performance of molecular polarization methods marco masia

28
Performance of Molecular Polarization Methods Marco Masia

Upload: alexander-lee

Post on 02-Jan-2016

216 views

Category:

Documents


3 download

TRANSCRIPT

Performance of Molecular Polarization Methods

Marco Masia

Performance of Molecular Polarization Methods - BCN: april 2005

Overview

Nonpolarizable ModelsAlgorithms Incorporating Polarizability

Fluctuacting Charges (FQ) Point Dipoles (PD) Shell Models (SH)

Comparison Among Methods: Case of a Positive Point Charge Case of Cations Damping Methods

Conclusions

Performance of Molecular Polarization Methods - BCN: april 2005

A: repulsive short range term

B: attractive term depending on the (dipole-dipole) London dispersion

Nonpolarizable Models

ij

jiqq

LJ

qqLJ

r

qqrU

rB

BArr

rU

UUU

)(

4)(

6

2

612

qO

qH

qH

Performance of Molecular Polarization Methods - BCN: april 2005

Nonpolarizable Models

Drawback: no dynamical response to the fluctuations of the electric fields is considered!

We need to implement polarizability in an explicit way!

O

H

H

E

Performance of Molecular Polarization Methods - BCN: april 2005

Algorithms Incorporating Polarizability

Several methods have been developed for the last 30 years.

0

),...,,(0

2100

i

n

xU

EUU

xxxUU

Minimization of the energy respect to some parameter

Performance of Molecular Polarization Methods - BCN: april 2005

Fluctuacting Charges (FQ)

Charges are allowed to fluctuate according to the electronic properties of the molecule as atomic electronegativity and atomic hardness.

jj

i

q

qU

0

0

E=0 E=E(r)

q1

q2

q3

q1+dq1

q2+dq2

q3 +dq3

dq1 + dq2 + dq3 = 0

Performance of Molecular Polarization Methods - BCN: april 2005

Point Dipoles (PD)

E=0 E=E(r)

q1

q2

q3

q1

q2

q3

Atomic polarizabilities i are assigned to some molecular site

The electric field induces the formation of a point dipole i

Performance of Molecular Polarization Methods - BCN: april 2005

Point Dipoles (PD)

iii

ijij

ijijijij

ij

ijij

jiijjijji

E

rr

rrTT

r

rT

TTqE

35

3

3The calculation is repeated iteratively till convergence.

Charge and

Dipole Field Tensors

Performance of Molecular Polarization Methods - BCN: april 2005

Molecular Polarizability

3336

33323332

3)(

)(sin16)(sin82)(sin32)(sin32)(sin16

)2(

),,,,,,(

00

00

00

2

dddd

ZYXzyxf

HOH

HOHOHOHHO

OHzz

iiiati

Tr

zz

yy

xx

mol

mol

Dependence of the molecular polarizability tensor from the atomic polarizabilities

Performance of Molecular Polarization Methods - BCN: april 2005

Shell Model (SH)

The point dipole is mapped to a system of two point charges linked by a spring.

i

Sii

iSii

qk

rq

2,

,

Performance of Molecular Polarization Methods - BCN: april 2005

Comparison Among Methods

Water:• Low polarizability (1.47 Å3)• Anisotropic

Carbon Tetrachloride:• High polarizability (10.5 Å3)• Isotropic

Performance of Molecular Polarization Methods - BCN: april 2005

Case of a Positive Charge Close to Water

Five configurations were considered:

1 2 3 4

-400

-200

0

200

400

C2v

-face

trans

top

cis

po

tent

ial e

nerg

y (k

J m

ol-1

)

distance (+)-O (Å)

C2v

-back

Performance of Molecular Polarization Methods - BCN: april 2005

Case of a Positive Point Charge Close to Water

2 3 4 5

2

3

4

5 G03 PDM-H2O PD2-H2O SH-H2O

distance (+)-O (Å)

dipo

le m

omen

t (D

ebye

)

Similar results were obtained for all the other configurations considered

O

HH M

dOH

dOM

Performance of Molecular Polarization Methods - BCN: april 2005

Case of a Positive Point Charge Close to Water

What about the performance with double point charges?

