performance of time projection chamber prototypes for the...

28
Performance of Time Projection Chamber Prototypes for the Linear Collider Experiment Makoto Kobayashi on behalf of part of the ILC-TPC Collaboration KEK, Saclay, Orsay, Carleton, Montreal, MPI, DESY, MSUTsukuba U, TUAT, Kogakuin U, Kinki U, Saga U, Hiroshima U. Workshop on MPGDs January 27, 2006 · Research Center for Nuclear Study, Osaka university

Upload: others

Post on 18-Oct-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Performance of Time Projection Chamber Prototypes for the ...sakemi/mpgdWS/slide/mpgdWS_kobayashi… · staggered TDR 220 V/cm Ar – methane (5%) 100 V/cm MicroMEGAS 50-μm mesh

Performance of Time Projection Chamber Prototypes

for the Linear Collider Experiment

Makoto Kobayashi

on behalf of part of the ILC-TPC Collaboration

KEK, Saclay, Orsay, Carleton, Montreal, MPI, DESY, MSU、Tsukuba U, TUAT, Kogakuin U, Kinki U, Saga U, Hiroshima U.

Workshop on MPGDsJanuary 27, 2006 · Research Center for Nuclear Study, Osaka university

Page 2: Performance of Time Projection Chamber Prototypes for the ...sakemi/mpgdWS/slide/mpgdWS_kobayashi… · staggered TDR 220 V/cm Ar – methane (5%) 100 V/cm MicroMEGAS 50-μm mesh

ILC-TPC R&D GroupsEuropeEurope

RWTH RWTH Aachen Aachen CERNCERNDESYDESY

U HamburgU HamburgU U FreiburgFreiburgU U KarlsruheKarlsruhe

UMM KrakowUMM KrakowLundLund

MPIMPI--MunichMunichNIKHEFNIKHEF

BINP BINP NovosibirskNovosibirskLAL LAL OrsayOrsayIPN IPN OrsayOrsayU U RostockRostockCEA CEA SaclaySaclay

PNPI PNPI StPetersburgStPetersburg

AmericaAmericaCarleton U

Cornell/PurdueIndiana U

LBNLMIT

U MontrealU Victoria

Asian ILC gaseousAsian ILC gaseous--tracking groupstracking groups

Chiba UChiba UHiroshima UHiroshima U

MinadamoMinadamo SUSU--IITIITKinki UKinki U

U OsakaU OsakaSaga USaga U

Tokyo UATTokyo UATU TokyoU Tokyo

NRICP TokyoNRICP TokyoKogakuinKogakuin U TokyoU Tokyo

KEK TsukubaKEK TsukubaU TsukubaU TsukubaTsinghuaTsinghua UU

Other Other MIT (LCRD)MIT (LCRD)

Temple/Wayne Temple/Wayne State (UCLC)State (UCLC)

YaleYale

Page 3: Performance of Time Projection Chamber Prototypes for the ...sakemi/mpgdWS/slide/mpgdWS_kobayashi… · staggered TDR 220 V/cm Ar – methane (5%) 100 V/cm MicroMEGAS 50-μm mesh

Examples of Prototype TPCsCarleton, Aachen, Cornell/Purdue,Desy(n.s.) for B=0or1T studies

Saclay, Victoria, Desy(fit in 2-5T magnets)

Karlsruhe, MPI/Asia, Aachen built test TPCsfor magnets (not shown), other groups built small special-study chambers

Page 4: Performance of Time Projection Chamber Prototypes for the ...sakemi/mpgdWS/slide/mpgdWS_kobayashi… · staggered TDR 220 V/cm Ar – methane (5%) 100 V/cm MicroMEGAS 50-μm mesh

Size: Effective volume = 4.1 m (diameter) ×4.6 m (full length) Spatial resolution r -φ: 100 ‒ 200 μm z: ≲ 1 mm Two-track resolving power

r -φ: ≲ 2 mm z: ≲ 10 mm Number of coordinate samples per track: ~ 250 Momentum resolution (TPC alone)

δPt / Pt ~ 10⁻⁴ Pt [GeV/c] for high momentum tracksParticle identification capability: dE/dx ~ 4%

