perfect codes and generalized ordinal sum of posets · luciano panek state university of west...

44
Perfect Codes and Generalized Ordinal Sum of Posets Luciano Panek State University of West Paran´ a - Brazil Joint work with: Jerry Anderson Pinheiros - UNICAMP Marcelo Firer - UNICAMP Marcelo Muniz Alves - UFPR Latin American Week on Coding and Information - LAWCI UNICAMP - Campinas - Brazil July 2018 Luciano Panek (UNIOESTE) LAWCI 2018 1 / 19

Upload: nguyencong

Post on 17-Nov-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

Perfect Codes and Generalized Ordinal Sum of Posets

Luciano PanekState University of West Parana - Brazil

Joint work with

Jerry Anderson Pinheiros - UNICAMP

Marcelo Firer - UNICAMP

Marcelo Muniz Alves - UFPR

Latin American Week on Coding and Information - LAWCI

UNICAMP - Campinas - Brazil

July 2018

Luciano Panek (UNIOESTE) LAWCI 2018 1 19

Basic Definitions Posets Poset Metrics and Poset Codes

bull [n] is the finite set 1 2 n called n-set

bull P = ([n]leP) is a partial order (or poset) on [n]

bull I sube [n] is an ideal of P if whenever b isin I and a leP b then a isin I

bull 〈X 〉 is the ideal generated by X sube [n] the smallest ideal containing X

Luciano Panek (UNIOESTE) LAWCI 2018 2 19

Basic Definitions Posets Poset Metrics and Poset Codes

bull [n] is the finite set 1 2 n called n-set

bull P = ([n]leP) is a partial order (or poset) on [n]

bull I sube [n] is an ideal of P if whenever b isin I and a leP b then a isin I

bull 〈X 〉 is the ideal generated by X sube [n] the smallest ideal containing X

Luciano Panek (UNIOESTE) LAWCI 2018 2 19

Basic Definitions Posets Poset Metrics and Poset Codes

bull [n] is the finite set 1 2 n called n-set

bull P = ([n]leP) is a partial order (or poset) on [n]

bull I sube [n] is an ideal of P if whenever b isin I and a leP b then a isin I

bull 〈X 〉 is the ideal generated by X sube [n] the smallest ideal containing X

Luciano Panek (UNIOESTE) LAWCI 2018 2 19

Basic Definitions Posets Poset Metrics and Poset Codes

bull [n] is the finite set 1 2 n called n-set

bull P = ([n]leP) is a partial order (or poset) on [n]

bull I sube [n] is an ideal of P if whenever b isin I and a leP b then a isin I

bull 〈X 〉 is the ideal generated by X sube [n] the smallest ideal containing X

Luciano Panek (UNIOESTE) LAWCI 2018 2 19

Basic Definitions Posets Poset Metrics and Poset Codes

bull [n] is the finite set 1 2 n called n-set

bull P = ([n]leP) is a partial order (or poset) on [n]

bull I sube [n] is an ideal of P if whenever b isin I and a leP b then a isin I

bull 〈X 〉 is the ideal generated by X sube [n] the smallest ideal containing X

Luciano Panek (UNIOESTE) LAWCI 2018 2 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

The Y order P = ([5]leP)

1

2

3

54

Luciano Panek (UNIOESTE) LAWCI 2018 3 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

X = 2 4

1

2

3

54

Luciano Panek (UNIOESTE) LAWCI 2018 4 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

〈X 〉 = 1 2 3 4

1

2

3

54

Luciano Panek (UNIOESTE) LAWCI 2018 5 19

Basic Definitions Codes Posets Poset Metrics andPoset Codes

bull Given u = (u1 un) isin Fnq the support of u is the set

supp(u) = i isin [n] ui ∕= 0

bull The P-distance of u and v is the cardinality

dP(u v) = |〈supp(u minus v)〉|

bull BP(u r) is the P-sphere with center u and radius r ge 0

BP(u r) = v isin Fnq dP(u v) le r

Luciano Panek (UNIOESTE) LAWCI 2018 6 19

Basic Definitions Codes Posets Poset Metrics andPoset Codes

bull Given u = (u1 un) isin Fnq the support of u is the set

supp(u) = i isin [n] ui ∕= 0

bull The P-distance of u and v is the cardinality

dP(u v) = |〈supp(u minus v)〉|

bull BP(u r) is the P-sphere with center u and radius r ge 0

BP(u r) = v isin Fnq dP(u v) le r

Luciano Panek (UNIOESTE) LAWCI 2018 6 19

Basic Definitions Codes Posets Poset Metrics andPoset Codes

bull Given u = (u1 un) isin Fnq the support of u is the set

supp(u) = i isin [n] ui ∕= 0

bull The P-distance of u and v is the cardinality

dP(u v) = |〈supp(u minus v)〉|

bull BP(u r) is the P-sphere with center u and radius r ge 0

BP(u r) = v isin Fnq dP(u v) le r

Luciano Panek (UNIOESTE) LAWCI 2018 6 19

Basic Definitions Codes Posets Poset Metrics andPoset Codes

bull Given u = (u1 un) isin Fnq the support of u is the set

supp(u) = i isin [n] ui ∕= 0

bull The P-distance of u and v is the cardinality

dP(u v) = |〈supp(u minus v)〉|

bull BP(u r) is the P-sphere with center u and radius r ge 0

BP(u r) = v isin Fnq dP(u v) le r

Luciano Panek (UNIOESTE) LAWCI 2018 6 19

Basic Definitions Codes Posets Poset Metrics andPoset Codes

Let P = ([5]leP) be the Y order If u = 11100 and v = 10110 we havethat u minus v = 01010 and so supp(u minus v) = 2 4

1

2

3

54

Luciano Panek (UNIOESTE) LAWCI 2018 7 19

Basic Definitions Codes Posets Poset Metrics andPoset Codes

Let P = ([5]leP) be the Y order If u = 11100 and v = 10110 we havethat u minus v = 01010 and so supp(u minus v) = 2 4 Therefore dP(u v) = 4

1

2

3

54

Luciano Panek (UNIOESTE) LAWCI 2018 8 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

bull A poset code is a linear subspace C of the metric space (Fnq dP)

bull dP(C ) is the minimum distance of a poset code C

dP(C ) = mindP(c c prime) c c prime isin C c ∕= c prime

bull RP(C ) is the packing radius of a poset code C

RP(C ) = maxr BP(c r) cap BP(cprime r) = empty c ∕= c prime isin C

bull C sube Fnq is a P-perfect code if

983134

cisinCBP(c RP(C )) = Fn

q

Luciano Panek (UNIOESTE) LAWCI 2018 9 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

bull A poset code is a linear subspace C of the metric space (Fnq dP)

bull dP(C ) is the minimum distance of a poset code C

dP(C ) = mindP(c c prime) c c prime isin C c ∕= c prime

bull RP(C ) is the packing radius of a poset code C

RP(C ) = maxr BP(c r) cap BP(cprime r) = empty c ∕= c prime isin C

bull C sube Fnq is a P-perfect code if

983134

cisinCBP(c RP(C )) = Fn

q

Luciano Panek (UNIOESTE) LAWCI 2018 9 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

bull A poset code is a linear subspace C of the metric space (Fnq dP)

bull dP(C ) is the minimum distance of a poset code C

dP(C ) = mindP(c c prime) c c prime isin C c ∕= c prime

bull RP(C ) is the packing radius of a poset code C

RP(C ) = maxr BP(c r) cap BP(cprime r) = empty c ∕= c prime isin C

bull C sube Fnq is a P-perfect code if

983134

cisinCBP(c RP(C )) = Fn

q

Luciano Panek (UNIOESTE) LAWCI 2018 9 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

bull A poset code is a linear subspace C of the metric space (Fnq dP)

bull dP(C ) is the minimum distance of a poset code C

dP(C ) = mindP(c c prime) c c prime isin C c ∕= c prime

bull RP(C ) is the packing radius of a poset code C

RP(C ) = maxr BP(c r) cap BP(cprime r) = empty c ∕= c prime isin C

bull C sube Fnq is a P-perfect code if

983134

cisinCBP(c RP(C )) = Fn

q

Luciano Panek (UNIOESTE) LAWCI 2018 9 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

bull A poset code is a linear subspace C of the metric space (Fnq dP)

bull dP(C ) is the minimum distance of a poset code C

dP(C ) = mindP(c c prime) c c prime isin C c ∕= c prime

bull RP(C ) is the packing radius of a poset code C

RP(C ) = maxr BP(c r) cap BP(cprime r) = empty c ∕= c prime isin C

bull C sube Fnq is a P-perfect code if

983134

cisinCBP(c RP(C )) = Fn

q

Luciano Panek (UNIOESTE) LAWCI 2018 9 19

Examples of P-Perfect Codes

C = 000 111 sube F32

H anti-chain orderdH(u v) = |i ui ∕= vi|

Hamming distance

RdH (C ) = lfloordH(C)minus12 rfloor = 1

P usual total orderdP(u v) = maxi ui ∕= vi

NRT distanceRdP (C ) = dP(C )minus 1 = 2

Luciano Panek (UNIOESTE) LAWCI 2018 10 19

Examples of P-Perfect Codes

C = 000 111 sube F32

H anti-chain orderdH(u v) = |i ui ∕= vi|

Hamming distance

RdH (C ) = lfloordH(C)minus12 rfloor = 1

P usual total orderdP(u v) = maxi ui ∕= vi

NRT distanceRdP (C ) = dP(C )minus 1 = 2

Luciano Panek (UNIOESTE) LAWCI 2018 10 19

Examples of P-Perfect Codes

C = 000 111 sube F32

H anti-chain orderdH(u v) = |i ui ∕= vi|

Hamming distance

RdH (C ) = lfloordH(C)minus12 rfloor = 1

P usual total orderdP(u v) = maxi ui ∕= vi

NRT distanceRdP (C ) = dP(C )minus 1 = 2

Luciano Panek (UNIOESTE) LAWCI 2018 10 19

Examples of P-Perfect Codes

C = 000 111 sube F32

H anti-chain orderdH(u v) = |i ui ∕= vi|

Hamming distance

RdH (C ) = lfloordH(C)minus12 rfloor = 1

P usual total orderdP(u v) = maxi ui ∕= vi

NRT distanceRdP (C ) = dP(C )minus 1 = 2

Luciano Panek (UNIOESTE) LAWCI 2018 10 19

Generalized Ordinal Sum of Posets

bull Given A sube [n] and B sube [m] let

R sube Atimes B

be a relation such that Im(R) = B

bull The R-sum of posets P = ([n] leP) and Q = ([m] leQ) is the posetP oplusR Q over [n +m] determined as follows i lePoplusRQ j if and only if

i j le n and i leP j

orn lt i j and (i minus n) leQ (j minus n)

ori le n lt j and iR (j minus n)

Luciano Panek (UNIOESTE) LAWCI 2018 11 19

Generalized Ordinal Sum of Posets

bull Given A sube [n] and B sube [m] let

R sube Atimes B

be a relation such that Im(R) = B

bull The R-sum of posets P = ([n] leP) and Q = ([m] leQ) is the posetP oplusR Q over [n +m] determined as follows i lePoplusRQ j if and only if

i j le n and i leP j

orn lt i j and (i minus n) leQ (j minus n)

ori le n lt j and iR (j minus n)

