Ph Ph

H PhLiN N

Ph

Ph Ph

NN

Ph Ph

Ph

Ph PhH H

Phπ6s (4q+2)s=(4r)a=Total=odd✓allowed

disrotatory

101

4πelectrocyclicringclosure

Pericyclic Reactions 64

HH

HHCO2Me

Ph

HH

H

PhCO2Me

HH

H

CO2MePh

ElectrocyclicreacZonsexemplified–theendiandricacids.

HH

H

CO2Me

H

H

Ph

HendiandricacidAmethylester

endiandricacidDmethylester

endiandricacidEmethylester

endiandricacidFmethylester

H

H

HCO2MeH

PhH

H

endiandricacidCmethylester

endiandricacidGmethylester

HH

HH CO2MePh

HH

H

H

H

Ph

H

CO2Me

endiandricacidBmethylester

CO2MePh

HH

CO2MePh

HH

Ph

HH

CO2MePh CO2Me

CO2Me

Ph

DielsAlder DielsAlder DielsAlder

8πelectrocyclic

6πelectrocyclic

6πelectrocyclic

6πelectrocyclic

8πelectrocyclic

BiosynthesisproposedbyBlackJ.Chem.Soc.,Chem.Commun.,1980,902.

BiomimeZcsynthesisbyK.C.Nicolaou,J.Am.Chem.Soc.,1982,104,5558.

Pericyclic Reactions 65

HH

CO2Me

Ph

HH

H

CO2MePh

CO2Me

Ph

R

R'

HH

ElectrocyclicreacZonsexemplified–theendiandricacids.

CO2Me

Ph

CO2Me

Ph

HH

π8a

CO2MePh

HH

8πelectrocyclicringclosure-conrotatory

6πelectrocyclicringclosure-disrotatory

HH

H

CO2Me

H

H

Ph

H

π6s

R

R'

HH

π6s6πelectrocyclicringclosure-disrotatory

exo-DielsAlderreacZon

endiandricacidAmethylester

endiandricacidDmethylester

endiandricacidEmethylester

H2Lindlar

heat,100°C

HH

HHCO2Me

Ph

HH

CO2Me

Ph

Pericyclic Reactions 66

HHPh

CO₂Me

HHPh

CO₂Me

HH

H

PhCO2Me

H

H

HCO2MeH

PhH

H

HH

H

H

H

Ph

H

CO2Me

Ph

HH

CO2Me

Ph CO2Me

Ph CO2MePh

CO2Me

R

R'

HH

ElectrocyclicreacZonsexemplified–theendiandricacids.π8a

8πelectrocyclicringclosure-conrotatory

6πelectrocyclicringclosure-disrotatory

π6s

R

R'

HH

π6s6πelectrocyclicringclosure-disrotatory

exo-DielsAlderreacZon

endiandricacidBmethylester

endiandricacidGmethylester

endiandricacidFmethylester

H2Lindlar

endo-DielsAlderreacZon

endiandricacidCmethylester

HH

HH CO2MePh

heat,100°C

Pericyclic Reactions 67

OR

R'

OR

R'

ROH

OHR

R'

OR

R'H

Sigmatropicrearrangements.SyntheZcallythemostimportantsigmatropicrearrangementsaretheCopeandClaisenrearrangementsand

variantsthereof.TheClaisen/Coperearrangementscanproceedviachair-likeorboat-liketransiZonstates–thechair-like

transiZonstateisstronglyfavouredunlesstherearestericconstraintsthatforceaboat-liketransiZonstate.Wherepossible,subsZtuentsgenerallyadoptequatorialsitesinthechair-liketransiZonstate.

ClassicalClaisenrearrangement.

[3,3]-sigmatropicrearrangement

[3,3]-sigmatropicrearrangement

R’=H,tautomerism

tautomerism

Pericyclic Reactions 68

H

H

MeMe

Me

HMe

H

ClaisenandCope

heat +

major minor

H

Me

MeH

chair

equatorial

H

Me

MeH

cis,cis-minor

chairaxial Me

HMe

H

H

Me

H

Meboat

H

Me

H

Me

trans,trans-major

cis,trans-trace

(4q+2)s=3(4r)a=0Total=3odd✓allowed

π2sπ2s

σ2s

heat

H

H

MeMe

cis,trans

Pericyclic Reactions 69

OH

OEt

OEtOEt

cat.%H%%%%%%heat

O

OEt

Claisenrearrangement-variants.Johnson-Claisenrearrangement-synthesisofγ,δ-unsaturatedesters.