ILC-TPCA Large, High precision, High 3-D granularity Time Projection Chamber

operated under a high magnetic field of 3 – 4 T

Unprecedented requirements to TPC especially for granularity

→ use of micro pattern gas detector (MPGD) as a readout device

→ performance tests using prototypes

Page 5: Performance of Time Projection Chamber Prototypes for the ...sakemi/mpgdWS/slide/mpgdWS_kobayashi… · staggered TDR 220 V/cm Ar – methane (5%) 100 V/cm MicroMEGAS 50-μm mesh

Prototype TPC

Field cagemaximum drift length: 260 mmtypical cathode H.V. : - 6 kV

Readout planeeffective area: 100 mm×100 mm

MWPCGEMs (3-stage)

orMicroMEGAS

Page 6: Performance of Time Projection Chamber Prototypes for the ...sakemi/mpgdWS/slide/mpgdWS_kobayashi… · staggered TDR 220 V/cm Ar – methane (5%) 100 V/cm MicroMEGAS 50-μm mesh

Experimental setup

• Beam: mostly 4 GeV/c pions (0.5-4 GeV/c hadrons &

electrons)

• Magnet: super conducting solenoidwithout return yoke (max field: 1.2 T)

TPC in JACCEE magnet

Beam

JECCEEinner diameter : 850 mmeffective length: 1 m

KEK π2 Beam Line

We have conducted a series of beam experiments at KEK PS.

Page 7: Performance of Time Projection Chamber Prototypes for the ...sakemi/mpgdWS/slide/mpgdWS_kobayashi… · staggered TDR 220 V/cm Ar – methane (5%) 100 V/cm MicroMEGAS 50-μm mesh

Readout scheme and Gas

ALEPH TPC Electronics:charge sensitive preamp. + shaper amp. (shaping time = 500 ns)

+ digitizer (time bucket = 80 nsec)

Readout Device Pads: 32 pads ×12 pad rows Width (pitch)×Length (pitch)

Gas (1 atm.) Drift field

MWPC SW spacing 2 mm SW - Pads 1 mm

2 (2.3) mm×6 (6.3) mm

TDR [Ar- 4CH (5%)- 2CO (2%)]

220 V/cm GEM (triple stage) CERN Standard transfer gaps 1.5 mm induction gap 1.0 mm

1.17 (1.27) mm×6 (6.3) mm

staggered

TDR 220 V/cm

Ar – methane (5%) 100 V/cm

MicroMEGAS 50-μm mesh 50-μm gap

2 (2.3) mm×6 (6.3) mm

Ar - isobutane (5%) 220 V/cm

Page 8: Performance of Time Projection Chamber Prototypes for the ...sakemi/mpgdWS/slide/mpgdWS_kobayashi… · staggered TDR 220 V/cm Ar – methane (5%) 100 V/cm MicroMEGAS 50-μm mesh

Examples of Experimental Data

Z = 26 cm

Z = 0 cm

0 4-4

1

0.5

0

Pad responses for different drift distances

GEM Gas: P5, B = 1 T

[mm]

Xtrack – Pad center

Page 9: Performance of Time Projection Chamber Prototypes for the ...sakemi/mpgdWS/slide/mpgdWS_kobayashi… · staggered TDR 220 V/cm Ar – methane (5%) 100 V/cm MicroMEGAS 50-μm mesh

Pad response width vs. z

TDR

P5

Drift distance (z) [cm]

σPR2[mm]

0 25

0.4

0.8

1.2

10 20

GEM B = 1 T

zD22PR0

2PR += σσ

PR0σ (μm) D (μm / √cm)

TDR

443 ± 5 207 ± 1

P5 511 ± 2 168 ± 1

Page 10: Performance of Time Projection Chamber Prototypes for the ...sakemi/mpgdWS/slide/mpgdWS_kobayashi… · staggered TDR 220 V/cm Ar – methane (5%) 100 V/cm MicroMEGAS 50-μm mesh

Spatial resolution vs. z

TDR

P5

0 2510 20

σx[mm]

0.05

0.1

0.15

0.2

row6

0.25 GEM B = 1 T

zNDX eff22

X0 /+= σσ

Drift distance (z) [cm]