Luciano Panek (UNIOESTE) LAWCI 2018 11 19

Generalized Ordinal Sum of Posets

bull Given A sube [n] and B sube [m] let

R sube Atimes B

be a relation such that Im(R) = B

bull The R-sum of posets P = ([n] leP) and Q = ([m] leQ) is the posetP oplusR Q over [n +m] determined as follows

i lePoplusRQ j if and only if

i j le n and i leP j

orn lt i j and (i minus n) leQ (j minus n)

ori le n lt j and iR (j minus n)

Luciano Panek (UNIOESTE) LAWCI 2018 11 19

Generalized Ordinal Sum of Posets

bull Given A sube [n] and B sube [m] let

R sube Atimes B

be a relation such that Im(R) = B

bull The R-sum of posets P = ([n] leP) and Q = ([m] leQ) is the posetP oplusR Q over [n +m] determined as follows i lePoplusRQ j if and only if

i j le n and i leP j

orn lt i j and (i minus n) leQ (j minus n)

ori le n lt j and iR (j minus n)

Luciano Panek (UNIOESTE) LAWCI 2018 11 19

Generalized Ordinal Sum of Posets

Example

If P = ([3]leP) is the usual chain order

1 ltP 2 ltP 3

and Q = ([2]leQ) is the antichain order

1

2

3

21

Luciano Panek (UNIOESTE) LAWCI 2018 12 19

Generalized Ordinal Sum of Posets

Example

If P = ([3]leP) is the usual chain order

1 ltP 2 ltP 3

and Q = ([2]leQ) is the antichain order If R = [3]times [2]

1

2

3

21

Luciano Panek (UNIOESTE) LAWCI 2018 13 19

Generalized Ordinal Sum of Posets

Example

Let P = ([3]leP) be the usual chain order

1 ltP 2 ltP 3

and Q = ([2]leQ) be the antichain order If R = [3]times [2] then theR-sum is the Y order

1

2

3

5 (5-3)(4-3) 4

Luciano Panek (UNIOESTE) LAWCI 2018 14 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111

RdPoplusRQ(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Considering the binary codes C1 = 000 111 C2 = 00 10 andC3 = 00 01 10 11 = F2

2 we have that

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus F22 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 16 19

Generalized Ordinal Sum of Posets

Example - to be continued

Considering the binary codes C1 = 000 111 C2 = 00 10 andC3 = 00 01 10 11 = F2

2 we have that

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus F22 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 17 19

Generalized Ordinal Sum of Posets

Theorem

Let P = ([n] leP) and Q = ([m] leQ) be posets C1 oplus C2 sube Fnq oplus Fm

q be acode where C1 is a P-perfect code RPoplusRQ(C1 oplus C2) = RP (C1) and|BP(0RP(C1))| = |BPoplusRQ(0RP(C1))| The following items areequivalent

(i) C2 ≃ Fmq

(ii) C1 oplus C2 is P oplusR Q-perfect and for each minimal element j isin Q thevector x (j) = ej +

983123iisin[n]iRj ei has packing radius

RPoplusRQ (x (j)) ge RP (C1)

Corollary

If C1 is P-perfect then C1 oplus C2 is P oplus Q-perfect withRPoplusQ(C1 oplus C2) = RP (C1) for every poset Q = ([m] leQ) if and only ifC2 = Fm

q

Luciano Panek (UNIOESTE) LAWCI 2018 18 19

Generalized Ordinal Sum of Posets

Theorem

Let P = ([n] leP) and Q = ([m] leQ) be posets C1 oplus C2 sube Fnq oplus Fm

q be acode where C1 is a P-perfect code RPoplusRQ(C1 oplus C2) = RP (C1) and|BP(0RP(C1))| = |BPoplusRQ(0RP(C1))| The following items areequivalent

(i) C2 ≃ Fmq

(ii) C1 oplus C2 is P oplusR Q-perfect and for each minimal element j isin Q thevector x (j) = ej +

983123iisin[n]iRj ei has packing radius

RPoplusRQ (x (j)) ge RP (C1)

Corollary

If C1 is P-perfect then C1 oplus C2 is P oplus Q-perfect withRPoplusQ(C1 oplus C2) = RP (C1) for every poset Q = ([m] leQ) if and only ifC2 = Fm

q

Luciano Panek (UNIOESTE) LAWCI 2018 18 19

References

J Ahn H K Kim J S Kim and M Kim Classification of perfectlinear codes with crown poset structure Discrete Mathematics 268(2003) 21-30

R Brualdi J S Graves and M Lawrence Codes with a poset metric Discrete Mathematics 147 (1995) 57-72

J Y Hyun and H K Kim The poset structures admitting theextended binary Hamming code to be a perfect code DiscreteMathematics 288 (2004) 37-47

J G Lee Perfect codes on some ordered sets Bulletin of the KoreanMathematical Society 43(2) (2006) 293-297

R G L DrsquoOliveira and M Firer The packing radius of a code andpartitioning problems the case for poset metrics on finite vectorspaces Discrete Mathematics 338 (2015) 2143-2167

Luciano Panek (UNIOESTE) LAWCI 2018 19 19

Basic Definitions Posets Poset Metrics and Poset Codes

bull [n] is the finite set 1 2 n called n-set

bull P = ([n]leP) is a partial order (or poset) on [n]

bull I sube [n] is an ideal of P if whenever b isin I and a leP b then a isin I

bull 〈X 〉 is the ideal generated by X sube [n] the smallest ideal containing X

Luciano Panek (UNIOESTE) LAWCI 2018 2 19

Basic Definitions Posets Poset Metrics and Poset Codes

bull [n] is the finite set 1 2 n called n-set

bull P = ([n]leP) is a partial order (or poset) on [n]

bull I sube [n] is an ideal of P if whenever b isin I and a leP b then a isin I

bull 〈X 〉 is the ideal generated by X sube [n] the smallest ideal containing X

Luciano Panek (UNIOESTE) LAWCI 2018 2 19

Basic Definitions Posets Poset Metrics and Poset Codes

bull [n] is the finite set 1 2 n called n-set

bull P = ([n]leP) is a partial order (or poset) on [n]

bull I sube [n] is an ideal of P if whenever b isin I and a leP b then a isin I

bull 〈X 〉 is the ideal generated by X sube [n] the smallest ideal containing X

Luciano Panek (UNIOESTE) LAWCI 2018 2 19

Basic Definitions Posets Poset Metrics and Poset Codes

bull [n] is the finite set 1 2 n called n-set

bull P = ([n]leP) is a partial order (or poset) on [n]

bull I sube [n] is an ideal of P if whenever b isin I and a leP b then a isin I

bull 〈X 〉 is the ideal generated by X sube [n] the smallest ideal containing X

Luciano Panek (UNIOESTE) LAWCI 2018 2 19

Basic Definitions Posets Poset Metrics and Poset Codes

bull [n] is the finite set 1 2 n called n-set

bull P = ([n]leP) is a partial order (or poset) on [n]

bull I sube [n] is an ideal of P if whenever b isin I and a leP b then a isin I

bull 〈X 〉 is the ideal generated by X sube [n] the smallest ideal containing X

Luciano Panek (UNIOESTE) LAWCI 2018 2 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

The Y order P = ([5]leP)

1

2

3

54

Luciano Panek (UNIOESTE) LAWCI 2018 3 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

X = 2 4

1

2

3

54

Luciano Panek (UNIOESTE) LAWCI 2018 4 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

〈X 〉 = 1 2 3 4

1

2

3

54

Luciano Panek (UNIOESTE) LAWCI 2018 5 19

Basic Definitions Codes Posets Poset Metrics andPoset Codes

bull Given u = (u1 un) isin Fnq the support of u is the set

supp(u) = i isin [n] ui ∕= 0

bull The P-distance of u and v is the cardinality

dP(u v) = |〈supp(u minus v)〉|

bull BP(u r) is the P-sphere with center u and radius r ge 0

BP(u r) = v isin Fnq dP(u v) le r

Luciano Panek (UNIOESTE) LAWCI 2018 6 19

Basic Definitions Codes Posets Poset Metrics andPoset Codes

bull Given u = (u1 un) isin Fnq the support of u is the set

supp(u) = i isin [n] ui ∕= 0

bull The P-distance of u and v is the cardinality

dP(u v) = |〈supp(u minus v)〉|

bull BP(u r) is the P-sphere with center u and radius r ge 0

BP(u r) = v isin Fnq dP(u v) le r

Luciano Panek (UNIOESTE) LAWCI 2018 6 19

Basic Definitions Codes Posets Poset Metrics andPoset Codes

bull Given u = (u1 un) isin Fnq the support of u is the set

supp(u) = i isin [n] ui ∕= 0

bull The P-distance of u and v is the cardinality

dP(u v) = |〈supp(u minus v)〉|

bull BP(u r) is the P-sphere with center u and radius r ge 0

BP(u r) = v isin Fnq dP(u v) le r

Luciano Panek (UNIOESTE) LAWCI 2018 6 19

Basic Definitions Codes Posets Poset Metrics andPoset Codes

bull Given u = (u1 un) isin Fnq the support of u is the set

supp(u) = i isin [n] ui ∕= 0

bull The P-distance of u and v is the cardinality

dP(u v) = |〈supp(u minus v)〉|

bull BP(u r) is the P-sphere with center u and radius r ge 0

BP(u r) = v isin Fnq dP(u v) le r

Luciano Panek (UNIOESTE) LAWCI 2018 6 19

Basic Definitions Codes Posets Poset Metrics andPoset Codes

Let P = ([5]leP) be the Y order If u = 11100 and v = 10110 we havethat u minus v = 01010 and so supp(u minus v) = 2 4

1

2

3

54

Luciano Panek (UNIOESTE) LAWCI 2018 7 19

Basic Definitions Codes Posets Poset Metrics andPoset Codes

Let P = ([5]leP) be the Y order If u = 11100 and v = 10110 we havethat u minus v = 01010 and so supp(u minus v) = 2 4 Therefore dP(u v) = 4