OEt

OEt±H+

O

OEtOEt

H

O

OEtH O

OEt O

OEt

Me

H

O

OEt

Me

H

equatorial

Eschenmoser-Claisenrearrangement-synthesisofγ,δ-unsaturatedamides.

HO

MeO

OMeNMe2

O

NMe2

O

NMe2

OMe

NMe2

heat

via

Carrollrearrangement-synthesisofγ,δ-unsaturatedmethylketones.

OHO

O

Othen%heat

IrelandClaisenrearrangement.

O

O LDA$thenMe3SiCl

O

OSiMe3O

OSiMe3

O

OH H3O+

Pericyclic Reactions 70

Oxy-Coperearrangement.GenerallytheCoperearrangementrequiresveryhightemperatures>200°C.

Theanionicoxy-Copecanbeconductedatlowtemperature(0°C).

R

heat

R

OH OH O

O O OK

k1

k2

oxy-Cope

anionicoxy-Cope

k2/k1∼1010–1017

Usefulmethodforthesynthesisofcis-decalins.

MeO

O

MeO

O

HH H

H

MeO

O

H

H

MeO

O1

23

4

51

23

4

5

Pericyclic Reactions 71

H H

HH

1,n-Hydrideshi�s.Asuprafacial1,n-hydrideshi�involvesthehydrogenmovingfromoneendoftheconjugatedsystemtothe

otheracrossonefaceoftheconjugatedsystem.

[1,5]suprafacialshi�ofH antarafacialshi�ofH1

1

Anantarafacial1,n-hydrideshi� involvesthehydrogenmovingfromoneendoftheconjugatedsystemtotheotherandmovingfromonefaceoftheconjugatedsystemtotheoppositeface.

2 34

5[1,7]

1

12

3

4

5 6

7

H

(4q+2)s=(4r)a=Total=

odd✓allowed

101

π4s

σ2s

(4q+2)s=(4r)a=Total=

odd✓allowed

011

π4aH

σ2a

H

π6a

σ2s

(4q+2)s=(4r)a=Total=

odd✓allowed

101

b

aa

ab

c

c

c

d a

a

a

b

b

c

c

c d

Bulvalene-valenceisomersinterconvertbydegenerateCoperearrangements.

b b

Pericyclic Reactions 72

H

Me tBuDT

Ph

H

MetBu

DT

Ph

1,5-Hydrideshi�soccurreadilywhenthetwoendsofthedieneareheldclose.

Me H MeH

H

Me

HH

Me

HH

MeH

H

0°C

Inacyclicsystems1,5-hydrideshi�scanbemuchslower.

H

DT Me tBu

200°C[1,5]-hydrideshi�

chiralaceZcacidDPh

T

tBu

Me H

DPh

T

tBu

Me

HDPh

T

Me

H tBuO

HOT

DH

allylicstrain

disfavouredconformaZon

Pericyclic Reactions 73

OMe

OMe

BuLi OMe•

• O

Me•

•OH

Me

1,2-Shi�sofalkylgroupscanalsobepericyclic.

1,2-Shi�sofcarbanionsoccurbyaradicalmechanism–1,2-Wixg,1,2-Stevensandrelatedrearrangements.

R

RR

R

RR

(4q+2)s=(4r)a=Total=

odd✓allowed

101

σ2s ω0s

R

R

R

R

RR

R

RRX

R

R

R

(4q+2)s=(4r)a=Total=even✗

forbidden

202

ω2sσ2s

CarbocaZonsreadilyundergoallowed1,2-shi�s.

Allowed,concerted1,2-shi�sofcarbanionsaregeometricallyimpossible.

1,2-Wixgrearrangement.

O

Me

X

Pericyclic Reactions 74

DHAcO

H

DHAcO

H

HD

AcO H D

AcO

Thermal[1,3]-alkylshi�soccurwithinversionofconfiguraZoninthemigraZnggroup.(4q+2)s=

(4r)a=Total=

odd✓allowed

101

π2s

σ2a

1,3-alkylshi�

HD

D HD H D H(4q+2)s=

(4r)a=Total=

odd✓allowed

101

σ2aπ2s

Inthefollowing[1,4]-shi�,migraZonoccurswithinversionofconfiguraZonwithDalwaysontheconcavefaceofthebicyclicstructure.

Thermal1,3-shi�ofhydrogenisonlygeometricallyreasonableinasuprafacialsensewhichisthermallydisallowed.