X0σ (μm) effN

TDR

81 ± 6 30 ± 2

P5 67 ± 6 27 ± 2

Page 11: Performance of Time Projection Chamber Prototypes for the ...sakemi/mpgdWS/slide/mpgdWS_kobayashi… · staggered TDR 220 V/cm Ar – methane (5%) 100 V/cm MicroMEGAS 50-μm mesh

Track coordinate measurement

Amplification Gap

Readout Pads

Beam

Drift Volume Drift and Diffusion

Amplification andfurther Diffusion

Pad Response

Ionizations

Coordinatex

Liberation of Electrons

Page 12: Performance of Time Projection Chamber Prototypes for the ...sakemi/mpgdWS/slide/mpgdWS_kobayashi… · staggered TDR 220 V/cm Ar – methane (5%) 100 V/cm MicroMEGAS 50-μm mesh

wPad j

ixxx ∆+= *

*xx =

ijq , ijq ,1+ijq ,1−

Pad response function

drift path ofelectron i

ijq ,2+

,/)()(

/)(

* ∑∑ ∑

∑ ∑ ∑∑∆+=

⎟⎟⎠

⎞⎜⎜⎝

⎛=

ii

i jiji

j i i jjiji

QxxFjwQ

qqjwX

ijiij

jjii

QqxxF

qQ

/)(

,

* ≡∆+

= ∑where

Charge Centroid X

i runs through 1 to N, where N is the total number of drift electrons(not a constant).

is the charge on pad j created by electron i .

ijq ,

is the displacement due to lateral diffusion and its variance is given by

, where is thediffusion constant and z is the driftdistance.

DzDx 22 =>∆<

ix∆

w : pad pitch j : pad #

Page 13: Performance of Time Projection Chamber Prototypes for the ...sakemi/mpgdWS/slide/mpgdWS_kobayashi… · staggered TDR 220 V/cm Ar – methane (5%) 100 V/cm MicroMEGAS 50-μm mesh

Formulation of Spatial Resolution

)()()( ** xxFPxdxxF jDj ∆+∆≡∆+ ∫∞+

∞−

[ ]2

*

,

**2 )()()(ii ⎟⎟⎠

⎞⎜⎜⎝

⎛∆+−∆+∆+≡ ∑∑

jj

kjkj xxFjwxxFxxFjkw

[ ] ∑∆

≡j

jwNQ

q 222

2

)(1)(III

( ) .2

exp21

2

2

⎟⎟⎠

⎞⎜⎜⎝

⎛ ∆−≡Dx

DPD π

where

1

2

2

eff1

⎪⎩

⎪⎨⎧

⎪⎭

⎪⎬⎫

≡Q

QN

N

for tracks perpendicular to the pad row

with

and

q∆( : electric noise charge on a pad)

The definition is similar for < Fj ⋅Fk > .

[ ]2

** )()(i⎭⎬⎫

⎩⎨⎧

−∆+≡ ∑j

j xxxFjw

( ) [ ] [ ] [ ]IIIii1ieff

2 21

21

* +⎭⎬⎫

⎩⎨⎧

+= ∫+

− Nd w

xXσ

Page 14: Performance of Time Projection Chamber Prototypes for the ...sakemi/mpgdWS/slide/mpgdWS_kobayashi… · staggered TDR 220 V/cm Ar – methane (5%) 100 V/cm MicroMEGAS 50-μm mesh

Remarks on the Formulation

ξξ dxfxFwjw

wjwj )()(2/

2/∫+

−−≡

with f (x) being the pad response function.

,11

2

2

eff RN

Q

QN

N ≡⎪⎩

⎪⎨⎧

⎪⎭

⎪⎬⎫

where R is defined as ><><+≡ −1)1( NNKRwith ,/ 22 ><≡ QK Qσ

the relative variance of avalanche fluctuationfor a single drift electron.

><>< −1NN is greater than 1 because of asymmetric distribution of N.

Therefore the effective number of electrons is smaller than the averagenumber of drift electrons.

Therefore Fj can be evaluated once the pad response function is defined.