1

2

3

54

Luciano Panek (UNIOESTE) LAWCI 2018 8 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

bull A poset code is a linear subspace C of the metric space (Fnq dP)

bull dP(C ) is the minimum distance of a poset code C

dP(C ) = mindP(c c prime) c c prime isin C c ∕= c prime

bull RP(C ) is the packing radius of a poset code C

RP(C ) = maxr BP(c r) cap BP(cprime r) = empty c ∕= c prime isin C

bull C sube Fnq is a P-perfect code if

983134

cisinCBP(c RP(C )) = Fn

q

Luciano Panek (UNIOESTE) LAWCI 2018 9 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

bull A poset code is a linear subspace C of the metric space (Fnq dP)

bull dP(C ) is the minimum distance of a poset code C

dP(C ) = mindP(c c prime) c c prime isin C c ∕= c prime

bull RP(C ) is the packing radius of a poset code C

RP(C ) = maxr BP(c r) cap BP(cprime r) = empty c ∕= c prime isin C

bull C sube Fnq is a P-perfect code if

983134

cisinCBP(c RP(C )) = Fn

q

Luciano Panek (UNIOESTE) LAWCI 2018 9 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

bull A poset code is a linear subspace C of the metric space (Fnq dP)

bull dP(C ) is the minimum distance of a poset code C

dP(C ) = mindP(c c prime) c c prime isin C c ∕= c prime

bull RP(C ) is the packing radius of a poset code C

RP(C ) = maxr BP(c r) cap BP(cprime r) = empty c ∕= c prime isin C

bull C sube Fnq is a P-perfect code if

983134

cisinCBP(c RP(C )) = Fn

q

Luciano Panek (UNIOESTE) LAWCI 2018 9 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

bull A poset code is a linear subspace C of the metric space (Fnq dP)

bull dP(C ) is the minimum distance of a poset code C

dP(C ) = mindP(c c prime) c c prime isin C c ∕= c prime

bull RP(C ) is the packing radius of a poset code C

RP(C ) = maxr BP(c r) cap BP(cprime r) = empty c ∕= c prime isin C

bull C sube Fnq is a P-perfect code if

983134

cisinCBP(c RP(C )) = Fn

q

Luciano Panek (UNIOESTE) LAWCI 2018 9 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

bull A poset code is a linear subspace C of the metric space (Fnq dP)

bull dP(C ) is the minimum distance of a poset code C

dP(C ) = mindP(c c prime) c c prime isin C c ∕= c prime

bull RP(C ) is the packing radius of a poset code C

RP(C ) = maxr BP(c r) cap BP(cprime r) = empty c ∕= c prime isin C

bull C sube Fnq is a P-perfect code if

983134

cisinCBP(c RP(C )) = Fn

q

Luciano Panek (UNIOESTE) LAWCI 2018 9 19

Examples of P-Perfect Codes

C = 000 111 sube F32

H anti-chain orderdH(u v) = |i ui ∕= vi|

Hamming distance

RdH (C ) = lfloordH(C)minus12 rfloor = 1

P usual total orderdP(u v) = maxi ui ∕= vi

NRT distanceRdP (C ) = dP(C )minus 1 = 2

Luciano Panek (UNIOESTE) LAWCI 2018 10 19

Examples of P-Perfect Codes

C = 000 111 sube F32

H anti-chain orderdH(u v) = |i ui ∕= vi|

Hamming distance

RdH (C ) = lfloordH(C)minus12 rfloor = 1

P usual total orderdP(u v) = maxi ui ∕= vi

NRT distanceRdP (C ) = dP(C )minus 1 = 2

Luciano Panek (UNIOESTE) LAWCI 2018 10 19

Examples of P-Perfect Codes

C = 000 111 sube F32

H anti-chain orderdH(u v) = |i ui ∕= vi|

Hamming distance

RdH (C ) = lfloordH(C)minus12 rfloor = 1

P usual total orderdP(u v) = maxi ui ∕= vi

NRT distanceRdP (C ) = dP(C )minus 1 = 2

Luciano Panek (UNIOESTE) LAWCI 2018 10 19

Examples of P-Perfect Codes

C = 000 111 sube F32

H anti-chain orderdH(u v) = |i ui ∕= vi|

Hamming distance

RdH (C ) = lfloordH(C)minus12 rfloor = 1

P usual total orderdP(u v) = maxi ui ∕= vi

NRT distanceRdP (C ) = dP(C )minus 1 = 2

Luciano Panek (UNIOESTE) LAWCI 2018 10 19

Generalized Ordinal Sum of Posets

bull Given A sube [n] and B sube [m] let

R sube Atimes B

be a relation such that Im(R) = B

bull The R-sum of posets P = ([n] leP) and Q = ([m] leQ) is the posetP oplusR Q over [n +m] determined as follows i lePoplusRQ j if and only if

i j le n and i leP j

orn lt i j and (i minus n) leQ (j minus n)

ori le n lt j and iR (j minus n)

Luciano Panek (UNIOESTE) LAWCI 2018 11 19

Generalized Ordinal Sum of Posets

bull Given A sube [n] and B sube [m] let

R sube Atimes B

be a relation such that Im(R) = B

bull The R-sum of posets P = ([n] leP) and Q = ([m] leQ) is the posetP oplusR Q over [n +m] determined as follows i lePoplusRQ j if and only if

i j le n and i leP j

orn lt i j and (i minus n) leQ (j minus n)

ori le n lt j and iR (j minus n)

Luciano Panek (UNIOESTE) LAWCI 2018 11 19

Generalized Ordinal Sum of Posets

bull Given A sube [n] and B sube [m] let

R sube Atimes B

be a relation such that Im(R) = B

bull The R-sum of posets P = ([n] leP) and Q = ([m] leQ) is the posetP oplusR Q over [n +m] determined as follows

i lePoplusRQ j if and only if

i j le n and i leP j

orn lt i j and (i minus n) leQ (j minus n)

ori le n lt j and iR (j minus n)

Luciano Panek (UNIOESTE) LAWCI 2018 11 19

Generalized Ordinal Sum of Posets

bull Given A sube [n] and B sube [m] let

R sube Atimes B

be a relation such that Im(R) = B

bull The R-sum of posets P = ([n] leP) and Q = ([m] leQ) is the posetP oplusR Q over [n +m] determined as follows i lePoplusRQ j if and only if

i j le n and i leP j

orn lt i j and (i minus n) leQ (j minus n)

ori le n lt j and iR (j minus n)

Luciano Panek (UNIOESTE) LAWCI 2018 11 19

Generalized Ordinal Sum of Posets

Example

If P = ([3]leP) is the usual chain order

1 ltP 2 ltP 3

and Q = ([2]leQ) is the antichain order

1

2

3

21

Luciano Panek (UNIOESTE) LAWCI 2018 12 19

Generalized Ordinal Sum of Posets

Example

If P = ([3]leP) is the usual chain order

1 ltP 2 ltP 3

and Q = ([2]leQ) is the antichain order If R = [3]times [2]

1

2

3

21

Luciano Panek (UNIOESTE) LAWCI 2018 13 19

Generalized Ordinal Sum of Posets

Example

Let P = ([3]leP) be the usual chain order

1 ltP 2 ltP 3

and Q = ([2]leQ) be the antichain order If R = [3]times [2] then theR-sum is the Y order

1

2

3

5 (5-3)(4-3) 4

Luciano Panek (UNIOESTE) LAWCI 2018 14 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111

RdPoplusRQ(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Considering the binary codes C1 = 000 111 C2 = 00 10 andC3 = 00 01 10 11 = F2

2 we have that

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus F22 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 16 19

Generalized Ordinal Sum of Posets

Example - to be continued

Considering the binary codes C1 = 000 111 C2 = 00 10 andC3 = 00 01 10 11 = F2

2 we have that

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus F22 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 17 19

Generalized Ordinal Sum of Posets

Theorem

Let P = ([n] leP) and Q = ([m] leQ) be posets C1 oplus C2 sube Fnq oplus Fm

q be acode where C1 is a P-perfect code RPoplusRQ(C1 oplus C2) = RP (C1) and|BP(0RP(C1))| = |BPoplusRQ(0RP(C1))| The following items areequivalent

(i) C2 ≃ Fmq

(ii) C1 oplus C2 is P oplusR Q-perfect and for each minimal element j isin Q thevector x (j) = ej +

983123iisin[n]iRj ei has packing radius

RPoplusRQ (x (j)) ge RP (C1)

Corollary

If C1 is P-perfect then C1 oplus C2 is P oplus Q-perfect withRPoplusQ(C1 oplus C2) = RP (C1) for every poset Q = ([m] leQ) if and only ifC2 = Fm

q

Luciano Panek (UNIOESTE) LAWCI 2018 18 19

Generalized Ordinal Sum of Posets

Theorem

Let P = ([n] leP) and Q = ([m] leQ) be posets C1 oplus C2 sube Fnq oplus Fm

q be acode where C1 is a P-perfect code RPoplusRQ(C1 oplus C2) = RP (C1) and|BP(0RP(C1))| = |BPoplusRQ(0RP(C1))| The following items areequivalent

(i) C2 ≃ Fmq

(ii) C1 oplus C2 is P oplusR Q-perfect and for each minimal element j isin Q thevector x (j) = ej +

983123iisin[n]iRj ei has packing radius

RPoplusRQ (x (j)) ge RP (C1)

Corollary

If C1 is P-perfect then C1 oplus C2 is P oplus Q-perfect withRPoplusQ(C1 oplus C2) = RP (C1) for every poset Q = ([m] leQ) if and only ifC2 = Fm

q

Luciano Panek (UNIOESTE) LAWCI 2018 18 19

References

J Ahn H K Kim J S Kim and M Kim Classification of perfectlinear codes with crown poset structure Discrete Mathematics 268(2003) 21-30

R Brualdi J S Graves and M Lawrence Codes with a poset metric Discrete Mathematics 147 (1995) 57-72

J Y Hyun and H K Kim The poset structures admitting theextended binary Hamming code to be a perfect code DiscreteMathematics 288 (2004) 37-47

J G Lee Perfect codes on some ordered sets Bulletin of the KoreanMathematical Society 43(2) (2006) 293-297

R G L DrsquoOliveira and M Firer The packing radius of a code andpartitioning problems the case for poset metrics on finite vectorspaces Discrete Mathematics 338 (2015) 2143-2167

Luciano Panek (UNIOESTE) LAWCI 2018 19 19

Basic Definitions Posets Poset Metrics and Poset Codes

bull [n] is the finite set 1 2 n called n-set

bull P = ([n]leP) is a partial order (or poset) on [n]

bull I sube [n] is an ideal of P if whenever b isin I and a leP b then a isin I

bull 〈X 〉 is the ideal generated by X sube [n] the smallest ideal containing X

Luciano Panek (UNIOESTE) LAWCI 2018 2 19

Basic Definitions Posets Poset Metrics and Poset Codes

bull [n] is the finite set 1 2 n called n-set

bull P = ([n]leP) is a partial order (or poset) on [n]

bull I sube [n] is an ideal of P if whenever b isin I and a leP b then a isin I

bull 〈X 〉 is the ideal generated by X sube [n] the smallest ideal containing X

Luciano Panek (UNIOESTE) LAWCI 2018 2 19

Basic Definitions Posets Poset Metrics and Poset Codes

bull [n] is the finite set 1 2 n called n-set

bull P = ([n]leP) is a partial order (or poset) on [n]

bull I sube [n] is an ideal of P if whenever b isin I and a leP b then a isin I

bull 〈X 〉 is the ideal generated by X sube [n] the smallest ideal containing X

Luciano Panek (UNIOESTE) LAWCI 2018 2 19

Basic Definitions Posets Poset Metrics and Poset Codes

bull [n] is the finite set 1 2 n called n-set

bull P = ([n]leP) is a partial order (or poset) on [n]

bull I sube [n] is an ideal of P if whenever b isin I and a leP b then a isin I

bull 〈X 〉 is the ideal generated by X sube [n] the smallest ideal containing X

Luciano Panek (UNIOESTE) LAWCI 2018 2 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

The Y order P = ([5]leP)

1

2

3

54

Luciano Panek (UNIOESTE) LAWCI 2018 3 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

X = 2 4

1

2

3

54

Luciano Panek (UNIOESTE) LAWCI 2018 4 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