H(4q+2)s=

(4r)a=Total=even✗

forbidden

200

π2s

σ2sHHOMOσ

LUMOπ

construcZveoverlap✓

antarafacialshi�allowedbutgeometricallyunreasonable

12

3 4

1

1

23

1

1

1 23

H

H

H H

AcO HH

D

Pericyclic Reactions 75

O

ArAnumberof[2,3]-sigmatropicshi�sareusefulsyntheZcally.

(4q+2)s=(4r)a=Total=

odd✓allowed

303

ω2s

σ2s π2s

[2,3]-Wixgrearrangement–mostlikelyproceedsviaanenvelopetransiZonstate;largegroupsattheallylicposiZonwilltendtooccupyapseudo-equatorialposiZon.

NNMe2 Me NMe2

[2,3]

[2,3]

tautomerism

Sommelet-Hauserrearrangement.

1,5-Alkylshi�withretenZonofconfiguraZoninthemigraZnggroup.

HHheat

[1,5] [1,5]

H

(4q+2)s=(4r)a=Total=

odd✓allowed

101

π4s σ2s

BuLiO

ArO

ArO

Ar

Pericyclic Reactions 76

A[9,9]-sigmatropicshi�.

H2N NH2 NH2 NH2

H H

NH2H2N

H2N

H2N

1

2 3

4

1

56

7

89 9

[9,9]

H2N

H2N

(4q+2)s=(4r)a=Total=

odd✓allowed

101

π8s

π8sσ2s

Rearrangementofallylsulfoxides,sulfiniminesandsulfoniumylids.

MeisenheimerRearrangement.

R

NO

R

ONMe2[2,3]

SX Ph

XSPh

[2,3]X=O,NTs,CH2

Pericyclic Reactions 77

GrouptransferreacZons.

(4q+2)s=(4r)a=Total=

odd✓allowed

303

Grouptransfer–appeartobeamixofasigmatropicrearrangementandacycloaddiZon.Theyarebimolecularandsoarenotsigmatropicrearrangements,andnoringisformedsotheyarenotcycloaddiZons.

H

H

π2s

π2sσ2s

HO

OMe OMe

O

230°C

HO

OMe OMe

O

AlCl3

25°C

H

HOMOσ+π

LUMOπ

construcZveoverlap✓

Conia-enereacZon.

O 350$°C OH

O CH3ene

tautomerise

AlderenereacZon

Pericyclic Reactions 78

Carbonyl-enereacZon-frequentlycatalysedbyLewisacids.

180°C,48hSnCl4,0°C

CO2Me

CO2MeOOH

CO2MeCO2Me OHMeO2C CO2Me

922.5

897.5

CO2Me

CO2Me

O

H

OH

CO2MeCO2Me ThermalcarbonylenereacZon,sterics

areimportant.

OHMeO2C CO2Me

CO2Me

CO2Me

OH

SnCl4

IntheLewisacid-catalysedreacZonsignificantposiZvechargedevelopsinthe“eneophile”.

Retro-eneandretrogrouptransferreacZonsarecommon.

X HOR heat

+ RX

OHO H heat

+

SMeS

O HS

MeS

retro-ene retrogrouptransfer:X=S,Se,orNR(CopeeliminaZon)

Pericyclic Reactions 79

PericyclicreacZonsummary:

Fourclasses:CycloaddiZons(chelotropicreacZons);ElectrocyclicreacZons;Sigmatropicrearrangements;Grouptransfer.

Woodward-Hoffmannrules:

Apericyclicchangeinthefirstelectronicallyexcitedstate(i.e.aphotochemicalreacZon)issymmetry-allowedwhenthetotalnumberof(4q+2)sand(4r)acomponentsiseven.

AgroundstatepericyclicreacZonissymmetryallowedwhenthetotalnumberof(4q+2)sand(4r)acomponentsisodd(qandrmustbeintegers).

ForthermalcycloaddiZonsandgrouptransfers:Ifthetotalnumberofelectronsis(4n+2)bothcomponentscanbeusedina

suprafacialmanner. Ifthetotalnumberofelectronsis(4n)oneofthecomponentsissuprafacialandthe

otherantarafacial.ForelectrocyclicreacZons:Thermalelectrocyclicprocesseswillbeconrotatoryifthetotalnumberofelectronsis

4nanddisrotatoryifthetotalnumberofelectronsis(4n+2).

AndjustbecauseyoucandrawapericycliccurlyarrowmechanismdoesnotnecessarilymeanthereacZonispericyclic.