Page 15: Performance of Time Projection Chamber Prototypes for the ...sakemi/mpgdWS/slide/mpgdWS_kobayashi… · staggered TDR 220 V/cm Ar – methane (5%) 100 V/cm MicroMEGAS 50-μm mesh

Remarks (cont’d)

Distribution of N (<N> = 71)

Distribution of 1/N(<1/N> = 0.028)

Distribution of Q(K = 0.67)

21

32.3028.071)67.01()1(

eff

1

≈=

≈××+≈><><+≡ −

RN

N

NNKR

An example of estimation of Nefffor 4 GeV/c pions and pad row pitch of 6.3 mm

in pure argon

Polya type with θ = 0.5<Q> = 1

Page 16: Performance of Time Projection Chamber Prototypes for the ...sakemi/mpgdWS/slide/mpgdWS_kobayashi… · staggered TDR 220 V/cm Ar – methane (5%) 100 V/cm MicroMEGAS 50-μm mesh

[I] Finite pad pitch systematic biases due tocharge centroid method.Rapidly decreases with drift distance (z) because ofdiffusion. N independent.

This term can be reduced by calibration if the signal charge is shared by two or more pads.In reality, however, electronic noise significantly degrades the resolution when the charge sharing among the padsis not sufficient.

[II] Diffusion, gas-gain fluctuation, finite pad pitchcombined.Gradually increases with drift distance,asymptotically .

[III] Random electronic noise. z independent.

Origin and characteristic of each term

( )zDwN 22eff 12//1 +

. when 0at 12/2 δ== fzw

Page 17: Performance of Time Projection Chamber Prototypes for the ...sakemi/mpgdWS/slide/mpgdWS_kobayashi… · staggered TDR 220 V/cm Ar – methane (5%) 100 V/cm MicroMEGAS 50-μm mesh

Illustration of each contribution

z

2Xσ

[III]

[II][I]

12

2w

⎟⎠

⎞⎜⎝

⎛+≈ zDw

N2

2

eff 121

z

2PRσ

2PRF

22PR0

22PR0

2PR

12with σσ

σσ

+=

+=

w

zD

Pad Response

(when f = δ -function)

Page 18: Performance of Time Projection Chamber Prototypes for the ...sakemi/mpgdWS/slide/mpgdWS_kobayashi… · staggered TDR 220 V/cm Ar – methane (5%) 100 V/cm MicroMEGAS 50-μm mesh

Charge spread with respect to the centroid

( )

( ) ( )

( )

( )∑ ∑∑

∑∑

∑ ∑∑

∑ ∑∑

∑∑

∑ ∑∑

∑∑ ∑∑

=

=

=

==

⎟⎟⎟

⎜⎜⎜

⎛−−−=

⎟⎟⎟

⎜⎜⎜

⎛−⋅−

⎪⎭

⎪⎬

⎪⎩

⎪⎨

⎟⎟⎟

⎜⎜⎜

⎛−+−=

⎪⎭

⎪⎬

⎪⎩

⎪⎨

⎟⎟⎟

⎜⎜⎜

⎛−−−

⎟⎟⎟

⎜⎜⎜

⎛−+−=

⎪⎭

⎪⎬

⎪⎩

⎪⎨

⎟⎟⎟

⎜⎜⎜

⎛−−−=

⎟⎟⎟

⎜⎜⎜

⎛−

N

ik

k

kkk

i

kk

i

kk

kkkN

ik

k

kkk

i

kk

i

N

ik

k

kkk

i

kk

kkk

i

kk

i

N

ik

k

kkk

i

kk

iN

ik

k

kkk

i

kk

i

xq

qxxx

qq

xq

qxx

q

qxxx

qq

xq

qxxxx

q

qxxx

qq

xq

qxxx

qq

q

qxx

qq

1

2

*

#

2*#

2

*

#

1

2

*

#

2*#

1

*

#

*#

2

*

#

2*#

1

2

*

#

*#

1

2#

#

2

2

( ) ( ) ,2*#2*#

1

2#

# xXxxq

qxx

qqN

ik

k

kkk

i

kk

i −−−=⎟⎟⎟

⎜⎜⎜

⎛−∑ ∑

∑∑=

.