〈X 〉 = 1 2 3 4

1

2

3

54

Luciano Panek (UNIOESTE) LAWCI 2018 5 19

Basic Definitions Codes Posets Poset Metrics andPoset Codes

bull Given u = (u1 un) isin Fnq the support of u is the set

supp(u) = i isin [n] ui ∕= 0

bull The P-distance of u and v is the cardinality

dP(u v) = |〈supp(u minus v)〉|

bull BP(u r) is the P-sphere with center u and radius r ge 0

BP(u r) = v isin Fnq dP(u v) le r

Luciano Panek (UNIOESTE) LAWCI 2018 6 19

Basic Definitions Codes Posets Poset Metrics andPoset Codes

bull Given u = (u1 un) isin Fnq the support of u is the set

supp(u) = i isin [n] ui ∕= 0

bull The P-distance of u and v is the cardinality

dP(u v) = |〈supp(u minus v)〉|

bull BP(u r) is the P-sphere with center u and radius r ge 0

BP(u r) = v isin Fnq dP(u v) le r

Luciano Panek (UNIOESTE) LAWCI 2018 6 19

Basic Definitions Codes Posets Poset Metrics andPoset Codes

bull Given u = (u1 un) isin Fnq the support of u is the set

supp(u) = i isin [n] ui ∕= 0

bull The P-distance of u and v is the cardinality

dP(u v) = |〈supp(u minus v)〉|

bull BP(u r) is the P-sphere with center u and radius r ge 0

BP(u r) = v isin Fnq dP(u v) le r

Luciano Panek (UNIOESTE) LAWCI 2018 6 19

Basic Definitions Codes Posets Poset Metrics andPoset Codes

bull Given u = (u1 un) isin Fnq the support of u is the set

supp(u) = i isin [n] ui ∕= 0

bull The P-distance of u and v is the cardinality

dP(u v) = |〈supp(u minus v)〉|

bull BP(u r) is the P-sphere with center u and radius r ge 0

BP(u r) = v isin Fnq dP(u v) le r

Luciano Panek (UNIOESTE) LAWCI 2018 6 19

Basic Definitions Codes Posets Poset Metrics andPoset Codes

Let P = ([5]leP) be the Y order If u = 11100 and v = 10110 we havethat u minus v = 01010 and so supp(u minus v) = 2 4

1

2

3

54

Luciano Panek (UNIOESTE) LAWCI 2018 7 19

Basic Definitions Codes Posets Poset Metrics andPoset Codes

Let P = ([5]leP) be the Y order If u = 11100 and v = 10110 we havethat u minus v = 01010 and so supp(u minus v) = 2 4 Therefore dP(u v) = 4

1

2

3

54

Luciano Panek (UNIOESTE) LAWCI 2018 8 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

bull A poset code is a linear subspace C of the metric space (Fnq dP)

bull dP(C ) is the minimum distance of a poset code C

dP(C ) = mindP(c c prime) c c prime isin C c ∕= c prime

bull RP(C ) is the packing radius of a poset code C

RP(C ) = maxr BP(c r) cap BP(cprime r) = empty c ∕= c prime isin C

bull C sube Fnq is a P-perfect code if

983134

cisinCBP(c RP(C )) = Fn

q

Luciano Panek (UNIOESTE) LAWCI 2018 9 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

bull A poset code is a linear subspace C of the metric space (Fnq dP)

bull dP(C ) is the minimum distance of a poset code C

dP(C ) = mindP(c c prime) c c prime isin C c ∕= c prime

bull RP(C ) is the packing radius of a poset code C

RP(C ) = maxr BP(c r) cap BP(cprime r) = empty c ∕= c prime isin C

bull C sube Fnq is a P-perfect code if

983134

cisinCBP(c RP(C )) = Fn

q

Luciano Panek (UNIOESTE) LAWCI 2018 9 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

bull A poset code is a linear subspace C of the metric space (Fnq dP)

bull dP(C ) is the minimum distance of a poset code C

dP(C ) = mindP(c c prime) c c prime isin C c ∕= c prime

bull RP(C ) is the packing radius of a poset code C

RP(C ) = maxr BP(c r) cap BP(cprime r) = empty c ∕= c prime isin C

bull C sube Fnq is a P-perfect code if

983134

cisinCBP(c RP(C )) = Fn

q

Luciano Panek (UNIOESTE) LAWCI 2018 9 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

bull A poset code is a linear subspace C of the metric space (Fnq dP)

bull dP(C ) is the minimum distance of a poset code C

dP(C ) = mindP(c c prime) c c prime isin C c ∕= c prime

bull RP(C ) is the packing radius of a poset code C

RP(C ) = maxr BP(c r) cap BP(cprime r) = empty c ∕= c prime isin C

bull C sube Fnq is a P-perfect code if

983134

cisinCBP(c RP(C )) = Fn

q

Luciano Panek (UNIOESTE) LAWCI 2018 9 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

bull A poset code is a linear subspace C of the metric space (Fnq dP)

bull dP(C ) is the minimum distance of a poset code C

dP(C ) = mindP(c c prime) c c prime isin C c ∕= c prime

bull RP(C ) is the packing radius of a poset code C

RP(C ) = maxr BP(c r) cap BP(cprime r) = empty c ∕= c prime isin C

bull C sube Fnq is a P-perfect code if

983134

cisinCBP(c RP(C )) = Fn

q

Luciano Panek (UNIOESTE) LAWCI 2018 9 19

Examples of P-Perfect Codes

C = 000 111 sube F32

H anti-chain orderdH(u v) = |i ui ∕= vi|

Hamming distance

RdH (C ) = lfloordH(C)minus12 rfloor = 1

P usual total orderdP(u v) = maxi ui ∕= vi

NRT distanceRdP (C ) = dP(C )minus 1 = 2

Luciano Panek (UNIOESTE) LAWCI 2018 10 19

Examples of P-Perfect Codes

C = 000 111 sube F32

H anti-chain orderdH(u v) = |i ui ∕= vi|

Hamming distance

RdH (C ) = lfloordH(C)minus12 rfloor = 1

P usual total orderdP(u v) = maxi ui ∕= vi

NRT distanceRdP (C ) = dP(C )minus 1 = 2

Luciano Panek (UNIOESTE) LAWCI 2018 10 19

Examples of P-Perfect Codes

C = 000 111 sube F32

H anti-chain orderdH(u v) = |i ui ∕= vi|

Hamming distance

RdH (C ) = lfloordH(C)minus12 rfloor = 1

P usual total orderdP(u v) = maxi ui ∕= vi

NRT distanceRdP (C ) = dP(C )minus 1 = 2

Luciano Panek (UNIOESTE) LAWCI 2018 10 19

Examples of P-Perfect Codes

C = 000 111 sube F32

H anti-chain orderdH(u v) = |i ui ∕= vi|

Hamming distance

RdH (C ) = lfloordH(C)minus12 rfloor = 1

P usual total orderdP(u v) = maxi ui ∕= vi

NRT distanceRdP (C ) = dP(C )minus 1 = 2

Luciano Panek (UNIOESTE) LAWCI 2018 10 19

Generalized Ordinal Sum of Posets

bull Given A sube [n] and B sube [m] let

R sube Atimes B

be a relation such that Im(R) = B

bull The R-sum of posets P = ([n] leP) and Q = ([m] leQ) is the posetP oplusR Q over [n +m] determined as follows i lePoplusRQ j if and only if

i j le n and i leP j

orn lt i j and (i minus n) leQ (j minus n)

ori le n lt j and iR (j minus n)

Luciano Panek (UNIOESTE) LAWCI 2018 11 19

Generalized Ordinal Sum of Posets

bull Given A sube [n] and B sube [m] let

R sube Atimes B

be a relation such that Im(R) = B

bull The R-sum of posets P = ([n] leP) and Q = ([m] leQ) is the posetP oplusR Q over [n +m] determined as follows i lePoplusRQ j if and only if

i j le n and i leP j

orn lt i j and (i minus n) leQ (j minus n)

ori le n lt j and iR (j minus n)

Luciano Panek (UNIOESTE) LAWCI 2018 11 19

Generalized Ordinal Sum of Posets

bull Given A sube [n] and B sube [m] let

R sube Atimes B

be a relation such that Im(R) = B

bull The R-sum of posets P = ([n] leP) and Q = ([m] leQ) is the posetP oplusR Q over [n +m] determined as follows

i lePoplusRQ j if and only if

i j le n and i leP j

orn lt i j and (i minus n) leQ (j minus n)

ori le n lt j and iR (j minus n)

Luciano Panek (UNIOESTE) LAWCI 2018 11 19

Generalized Ordinal Sum of Posets

bull Given A sube [n] and B sube [m] let

R sube Atimes B

be a relation such that Im(R) = B

bull The R-sum of posets P = ([n] leP) and Q = ([m] leQ) is the posetP oplusR Q over [n +m] determined as follows i lePoplusRQ j if and only if

i j le n and i leP j

orn lt i j and (i minus n) leQ (j minus n)

ori le n lt j and iR (j minus n)

Luciano Panek (UNIOESTE) LAWCI 2018 11 19

Generalized Ordinal Sum of Posets

Example

If P = ([3]leP) is the usual chain order

1 ltP 2 ltP 3

and Q = ([2]leQ) is the antichain order

1

2

3

21

Luciano Panek (UNIOESTE) LAWCI 2018 12 19

Generalized Ordinal Sum of Posets

Example

If P = ([3]leP) is the usual chain order

1 ltP 2 ltP 3

and Q = ([2]leQ) is the antichain order If R = [3]times [2]

1

2

3

21

Luciano Panek (UNIOESTE) LAWCI 2018 13 19

Generalized Ordinal Sum of Posets

Example

Let P = ([3]leP) be the usual chain order

1 ltP 2 ltP 3

and Q = ([2]leQ) be the antichain order If R = [3]times [2] then theR-sum is the Y order

1

2

3

5 (5-3)(4-3) 4

Luciano Panek (UNIOESTE) LAWCI 2018 14 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111

RdPoplusRQ(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Considering the binary codes C1 = 000 111 C2 = 00 10 andC3 = 00 01 10 11 = F2

2 we have that

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus F22 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 16 19

Generalized Ordinal Sum of Posets

Example - to be continued

Considering the binary codes C1 = 000 111 C2 = 00 10 andC3 = 00 01 10 11 = F2

2 we have that

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus F22 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 17 19

Generalized Ordinal Sum of Posets

Theorem

Let P = ([n] leP) and Q = ([m] leQ) be posets C1 oplus C2 sube Fnq oplus Fm

q be acode where C1 is a P-perfect code RPoplusRQ(C1 oplus C2) = RP (C1) and|BP(0RP(C1))| = |BPoplusRQ(0RP(C1))| The following items areequivalent

(i) C2 ≃ Fmq

(ii) C1 oplus C2 is P oplusR Q-perfect and for each minimal element j isin Q thevector x (j) = ej +

983123iisin[n]iRj ei has packing radius

RPoplusRQ (x (j)) ge RP (C1)

Corollary

If C1 is P-perfect then C1 oplus C2 is P oplus Q-perfect withRPoplusQ(C1 oplus C2) = RP (C1) for every poset Q = ([m] leQ) if and only ifC2 = Fm

q

Luciano Panek (UNIOESTE) LAWCI 2018 18 19

Generalized Ordinal Sum of Posets

Theorem

Let P = ([n] leP) and Q = ([m] leQ) be posets C1 oplus C2 sube Fnq oplus Fm

q be acode where C1 is a P-perfect code RPoplusRQ(C1 oplus C2) = RP (C1) and|BP(0RP(C1))| = |BPoplusRQ(0RP(C1))| The following items areequivalent