2 3 4 5 6 72

4

6

8

PDM-H2O SH-H2O G03

distance (++)-O (Å)

dipo

le m

omen

t (D

ebye

)

Performance of Molecular Polarization Methods - BCN: april 2005

Case of a Positive Point ChargeClose to Carbon Tetrachloride

2 3 4 5 6 7

-300

-200

-100

0

100

face

edge

corner

po

tent

ial e

nerg

y (k

J m

ol-1

)

distance (+)-C (Å)

Three configurations were considered:

Performance of Molecular Polarization Methods - BCN: april 2005

Case of a Positive Point ChargeClose to Carbon Tetrachloride

3 4 5 6 7

2

4

6

8 G03 FQ PD PD-C PD opt SH opt

distance (+)-C (Å)

dipo

le m

omen

t (D

ebye

)

C

Cl

ClCl

Cl

Performance of Molecular Polarization Methods - BCN: april 2005

Case of a Positive Point ChargeClose to Carbon Tetrachloride

2 3 4 5 6 70

4

8

12

16

20 PD opt SH opt G03

distance (++)-C (Å)

dipo

le m

omen

t (D

ebye

)

Performance of Molecular Polarization Methods - BCN: april 2005

Case of a Positive Point Charge

PD and SH models can be reparametrized to reproduce the polarizability tensor of the molecule & the dipole moment induced by a point charge;

Also at short distances there is no need to use damping functions;

High electric fields cause the linear models to fail due to hyperpolarizability effects;

Performance of Molecular Polarization Methods - BCN: april 2005

Case of Cations

2 3 4 5-200

-150

-100

-50

0

distance ion-O (Å)

Pot

enti

al E

nerg

y (k

J m

ol-1

)

3 4 5-200

-150

-100

-50

0

(+); Li+; Na+; K+

distance ion-C (Å)

Potential energy: importance of electron repulsion

Performance of Molecular Polarization Methods - BCN: april 2005

Case of Cations

2 3 4 5

2.0

2.5

3.0

3.5

4.0

4.5 (+)

Li+

Na+

K+

distance ion-O (Å)

dipo

le m

omen

t (D

ebye

)

2 3 4 52

3

4

5

2 3 4 52

3

4

5

6

7

8

PDM-H2O; PD2-H2O; SH-H2O; G03

dip

ole

mom

ent (

Deb

ye)

distance ion-O (Å)

Li+ Ca2+

distance ion-O (Å)

Performance of Molecular Polarization Methods - BCN: april 2005

Case of Cations

3 4 5

2

3

4

5

6

3 4 5

4

6

8

10

12

PD opt; SH opt; PD; G03

Li+

distance ion-C (Å)

dip

ole

mom

ent (

Deb

ye)

Mg2+

distance ion-C (Å)

Performance of Molecular Polarization Methods - BCN: april 2005

Damping Functions

Thole (1981): for intramolecular interactions the molecular polarizability diverges at short distances

r

=(r,)

Many functional forms for the charge density have been proposed.

The most used are the exponential and the linear forms.

Performance of Molecular Polarization Methods - BCN: april 2005

Damping Functions

35

3

3

ijij

ijijijij

ij

ijij

jiijjijji

rr

rrTT

r

rT

TTqE

Performance of Molecular Polarization Methods - BCN: april 2005

Damping Functions

),,,(

)(3

)(

;)(

3553

31

wrf

rf

r

rrfTT

r

rfT

jiij

ij

ij

ij

ijijijijij

ij

ijijij

Performance of Molecular Polarization Methods - BCN: april 2005

Damping Functions

2 3 4 52.0

2.5

3.0

3.5

4.0

4.5

2 3 4 52

3

4

5

6

7

PDM; PDM-exp; PDM-lin; G03

distance ion-O (Å)

Na+

dipo

le m

omen

t (D

ebye

)

Ca2+

distance ion-O (Å)

Performance of Molecular Polarization Methods - BCN: april 2005

Conclusions and Future Work

Dimers with cations show a different behaviour from the case of positive point charges;

In the case of cations the use of damping functions for the electrostatic interactions is needed;

The Thole linear and exponential models have been applied to intermolecular interactions and reparametrized for the interactions cation-water and cation-CCl4.

Study the performance of the same methods with

anions (high polarizabilities!)

Performance of Molecular Polarization Methods - BCN: april 2005

Bibliography

Review Rev. in Comput. Chem. 18, 89 (2002).

Methods FQ: J. Chem. Phys. 101, 6141 (1994) PD: J. Am. Chem. Soc. 94, 2952 (1972) SH: The Theory of Optics (Longmans, N. Y., 1902) Damping: Chem. Phys. 59, 341 (1981)

Results J. Chem. Phys. 121, 7362 (2004) Comp. Phys. Commun. In press Manuscript in preparation

Performance of Molecular Polarization Methods - BCN: april 2005

Aknowledgements

Rossend ReyMichael Probst

EUMinisterio EspañolRegione Sardegna

Vosotros