#

#

∑∑

kk

kkk

q

qxXwith

:#ix

:*x original (true) track coordinatearrival position of electron i, quantized by the pad pitch (w)

Averaging over x , x , q and N,*

i i

( ) 2d

22*#

12σ+=−

wxxNotice that and ( )2*# xX − is nothing but the spatial resolution ( ).2Xσ

Notations

Page 19: Performance of Time Projection Chamber Prototypes for the ...sakemi/mpgdWS/slide/mpgdWS_kobayashi… · staggered TDR 220 V/cm Ar – methane (5%) 100 V/cm MicroMEGAS 50-μm mesh

Width of Pad Responsepad response function: δ - function

Z (drift distance)

⎟⎠

⎞⎜⎝

⎛⋅+≈ zDw

N2

2

eff 121

zDw⋅+ 2

2

12

zN

DwN

⋅⎟⎟⎠

⎞⎜⎜⎝

⎛−+⎟⎟

⎞⎜⎜⎝

⎛−≈

eff

22

eff

1112

11

12

2w [II]

[I]

[III]

Schematic: not to be scaledPa

d re

spon

se w

idth

squa

red

[I] : with respect to thetrue track coordinate

[II] : spatial resolution[III]: with respect to the

charge centroid

[III] = [I] – [II]

Page 20: Performance of Time Projection Chamber Prototypes for the ...sakemi/mpgdWS/slide/mpgdWS_kobayashi… · staggered TDR 220 V/cm Ar – methane (5%) 100 V/cm MicroMEGAS 50-μm mesh

Brief Summary of Formulation

• w: known

• D: measured: determined from z dependence of pad-response width (or given by Monte-Carlo simulation)

• Neff: measured: determined from D and z dependence of spatial resolution(or estimated with assumptions on ionization statistics and avalanche

fluctuation)

• f (pad response function): not known (Monte-Carlo simulation?) δ-function is assumed for f.

• electronic noise ( ): measurable and different from pad to padconsidered here as a constant termindependent of z

NOISEσ

If w, D, f and Neff are known can readily be calculated for given z.Xσ

Page 21: Performance of Time Projection Chamber Prototypes for the ...sakemi/mpgdWS/slide/mpgdWS_kobayashi… · staggered TDR 220 V/cm Ar – methane (5%) 100 V/cm MicroMEGAS 50-μm mesh

Examples of Calculated Resolution

Comparison with the real data

Data

zNDXX eff22

02 /+= σσ

m53129cmm/7.94.38/

0

eff

µσµ

±=

±=

X

ND

pad-pitch dominant region asymptotic regiondiffusion dominant

12/ mm3.2

Calculation

Data: MicroMEGAS

B = 1 TGas: Ar-isobutane (5%)

w = 2.3 mm

D = 469, 285 and 193 respectively for

B = 0, 0.5, and1.0 T(gas: Ar-isobutane (5%))

Neff = 27.5

f : δ function

Electronic noise: absent

cmm/µ

Page 22: Performance of Time Projection Chamber Prototypes for the ...sakemi/mpgdWS/slide/mpgdWS_kobayashi… · staggered TDR 220 V/cm Ar – methane (5%) 100 V/cm MicroMEGAS 50-μm mesh

2PRF

22PR0

22PR0

2PR 12/with σσσσ +=+≈ wzD

Asymptotic behavior at long drift distances Expectation vs. Data

Pad Response (B = 1 T)

Spatial Resolution (B = 1 T)

2NOISE

2

eff

2X0

2

eff

2X0

2X 12

1with1 σσσσ +=+≈w

NzD

N

MWPC GEM MicroMEGAS Gas TDR TDR P5 Ar-isobutane (5%)

)m(PR0 µσ 1390 443±5 511±2 781±79

( )m12/ µw 663

(w = 2.3 mm) 367

(w = 1.27 mm) 663

(w = 2.3 mm)

D ( )cmm/µ 220 207±1 168±1 198±15

D [MAGBOLTZ] 200 200 166 193

MWPC GEM MicroMEGAS Gas TDR TDR P5 Ar-isobutane (5%)

)m(X0 µσ 220 81±6 67±6 129±53

( )m12

1

eff

µwN

135 67 71 128

( )cmm/eff

µND 45 38±1 32±1 38±10

effN 24 30±2 27±2 27±14

PRF dominant

small S/N ratio

Page 23: Performance of Time Projection Chamber Prototypes for the ...sakemi/mpgdWS/slide/mpgdWS_kobayashi… · staggered TDR 220 V/cm Ar – methane (5%) 100 V/cm MicroMEGAS 50-μm mesh

Calculated Resolution for LC TPC

B = 3 Tcm/m82µ=D

5.27eff =N

It is important to reduce pad-pitchdominant region in Linear Collider TPC.