(i) C2 ≃ Fmq

(ii) C1 oplus C2 is P oplusR Q-perfect and for each minimal element j isin Q thevector x (j) = ej +

983123iisin[n]iRj ei has packing radius

RPoplusRQ (x (j)) ge RP (C1)

Corollary

If C1 is P-perfect then C1 oplus C2 is P oplus Q-perfect withRPoplusQ(C1 oplus C2) = RP (C1) for every poset Q = ([m] leQ) if and only ifC2 = Fm

q

Luciano Panek (UNIOESTE) LAWCI 2018 18 19

References

J Ahn H K Kim J S Kim and M Kim Classification of perfectlinear codes with crown poset structure Discrete Mathematics 268(2003) 21-30

R Brualdi J S Graves and M Lawrence Codes with a poset metric Discrete Mathematics 147 (1995) 57-72

J Y Hyun and H K Kim The poset structures admitting theextended binary Hamming code to be a perfect code DiscreteMathematics 288 (2004) 37-47

J G Lee Perfect codes on some ordered sets Bulletin of the KoreanMathematical Society 43(2) (2006) 293-297

R G L DrsquoOliveira and M Firer The packing radius of a code andpartitioning problems the case for poset metrics on finite vectorspaces Discrete Mathematics 338 (2015) 2143-2167

Luciano Panek (UNIOESTE) LAWCI 2018 19 19

Basic Definitions Posets Poset Metrics and Poset Codes

bull [n] is the finite set 1 2 n called n-set

bull P = ([n]leP) is a partial order (or poset) on [n]

bull I sube [n] is an ideal of P if whenever b isin I and a leP b then a isin I

bull 〈X 〉 is the ideal generated by X sube [n] the smallest ideal containing X

Luciano Panek (UNIOESTE) LAWCI 2018 2 19

Basic Definitions Posets Poset Metrics and Poset Codes

bull [n] is the finite set 1 2 n called n-set

bull P = ([n]leP) is a partial order (or poset) on [n]

bull I sube [n] is an ideal of P if whenever b isin I and a leP b then a isin I

bull 〈X 〉 is the ideal generated by X sube [n] the smallest ideal containing X

Luciano Panek (UNIOESTE) LAWCI 2018 2 19

Basic Definitions Posets Poset Metrics and Poset Codes

bull [n] is the finite set 1 2 n called n-set

bull P = ([n]leP) is a partial order (or poset) on [n]

bull I sube [n] is an ideal of P if whenever b isin I and a leP b then a isin I

bull 〈X 〉 is the ideal generated by X sube [n] the smallest ideal containing X

Luciano Panek (UNIOESTE) LAWCI 2018 2 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

The Y order P = ([5]leP)

1

2

3

54

Luciano Panek (UNIOESTE) LAWCI 2018 3 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

X = 2 4

1

2

3

54

Luciano Panek (UNIOESTE) LAWCI 2018 4 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

〈X 〉 = 1 2 3 4

1

2

3

54

Luciano Panek (UNIOESTE) LAWCI 2018 5 19

Basic Definitions Codes Posets Poset Metrics andPoset Codes

bull Given u = (u1 un) isin Fnq the support of u is the set

supp(u) = i isin [n] ui ∕= 0

bull The P-distance of u and v is the cardinality

dP(u v) = |〈supp(u minus v)〉|

bull BP(u r) is the P-sphere with center u and radius r ge 0

BP(u r) = v isin Fnq dP(u v) le r

Luciano Panek (UNIOESTE) LAWCI 2018 6 19

Basic Definitions Codes Posets Poset Metrics andPoset Codes

bull Given u = (u1 un) isin Fnq the support of u is the set

supp(u) = i isin [n] ui ∕= 0

bull The P-distance of u and v is the cardinality

dP(u v) = |〈supp(u minus v)〉|

bull BP(u r) is the P-sphere with center u and radius r ge 0

BP(u r) = v isin Fnq dP(u v) le r

Luciano Panek (UNIOESTE) LAWCI 2018 6 19

Basic Definitions Codes Posets Poset Metrics andPoset Codes

bull Given u = (u1 un) isin Fnq the support of u is the set

supp(u) = i isin [n] ui ∕= 0

bull The P-distance of u and v is the cardinality

dP(u v) = |〈supp(u minus v)〉|

bull BP(u r) is the P-sphere with center u and radius r ge 0

BP(u r) = v isin Fnq dP(u v) le r

Luciano Panek (UNIOESTE) LAWCI 2018 6 19

Basic Definitions Codes Posets Poset Metrics andPoset Codes

bull Given u = (u1 un) isin Fnq the support of u is the set

supp(u) = i isin [n] ui ∕= 0

bull The P-distance of u and v is the cardinality

dP(u v) = |〈supp(u minus v)〉|

bull BP(u r) is the P-sphere with center u and radius r ge 0

BP(u r) = v isin Fnq dP(u v) le r

Luciano Panek (UNIOESTE) LAWCI 2018 6 19

Basic Definitions Codes Posets Poset Metrics andPoset Codes

Let P = ([5]leP) be the Y order If u = 11100 and v = 10110 we havethat u minus v = 01010 and so supp(u minus v) = 2 4

1

2

3

54

Luciano Panek (UNIOESTE) LAWCI 2018 7 19

Basic Definitions Codes Posets Poset Metrics andPoset Codes

Let P = ([5]leP) be the Y order If u = 11100 and v = 10110 we havethat u minus v = 01010 and so supp(u minus v) = 2 4 Therefore dP(u v) = 4

1

2

3

54

Luciano Panek (UNIOESTE) LAWCI 2018 8 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

bull A poset code is a linear subspace C of the metric space (Fnq dP)

bull dP(C ) is the minimum distance of a poset code C

dP(C ) = mindP(c c prime) c c prime isin C c ∕= c prime

bull RP(C ) is the packing radius of a poset code C

RP(C ) = maxr BP(c r) cap BP(cprime r) = empty c ∕= c prime isin C

bull C sube Fnq is a P-perfect code if

983134

cisinCBP(c RP(C )) = Fn

q

Luciano Panek (UNIOESTE) LAWCI 2018 9 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

bull A poset code is a linear subspace C of the metric space (Fnq dP)

bull dP(C ) is the minimum distance of a poset code C

dP(C ) = mindP(c c prime) c c prime isin C c ∕= c prime

bull RP(C ) is the packing radius of a poset code C

RP(C ) = maxr BP(c r) cap BP(cprime r) = empty c ∕= c prime isin C

bull C sube Fnq is a P-perfect code if

983134

cisinCBP(c RP(C )) = Fn

q

Luciano Panek (UNIOESTE) LAWCI 2018 9 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

bull A poset code is a linear subspace C of the metric space (Fnq dP)

bull dP(C ) is the minimum distance of a poset code C

dP(C ) = mindP(c c prime) c c prime isin C c ∕= c prime

bull RP(C ) is the packing radius of a poset code C

RP(C ) = maxr BP(c r) cap BP(cprime r) = empty c ∕= c prime isin C

bull C sube Fnq is a P-perfect code if

983134

cisinCBP(c RP(C )) = Fn

q

Luciano Panek (UNIOESTE) LAWCI 2018 9 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

bull A poset code is a linear subspace C of the metric space (Fnq dP)

bull dP(C ) is the minimum distance of a poset code C

dP(C ) = mindP(c c prime) c c prime isin C c ∕= c prime

bull RP(C ) is the packing radius of a poset code C

RP(C ) = maxr BP(c r) cap BP(cprime r) = empty c ∕= c prime isin C

bull C sube Fnq is a P-perfect code if

983134

cisinCBP(c RP(C )) = Fn

q

Luciano Panek (UNIOESTE) LAWCI 2018 9 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

bull A poset code is a linear subspace C of the metric space (Fnq dP)

bull dP(C ) is the minimum distance of a poset code C

dP(C ) = mindP(c c prime) c c prime isin C c ∕= c prime

bull RP(C ) is the packing radius of a poset code C

RP(C ) = maxr BP(c r) cap BP(cprime r) = empty c ∕= c prime isin C

bull C sube Fnq is a P-perfect code if

983134

cisinCBP(c RP(C )) = Fn

q

Luciano Panek (UNIOESTE) LAWCI 2018 9 19

Examples of P-Perfect Codes

C = 000 111 sube F32

H anti-chain orderdH(u v) = |i ui ∕= vi|

Hamming distance

RdH (C ) = lfloordH(C)minus12 rfloor = 1

P usual total orderdP(u v) = maxi ui ∕= vi

NRT distanceRdP (C ) = dP(C )minus 1 = 2

Luciano Panek (UNIOESTE) LAWCI 2018 10 19

Examples of P-Perfect Codes

C = 000 111 sube F32

H anti-chain orderdH(u v) = |i ui ∕= vi|

Hamming distance

RdH (C ) = lfloordH(C)minus12 rfloor = 1

P usual total orderdP(u v) = maxi ui ∕= vi

NRT distanceRdP (C ) = dP(C )minus 1 = 2

Luciano Panek (UNIOESTE) LAWCI 2018 10 19

Examples of P-Perfect Codes

C = 000 111 sube F32

H anti-chain orderdH(u v) = |i ui ∕= vi|

Hamming distance

RdH (C ) = lfloordH(C)minus12 rfloor = 1

P usual total orderdP(u v) = maxi ui ∕= vi

NRT distanceRdP (C ) = dP(C )minus 1 = 2

Luciano Panek (UNIOESTE) LAWCI 2018 10 19

Examples of P-Perfect Codes

C = 000 111 sube F32

H anti-chain orderdH(u v) = |i ui ∕= vi|

Hamming distance

RdH (C ) = lfloordH(C)minus12 rfloor = 1

P usual total orderdP(u v) = maxi ui ∕= vi

NRT distanceRdP (C ) = dP(C )minus 1 = 2

Luciano Panek (UNIOESTE) LAWCI 2018 10 19

Generalized Ordinal Sum of Posets

bull Given A sube [n] and B sube [m] let

R sube Atimes B

be a relation such that Im(R) = B

bull The R-sum of posets P = ([n] leP) and Q = ([m] leQ) is the posetP oplusR Q over [n +m] determined as follows i lePoplusRQ j if and only if

i j le n and i leP j

orn lt i j and (i minus n) leQ (j minus n)

ori le n lt j and iR (j minus n)

Luciano Panek (UNIOESTE) LAWCI 2018 11 19

Generalized Ordinal Sum of Posets

bull Given A sube [n] and B sube [m] let

R sube Atimes B

be a relation such that Im(R) = B

bull The R-sum of posets P = ([n] leP) and Q = ([m] leQ) is the posetP oplusR Q over [n +m] determined as follows i lePoplusRQ j if and only if

i j le n and i leP j

orn lt i j and (i minus n) leQ (j minus n)

ori le n lt j and iR (j minus n)

Luciano Panek (UNIOESTE) LAWCI 2018 11 19

Generalized Ordinal Sum of Posets

bull Given A sube [n] and B sube [m] let

R sube Atimes B

be a relation such that Im(R) = B

bull The R-sum of posets P = ([n] leP) and Q = ([m] leQ) is the posetP oplusR Q over [n +m] determined as follows

i lePoplusRQ j if and only if

i j le n and i leP j

orn lt i j and (i minus n) leQ (j minus n)

ori le n lt j and iR (j minus n)

Luciano Panek (UNIOESTE) LAWCI 2018 11 19

Generalized Ordinal Sum of Posets

bull Given A sube [n] and B sube [m] let

R sube Atimes B

be a relation such that Im(R) = B

bull The R-sum of posets P = ([n] leP) and Q = ([m] leQ) is the posetP oplusR Q over [n +m] determined as follows i lePoplusRQ j if and only if

i j le n and i leP j

orn lt i j and (i minus n) leQ (j minus n)

ori le n lt j and iR (j minus n)

Luciano Panek (UNIOESTE) LAWCI 2018 11 19

Generalized Ordinal Sum of Posets

Example

If P = ([3]leP) is the usual chain order

1 ltP 2 ltP 3

and Q = ([2]leQ) is the antichain order

1

2

3

21

Luciano Panek (UNIOESTE) LAWCI 2018 12 19

Generalized Ordinal Sum of Posets

Example

If P = ([3]leP) is the usual chain order

1 ltP 2 ltP 3

and Q = ([2]leQ) is the antichain order If R = [3]times [2]

1

2

3

21

Luciano Panek (UNIOESTE) LAWCI 2018 13 19

Generalized Ordinal Sum of Posets

Example

Let P = ([3]leP) be the usual chain order

1 ltP 2 ltP 3

and Q = ([2]leQ) be the antichain order If R = [3]times [2] then theR-sum is the Y order

1

2

3

5 (5-3)(4-3) 4

Luciano Panek (UNIOESTE) LAWCI 2018 14 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111

RdPoplusRQ(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Considering the binary codes C1 = 000 111 C2 = 00 10 andC3 = 00 01 10 11 = F2

2 we have that

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus F22 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 16 19

Generalized Ordinal Sum of Posets

Example - to be continued

Considering the binary codes C1 = 000 111 C2 = 00 10 andC3 = 00 01 10 11 = F2

2 we have that

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus F22 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 17 19

Generalized Ordinal Sum of Posets

Theorem

Let P = ([n] leP) and Q = ([m] leQ) be posets C1 oplus C2 sube Fnq oplus Fm

q be acode where C1 is a P-perfect code RPoplusRQ(C1 oplus C2) = RP (C1) and|BP(0RP(C1))| = |BPoplusRQ(0RP(C1))| The following items areequivalent

(i) C2 ≃ Fmq

(ii) C1 oplus C2 is P oplusR Q-perfect and for each minimal element j isin Q thevector x (j) = ej +

983123iisin[n]iRj ei has packing radius

RPoplusRQ (x (j)) ge RP (C1)

Corollary

If C1 is P-perfect then C1 oplus C2 is P oplus Q-perfect withRPoplusQ(C1 oplus C2) = RP (C1) for every poset Q = ([m] leQ) if and only ifC2 = Fm

q

Luciano Panek (UNIOESTE) LAWCI 2018 18 19

Generalized Ordinal Sum of Posets

Theorem

Let P = ([n] leP) and Q = ([m] leQ) be posets C1 oplus C2 sube Fnq oplus Fm

q be acode where C1 is a P-perfect code RPoplusRQ(C1 oplus C2) = RP (C1) and|BP(0RP(C1))| = |BPoplusRQ(0RP(C1))| The following items areequivalent

(i) C2 ≃ Fmq

(ii) C1 oplus C2 is P oplusR Q-perfect and for each minimal element j isin Q thevector x (j) = ej +

983123iisin[n]iRj ei has packing radius

RPoplusRQ (x (j)) ge RP (C1)

Corollary

If C1 is P-perfect then C1 oplus C2 is P oplus Q-perfect withRPoplusQ(C1 oplus C2) = RP (C1) for every poset Q = ([m] leQ) if and only ifC2 = Fm

q

Luciano Panek (UNIOESTE) LAWCI 2018 18 19

References

J Ahn H K Kim J S Kim and M Kim Classification of perfectlinear codes with crown poset structure Discrete Mathematics 268(2003) 21-30

R Brualdi J S Graves and M Lawrence Codes with a poset metric Discrete Mathematics 147 (1995) 57-72

J Y Hyun and H K Kim The poset structures admitting theextended binary Hamming code to be a perfect code DiscreteMathematics 288 (2004) 37-47

J G Lee Perfect codes on some ordered sets Bulletin of the KoreanMathematical Society 43(2) (2006) 293-297

R G L DrsquoOliveira and M Firer The packing radius of a code andpartitioning problems the case for poset metrics on finite vectorspaces Discrete Mathematics 338 (2015) 2143-2167

Luciano Panek (UNIOESTE) LAWCI 2018 19 19

Basic Definitions Posets Poset Metrics and Poset Codes

bull [n] is the finite set 1 2 n called n-set

bull P = ([n]leP) is a partial order (or poset) on [n]

bull I sube [n] is an ideal of P if whenever b isin I and a leP b then a isin I

bull 〈X 〉 is the ideal generated by X sube [n] the smallest ideal containing X

Luciano Panek (UNIOESTE) LAWCI 2018 2 19

Basic Definitions Posets Poset Metrics and Poset Codes

bull [n] is the finite set 1 2 n called n-set

bull P = ([n]leP) is a partial order (or poset) on [n]

bull I sube [n] is an ideal of P if whenever b isin I and a leP b then a isin I

bull 〈X 〉 is the ideal generated by X sube [n] the smallest ideal containing X

Luciano Panek (UNIOESTE) LAWCI 2018 2 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

The Y order P = ([5]leP)

1

2

3

54

Luciano Panek (UNIOESTE) LAWCI 2018 3 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

X = 2 4

1

2

3

54

Luciano Panek (UNIOESTE) LAWCI 2018 4 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

〈X 〉 = 1 2 3 4

1

2

3

54

Luciano Panek (UNIOESTE) LAWCI 2018 5 19

Basic Definitions Codes Posets Poset Metrics andPoset Codes

bull Given u = (u1 un) isin Fnq the support of u is the set

supp(u) = i isin [n] ui ∕= 0

bull The P-distance of u and v is the cardinality

dP(u v) = |〈supp(u minus v)〉|

bull BP(u r) is the P-sphere with center u and radius r ge 0

BP(u r) = v isin Fnq dP(u v) le r

Luciano Panek (UNIOESTE) LAWCI 2018 6 19

Basic Definitions Codes Posets Poset Metrics andPoset Codes

bull Given u = (u1 un) isin Fnq the support of u is the set

supp(u) = i isin [n] ui ∕= 0

bull The P-distance of u and v is the cardinality

dP(u v) = |〈supp(u minus v)〉|

bull BP(u r) is the P-sphere with center u and radius r ge 0

BP(u r) = v isin Fnq dP(u v) le r

Luciano Panek (UNIOESTE) LAWCI 2018 6 19

Basic Definitions Codes Posets Poset Metrics andPoset Codes

bull Given u = (u1 un) isin Fnq the support of u is the set

supp(u) = i isin [n] ui ∕= 0

bull The P-distance of u and v is the cardinality

dP(u v) = |〈supp(u minus v)〉|

bull BP(u r) is the P-sphere with center u and radius r ge 0

BP(u r) = v isin Fnq dP(u v) le r

Luciano Panek (UNIOESTE) LAWCI 2018 6 19

Basic Definitions Codes Posets Poset Metrics andPoset Codes

bull Given u = (u1 un) isin Fnq the support of u is the set

supp(u) = i isin [n] ui ∕= 0

bull The P-distance of u and v is the cardinality

dP(u v) = |〈supp(u minus v)〉|

bull BP(u r) is the P-sphere with center u and radius r ge 0

BP(u r) = v isin Fnq dP(u v) le r

Luciano Panek (UNIOESTE) LAWCI 2018 6 19

Basic Definitions Codes Posets Poset Metrics andPoset Codes

Let P = ([5]leP) be the Y order If u = 11100 and v = 10110 we havethat u minus v = 01010 and so supp(u minus v) = 2 4

1

2

3

54

Luciano Panek (UNIOESTE) LAWCI 2018 7 19

Basic Definitions Codes Posets Poset Metrics andPoset Codes

Let P = ([5]leP) be the Y order If u = 11100 and v = 10110 we havethat u minus v = 01010 and so supp(u minus v) = 2 4 Therefore dP(u v) = 4

1

2

3

54

Luciano Panek (UNIOESTE) LAWCI 2018 8 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

bull A poset code is a linear subspace C of the metric space (Fnq dP)

bull dP(C ) is the minimum distance of a poset code C

dP(C ) = mindP(c c prime) c c prime isin C c ∕= c prime

bull RP(C ) is the packing radius of a poset code C

RP(C ) = maxr BP(c r) cap BP(cprime r) = empty c ∕= c prime isin C

bull C sube Fnq is a P-perfect code if

983134

cisinCBP(c RP(C )) = Fn

q

Luciano Panek (UNIOESTE) LAWCI 2018 9 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

bull A poset code is a linear subspace C of the metric space (Fnq dP)

bull dP(C ) is the minimum distance of a poset code C

dP(C ) = mindP(c c prime) c c prime isin C c ∕= c prime

bull RP(C ) is the packing radius of a poset code C

RP(C ) = maxr BP(c r) cap BP(cprime r) = empty c ∕= c prime isin C

bull C sube Fnq is a P-perfect code if

983134

cisinCBP(c RP(C )) = Fn

q

Luciano Panek (UNIOESTE) LAWCI 2018 9 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

bull A poset code is a linear subspace C of the metric space (Fnq dP)

bull dP(C ) is the minimum distance of a poset code C

dP(C ) = mindP(c c prime) c c prime isin C c ∕= c prime

bull RP(C ) is the packing radius of a poset code C

RP(C ) = maxr BP(c r) cap BP(cprime r) = empty c ∕= c prime isin C

bull C sube Fnq is a P-perfect code if

983134

cisinCBP(c RP(C )) = Fn

q

Luciano Panek (UNIOESTE) LAWCI 2018 9 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

bull A poset code is a linear subspace C of the metric space (Fnq dP)

bull dP(C ) is the minimum distance of a poset code C

dP(C ) = mindP(c c prime) c c prime isin C c ∕= c prime

bull RP(C ) is the packing radius of a poset code C

RP(C ) = maxr BP(c r) cap BP(cprime r) = empty c ∕= c prime isin C

bull C sube Fnq is a P-perfect code if

983134

cisinCBP(c RP(C )) = Fn

q

Luciano Panek (UNIOESTE) LAWCI 2018 9 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

bull A poset code is a linear subspace C of the metric space (Fnq dP)