Reduced pad pitch with a larger number ofreadout channels

or

Use of resistive anode technique(see the next slide.)

PRF: δ - function

Page 24: Performance of Time Projection Chamber Prototypes for the ...sakemi/mpgdWS/slide/mpgdWS_kobayashi… · staggered TDR 220 V/cm Ar – methane (5%) 100 V/cm MicroMEGAS 50-μm mesh

Charge dispersion in a MPGD with a resistive anode

•Modified GEM anode with a high resistivity film bonded to a readout plane with an insulating spacer.•2-dimensional continuous RC network defined by material properties & geometry.•Point charge at r = 0 & t = 0disperses with time.•Time dependent anode charge density sampled by readout pads.Equation for surface charge density function on the 2-dim. continuous RC network:

∂ρ∂t

=1

RC

∂2ρ∂r2 +

1r

∂ρ∂r

⎣ ⎢

⎦ ⎥

⇒ ρ(r, t) =RC

2t

−r 2RC4 te

ρ(r,t) integral over pads

ρ(r) Q

r / mmmm ns

Concept & first results:M.S.Dixit et.al., Nucl. Instrum. Methods A518 (2004) 721

Page 25: Performance of Time Projection Chamber Prototypes for the ...sakemi/mpgdWS/slide/mpgdWS_kobayashi… · staggered TDR 220 V/cm Ar – methane (5%) 100 V/cm MicroMEGAS 50-μm mesh

TPC resolution with charge dispersionMicromegas-TPC with a resistive anode readout

ILC-TPC collaboration, KEK beam test (October 2005)

2 x 6 mm2 pads (B = 1 T) Ar/C4H10 95/5 Cd = 125 µ m⁄ √cm (Edrift= 80V/cm)

Drift distance

Tran

sver

se re

solu

tion

(mm

)

121cmm/ 125 m)547(

eff

0

±==

±=

ND

X

µ

µσ

Preliminary

Page 26: Performance of Time Projection Chamber Prototypes for the ...sakemi/mpgdWS/slide/mpgdWS_kobayashi… · staggered TDR 220 V/cm Ar – methane (5%) 100 V/cm MicroMEGAS 50-μm mesh

Summary

TPC prototypes with MPGD readout have been operated successfully.Spatial resolution is understood in terms of pad pitch, diffusion, PRF, and the effective number of electrons (Neff).The expected spatial resolution can be estimated by a simple numerical calculation (NOT a Monte-Carlo) for given geometry, gas mixture and PRF if the relevant parameters are known.It is essential to make pad pitch small, physically or effectively, in order to minimize the pad-pitch dominant volume in the TPC.Resistive anode technique reduces the effective pad pitch, thereby eliminating the pad-pitch dominant region.

Page 27: Performance of Time Projection Chamber Prototypes for the ...sakemi/mpgdWS/slide/mpgdWS_kobayashi… · staggered TDR 220 V/cm Ar – methane (5%) 100 V/cm MicroMEGAS 50-μm mesh

Future ProspectsPerformance tests with a larger prototype at DESY using atest beam and the super conducting magnet, PCMAG.Search for better gas mixtures.

high ionization statistics (electron yield)small diffusionlarge (ω )τsmall avalanche fluctuationhigh electron mobilitysmall fraction of hydrocarbons

Ar – CF4 (- isobutane) ?

Page 28: Performance of Time Projection Chamber Prototypes for the ...sakemi/mpgdWS/slide/mpgdWS_kobayashi… · staggered TDR 220 V/cm Ar – methane (5%) 100 V/cm MicroMEGAS 50-μm mesh

Future Prospects (Cont’d)

Measurement of the pad response function and avalanche fluctuation using single electrons for better understanding of the pad response and spatial resolution.Study of positive ion backflow.Detailed Monte-Carlo simulation of the electron transportincluding avalanche process for the development and geometry optimization of detection devices.Inclusion of UV-photon emissions in avalanches?Positive ion buildup in the case of GEM?Development of (surface mount) readout electronics.Digital TPC?