bull dP(C ) is the minimum distance of a poset code C

dP(C ) = mindP(c c prime) c c prime isin C c ∕= c prime

bull RP(C ) is the packing radius of a poset code C

RP(C ) = maxr BP(c r) cap BP(cprime r) = empty c ∕= c prime isin C

bull C sube Fnq is a P-perfect code if

983134

cisinCBP(c RP(C )) = Fn

q

Luciano Panek (UNIOESTE) LAWCI 2018 9 19

Examples of P-Perfect Codes

C = 000 111 sube F32

H anti-chain orderdH(u v) = |i ui ∕= vi|

Hamming distance

RdH (C ) = lfloordH(C)minus12 rfloor = 1

P usual total orderdP(u v) = maxi ui ∕= vi

NRT distanceRdP (C ) = dP(C )minus 1 = 2

Luciano Panek (UNIOESTE) LAWCI 2018 10 19

Examples of P-Perfect Codes

C = 000 111 sube F32

H anti-chain orderdH(u v) = |i ui ∕= vi|

Hamming distance

RdH (C ) = lfloordH(C)minus12 rfloor = 1

P usual total orderdP(u v) = maxi ui ∕= vi

NRT distanceRdP (C ) = dP(C )minus 1 = 2

Luciano Panek (UNIOESTE) LAWCI 2018 10 19

Examples of P-Perfect Codes

C = 000 111 sube F32

H anti-chain orderdH(u v) = |i ui ∕= vi|

Hamming distance

RdH (C ) = lfloordH(C)minus12 rfloor = 1

P usual total orderdP(u v) = maxi ui ∕= vi

NRT distanceRdP (C ) = dP(C )minus 1 = 2

Luciano Panek (UNIOESTE) LAWCI 2018 10 19

Examples of P-Perfect Codes

C = 000 111 sube F32

H anti-chain orderdH(u v) = |i ui ∕= vi|

Hamming distance

RdH (C ) = lfloordH(C)minus12 rfloor = 1

P usual total orderdP(u v) = maxi ui ∕= vi

NRT distanceRdP (C ) = dP(C )minus 1 = 2

Luciano Panek (UNIOESTE) LAWCI 2018 10 19

Generalized Ordinal Sum of Posets

bull Given A sube [n] and B sube [m] let

R sube Atimes B

be a relation such that Im(R) = B

bull The R-sum of posets P = ([n] leP) and Q = ([m] leQ) is the posetP oplusR Q over [n +m] determined as follows i lePoplusRQ j if and only if

i j le n and i leP j

orn lt i j and (i minus n) leQ (j minus n)

ori le n lt j and iR (j minus n)

Luciano Panek (UNIOESTE) LAWCI 2018 11 19

Generalized Ordinal Sum of Posets

bull Given A sube [n] and B sube [m] let

R sube Atimes B

be a relation such that Im(R) = B

bull The R-sum of posets P = ([n] leP) and Q = ([m] leQ) is the posetP oplusR Q over [n +m] determined as follows i lePoplusRQ j if and only if

i j le n and i leP j

orn lt i j and (i minus n) leQ (j minus n)

ori le n lt j and iR (j minus n)

Luciano Panek (UNIOESTE) LAWCI 2018 11 19

Generalized Ordinal Sum of Posets

bull Given A sube [n] and B sube [m] let

R sube Atimes B

be a relation such that Im(R) = B

bull The R-sum of posets P = ([n] leP) and Q = ([m] leQ) is the posetP oplusR Q over [n +m] determined as follows

i lePoplusRQ j if and only if

i j le n and i leP j

orn lt i j and (i minus n) leQ (j minus n)

ori le n lt j and iR (j minus n)

Luciano Panek (UNIOESTE) LAWCI 2018 11 19

Generalized Ordinal Sum of Posets

bull Given A sube [n] and B sube [m] let

R sube Atimes B

be a relation such that Im(R) = B

bull The R-sum of posets P = ([n] leP) and Q = ([m] leQ) is the posetP oplusR Q over [n +m] determined as follows i lePoplusRQ j if and only if

i j le n and i leP j

orn lt i j and (i minus n) leQ (j minus n)

ori le n lt j and iR (j minus n)

Luciano Panek (UNIOESTE) LAWCI 2018 11 19

Generalized Ordinal Sum of Posets

Example

If P = ([3]leP) is the usual chain order

1 ltP 2 ltP 3

and Q = ([2]leQ) is the antichain order

1

2

3

21

Luciano Panek (UNIOESTE) LAWCI 2018 12 19

Generalized Ordinal Sum of Posets

Example

If P = ([3]leP) is the usual chain order

1 ltP 2 ltP 3

and Q = ([2]leQ) is the antichain order If R = [3]times [2]

1

2

3

21

Luciano Panek (UNIOESTE) LAWCI 2018 13 19

Generalized Ordinal Sum of Posets

Example

Let P = ([3]leP) be the usual chain order

1 ltP 2 ltP 3

and Q = ([2]leQ) be the antichain order If R = [3]times [2] then theR-sum is the Y order

1

2

3

5 (5-3)(4-3) 4

Luciano Panek (UNIOESTE) LAWCI 2018 14 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111

RdPoplusRQ(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Considering the binary codes C1 = 000 111 C2 = 00 10 andC3 = 00 01 10 11 = F2

2 we have that

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus F22 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 16 19

Generalized Ordinal Sum of Posets

Example - to be continued

Considering the binary codes C1 = 000 111 C2 = 00 10 andC3 = 00 01 10 11 = F2

2 we have that

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus F22 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 17 19

Generalized Ordinal Sum of Posets

Theorem

Let P = ([n] leP) and Q = ([m] leQ) be posets C1 oplus C2 sube Fnq oplus Fm

q be acode where C1 is a P-perfect code RPoplusRQ(C1 oplus C2) = RP (C1) and|BP(0RP(C1))| = |BPoplusRQ(0RP(C1))| The following items areequivalent

(i) C2 ≃ Fmq

(ii) C1 oplus C2 is P oplusR Q-perfect and for each minimal element j isin Q thevector x (j) = ej +

983123iisin[n]iRj ei has packing radius

RPoplusRQ (x (j)) ge RP (C1)

Corollary

If C1 is P-perfect then C1 oplus C2 is P oplus Q-perfect withRPoplusQ(C1 oplus C2) = RP (C1) for every poset Q = ([m] leQ) if and only ifC2 = Fm

q

Luciano Panek (UNIOESTE) LAWCI 2018 18 19

Generalized Ordinal Sum of Posets

Theorem

Let P = ([n] leP) and Q = ([m] leQ) be posets C1 oplus C2 sube Fnq oplus Fm

q be acode where C1 is a P-perfect code RPoplusRQ(C1 oplus C2) = RP (C1) and|BP(0RP(C1))| = |BPoplusRQ(0RP(C1))| The following items areequivalent

(i) C2 ≃ Fmq

(ii) C1 oplus C2 is P oplusR Q-perfect and for each minimal element j isin Q thevector x (j) = ej +

983123iisin[n]iRj ei has packing radius

RPoplusRQ (x (j)) ge RP (C1)

Corollary

If C1 is P-perfect then C1 oplus C2 is P oplus Q-perfect withRPoplusQ(C1 oplus C2) = RP (C1) for every poset Q = ([m] leQ) if and only ifC2 = Fm

q

Luciano Panek (UNIOESTE) LAWCI 2018 18 19

References

J Ahn H K Kim J S Kim and M Kim Classification of perfectlinear codes with crown poset structure Discrete Mathematics 268(2003) 21-30

R Brualdi J S Graves and M Lawrence Codes with a poset metric Discrete Mathematics 147 (1995) 57-72

J Y Hyun and H K Kim The poset structures admitting theextended binary Hamming code to be a perfect code DiscreteMathematics 288 (2004) 37-47

J G Lee Perfect codes on some ordered sets Bulletin of the KoreanMathematical Society 43(2) (2006) 293-297

R G L DrsquoOliveira and M Firer The packing radius of a code andpartitioning problems the case for poset metrics on finite vectorspaces Discrete Mathematics 338 (2015) 2143-2167

Luciano Panek (UNIOESTE) LAWCI 2018 19 19

Basic Definitions Posets Poset Metrics and Poset Codes

bull [n] is the finite set 1 2 n called n-set

bull P = ([n]leP) is a partial order (or poset) on [n]

bull I sube [n] is an ideal of P if whenever b isin I and a leP b then a isin I

bull 〈X 〉 is the ideal generated by X sube [n] the smallest ideal containing X

Luciano Panek (UNIOESTE) LAWCI 2018 2 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

The Y order P = ([5]leP)

1

2

3

54

Luciano Panek (UNIOESTE) LAWCI 2018 3 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

X = 2 4

1

2

3

54

Luciano Panek (UNIOESTE) LAWCI 2018 4 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

〈X 〉 = 1 2 3 4

1

2

3

54

Luciano Panek (UNIOESTE) LAWCI 2018 5 19

Basic Definitions Codes Posets Poset Metrics andPoset Codes

bull Given u = (u1 un) isin Fnq the support of u is the set

supp(u) = i isin [n] ui ∕= 0

bull The P-distance of u and v is the cardinality

dP(u v) = |〈supp(u minus v)〉|

bull BP(u r) is the P-sphere with center u and radius r ge 0

BP(u r) = v isin Fnq dP(u v) le r

Luciano Panek (UNIOESTE) LAWCI 2018 6 19

Basic Definitions Codes Posets Poset Metrics andPoset Codes

bull Given u = (u1 un) isin Fnq the support of u is the set

supp(u) = i isin [n] ui ∕= 0

bull The P-distance of u and v is the cardinality

dP(u v) = |〈supp(u minus v)〉|

bull BP(u r) is the P-sphere with center u and radius r ge 0

BP(u r) = v isin Fnq dP(u v) le r

Luciano Panek (UNIOESTE) LAWCI 2018 6 19

Basic Definitions Codes Posets Poset Metrics andPoset Codes

bull Given u = (u1 un) isin Fnq the support of u is the set

supp(u) = i isin [n] ui ∕= 0

bull The P-distance of u and v is the cardinality

dP(u v) = |〈supp(u minus v)〉|

bull BP(u r) is the P-sphere with center u and radius r ge 0

BP(u r) = v isin Fnq dP(u v) le r

Luciano Panek (UNIOESTE) LAWCI 2018 6 19

Basic Definitions Codes Posets Poset Metrics andPoset Codes

bull Given u = (u1 un) isin Fnq the support of u is the set

supp(u) = i isin [n] ui ∕= 0

bull The P-distance of u and v is the cardinality

dP(u v) = |〈supp(u minus v)〉|

bull BP(u r) is the P-sphere with center u and radius r ge 0

BP(u r) = v isin Fnq dP(u v) le r

Luciano Panek (UNIOESTE) LAWCI 2018 6 19

Basic Definitions Codes Posets Poset Metrics andPoset Codes

Let P = ([5]leP) be the Y order If u = 11100 and v = 10110 we havethat u minus v = 01010 and so supp(u minus v) = 2 4

1

2

3

54

Luciano Panek (UNIOESTE) LAWCI 2018 7 19

Basic Definitions Codes Posets Poset Metrics andPoset Codes

Let P = ([5]leP) be the Y order If u = 11100 and v = 10110 we havethat u minus v = 01010 and so supp(u minus v) = 2 4 Therefore dP(u v) = 4

1

2

3

54

Luciano Panek (UNIOESTE) LAWCI 2018 8 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

bull A poset code is a linear subspace C of the metric space (Fnq dP)

bull dP(C ) is the minimum distance of a poset code C

dP(C ) = mindP(c c prime) c c prime isin C c ∕= c prime

bull RP(C ) is the packing radius of a poset code C

RP(C ) = maxr BP(c r) cap BP(cprime r) = empty c ∕= c prime isin C

bull C sube Fnq is a P-perfect code if

983134

cisinCBP(c RP(C )) = Fn

q

Luciano Panek (UNIOESTE) LAWCI 2018 9 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

bull A poset code is a linear subspace C of the metric space (Fnq dP)

bull dP(C ) is the minimum distance of a poset code C

dP(C ) = mindP(c c prime) c c prime isin C c ∕= c prime

bull RP(C ) is the packing radius of a poset code C

RP(C ) = maxr BP(c r) cap BP(cprime r) = empty c ∕= c prime isin C

bull C sube Fnq is a P-perfect code if

983134

cisinCBP(c RP(C )) = Fn

q

Luciano Panek (UNIOESTE) LAWCI 2018 9 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

bull A poset code is a linear subspace C of the metric space (Fnq dP)

bull dP(C ) is the minimum distance of a poset code C

dP(C ) = mindP(c c prime) c c prime isin C c ∕= c prime

bull RP(C ) is the packing radius of a poset code C

RP(C ) = maxr BP(c r) cap BP(cprime r) = empty c ∕= c prime isin C

bull C sube Fnq is a P-perfect code if

983134

cisinCBP(c RP(C )) = Fn

q

Luciano Panek (UNIOESTE) LAWCI 2018 9 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

bull A poset code is a linear subspace C of the metric space (Fnq dP)

bull dP(C ) is the minimum distance of a poset code C

dP(C ) = mindP(c c prime) c c prime isin C c ∕= c prime

bull RP(C ) is the packing radius of a poset code C

RP(C ) = maxr BP(c r) cap BP(cprime r) = empty c ∕= c prime isin C

bull C sube Fnq is a P-perfect code if

983134

cisinCBP(c RP(C )) = Fn

q

Luciano Panek (UNIOESTE) LAWCI 2018 9 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

bull A poset code is a linear subspace C of the metric space (Fnq dP)

bull dP(C ) is the minimum distance of a poset code C

dP(C ) = mindP(c c prime) c c prime isin C c ∕= c prime

bull RP(C ) is the packing radius of a poset code C

RP(C ) = maxr BP(c r) cap BP(cprime r) = empty c ∕= c prime isin C

bull C sube Fnq is a P-perfect code if

983134

cisinCBP(c RP(C )) = Fn

q

Luciano Panek (UNIOESTE) LAWCI 2018 9 19

Examples of P-Perfect Codes

C = 000 111 sube F32

H anti-chain orderdH(u v) = |i ui ∕= vi|

Hamming distance

RdH (C ) = lfloordH(C)minus12 rfloor = 1

P usual total orderdP(u v) = maxi ui ∕= vi

NRT distanceRdP (C ) = dP(C )minus 1 = 2

Luciano Panek (UNIOESTE) LAWCI 2018 10 19

Examples of P-Perfect Codes

C = 000 111 sube F32

H anti-chain orderdH(u v) = |i ui ∕= vi|

Hamming distance

RdH (C ) = lfloordH(C)minus12 rfloor = 1

P usual total orderdP(u v) = maxi ui ∕= vi

NRT distanceRdP (C ) = dP(C )minus 1 = 2

Luciano Panek (UNIOESTE) LAWCI 2018 10 19

Examples of P-Perfect Codes

C = 000 111 sube F32

H anti-chain orderdH(u v) = |i ui ∕= vi|

Hamming distance

RdH (C ) = lfloordH(C)minus12 rfloor = 1

P usual total orderdP(u v) = maxi ui ∕= vi

NRT distanceRdP (C ) = dP(C )minus 1 = 2

Luciano Panek (UNIOESTE) LAWCI 2018 10 19

Examples of P-Perfect Codes

C = 000 111 sube F32

H anti-chain orderdH(u v) = |i ui ∕= vi|

Hamming distance

RdH (C ) = lfloordH(C)minus12 rfloor = 1

P usual total orderdP(u v) = maxi ui ∕= vi

NRT distanceRdP (C ) = dP(C )minus 1 = 2

Luciano Panek (UNIOESTE) LAWCI 2018 10 19

Generalized Ordinal Sum of Posets

bull Given A sube [n] and B sube [m] let

R sube Atimes B

be a relation such that Im(R) = B

bull The R-sum of posets P = ([n] leP) and Q = ([m] leQ) is the posetP oplusR Q over [n +m] determined as follows i lePoplusRQ j if and only if

i j le n and i leP j

orn lt i j and (i minus n) leQ (j minus n)

ori le n lt j and iR (j minus n)

Luciano Panek (UNIOESTE) LAWCI 2018 11 19

Generalized Ordinal Sum of Posets

bull Given A sube [n] and B sube [m] let

R sube Atimes B

be a relation such that Im(R) = B

bull The R-sum of posets P = ([n] leP) and Q = ([m] leQ) is the posetP oplusR Q over [n +m] determined as follows i lePoplusRQ j if and only if

i j le n and i leP j

orn lt i j and (i minus n) leQ (j minus n)

ori le n lt j and iR (j minus n)

Luciano Panek (UNIOESTE) LAWCI 2018 11 19

Generalized Ordinal Sum of Posets

bull Given A sube [n] and B sube [m] let

R sube Atimes B

be a relation such that Im(R) = B

bull The R-sum of posets P = ([n] leP) and Q = ([m] leQ) is the posetP oplusR Q over [n +m] determined as follows

i lePoplusRQ j if and only if

i j le n and i leP j

orn lt i j and (i minus n) leQ (j minus n)

ori le n lt j and iR (j minus n)

Luciano Panek (UNIOESTE) LAWCI 2018 11 19

Generalized Ordinal Sum of Posets

bull Given A sube [n] and B sube [m] let

R sube Atimes B

be a relation such that Im(R) = B

bull The R-sum of posets P = ([n] leP) and Q = ([m] leQ) is the posetP oplusR Q over [n +m] determined as follows i lePoplusRQ j if and only if

i j le n and i leP j

orn lt i j and (i minus n) leQ (j minus n)

ori le n lt j and iR (j minus n)

Luciano Panek (UNIOESTE) LAWCI 2018 11 19

Generalized Ordinal Sum of Posets

Example

If P = ([3]leP) is the usual chain order

1 ltP 2 ltP 3

and Q = ([2]leQ) is the antichain order

1

2

3

21

Luciano Panek (UNIOESTE) LAWCI 2018 12 19

Generalized Ordinal Sum of Posets

Example

If P = ([3]leP) is the usual chain order

1 ltP 2 ltP 3

and Q = ([2]leQ) is the antichain order If R = [3]times [2]

1

2

3

21

Luciano Panek (UNIOESTE) LAWCI 2018 13 19

Generalized Ordinal Sum of Posets

Example

Let P = ([3]leP) be the usual chain order

1 ltP 2 ltP 3

and Q = ([2]leQ) be the antichain order If R = [3]times [2] then theR-sum is the Y order

1

2

3

5 (5-3)(4-3) 4

Luciano Panek (UNIOESTE) LAWCI 2018 14 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111

RdPoplusRQ(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Considering the binary codes C1 = 000 111 C2 = 00 10 andC3 = 00 01 10 11 = F2

2 we have that

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus F22 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 16 19

Generalized Ordinal Sum of Posets

Example - to be continued

Considering the binary codes C1 = 000 111 C2 = 00 10 andC3 = 00 01 10 11 = F2

2 we have that

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus F22 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 17 19

Generalized Ordinal Sum of Posets

Theorem

Let P = ([n] leP) and Q = ([m] leQ) be posets C1 oplus C2 sube Fnq oplus Fm

q be acode where C1 is a P-perfect code RPoplusRQ(C1 oplus C2) = RP (C1) and|BP(0RP(C1))| = |BPoplusRQ(0RP(C1))| The following items areequivalent

(i) C2 ≃ Fmq

(ii) C1 oplus C2 is P oplusR Q-perfect and for each minimal element j isin Q thevector x (j) = ej +

983123iisin[n]iRj ei has packing radius

RPoplusRQ (x (j)) ge RP (C1)

Corollary

If C1 is P-perfect then C1 oplus C2 is P oplus Q-perfect withRPoplusQ(C1 oplus C2) = RP (C1) for every poset Q = ([m] leQ) if and only ifC2 = Fm

q

Luciano Panek (UNIOESTE) LAWCI 2018 18 19

Generalized Ordinal Sum of Posets

Theorem

Let P = ([n] leP) and Q = ([m] leQ) be posets C1 oplus C2 sube Fnq oplus Fm

q be acode where C1 is a P-perfect code RPoplusRQ(C1 oplus C2) = RP (C1) and|BP(0RP(C1))| = |BPoplusRQ(0RP(C1))| The following items areequivalent

(i) C2 ≃ Fmq

(ii) C1 oplus C2 is P oplusR Q-perfect and for each minimal element j isin Q thevector x (j) = ej +

983123iisin[n]iRj ei has packing radius

RPoplusRQ (x (j)) ge RP (C1)

Corollary

If C1 is P-perfect then C1 oplus C2 is P oplus Q-perfect withRPoplusQ(C1 oplus C2) = RP (C1) for every poset Q = ([m] leQ) if and only ifC2 = Fm

q

Luciano Panek (UNIOESTE) LAWCI 2018 18 19

References

J Ahn H K Kim J S Kim and M Kim Classification of perfectlinear codes with crown poset structure Discrete Mathematics 268(2003) 21-30

R Brualdi J S Graves and M Lawrence Codes with a poset metric Discrete Mathematics 147 (1995) 57-72

J Y Hyun and H K Kim The poset structures admitting theextended binary Hamming code to be a perfect code DiscreteMathematics 288 (2004) 37-47

J G Lee Perfect codes on some ordered sets Bulletin of the KoreanMathematical Society 43(2) (2006) 293-297

R G L DrsquoOliveira and M Firer The packing radius of a code andpartitioning problems the case for poset metrics on finite vectorspaces Discrete Mathematics 338 (2015) 2143-2167

Luciano Panek (UNIOESTE) LAWCI 2018 19 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

The Y order P = ([5]leP)

1

2

3

54

Luciano Panek (UNIOESTE) LAWCI 2018 3 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

X = 2 4

1

2

3

54

Luciano Panek (UNIOESTE) LAWCI 2018 4 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

〈X 〉 = 1 2 3 4

1

2

3

54

Luciano Panek (UNIOESTE) LAWCI 2018 5 19

Basic Definitions Codes Posets Poset Metrics andPoset Codes

bull Given u = (u1 un) isin Fnq the support of u is the set

supp(u) = i isin [n] ui ∕= 0

bull The P-distance of u and v is the cardinality

dP(u v) = |〈supp(u minus v)〉|

bull BP(u r) is the P-sphere with center u and radius r ge 0

BP(u r) = v isin Fnq dP(u v) le r

Luciano Panek (UNIOESTE) LAWCI 2018 6 19

Basic Definitions Codes Posets Poset Metrics andPoset Codes

bull Given u = (u1 un) isin Fnq the support of u is the set

supp(u) = i isin [n] ui ∕= 0

bull The P-distance of u and v is the cardinality

dP(u v) = |〈supp(u minus v)〉|

bull BP(u r) is the P-sphere with center u and radius r ge 0

BP(u r) = v isin Fnq dP(u v) le r

Luciano Panek (UNIOESTE) LAWCI 2018 6 19

Basic Definitions Codes Posets Poset Metrics andPoset Codes

bull Given u = (u1 un) isin Fnq the support of u is the set

supp(u) = i isin [n] ui ∕= 0

bull The P-distance of u and v is the cardinality

dP(u v) = |〈supp(u minus v)〉|

bull BP(u r) is the P-sphere with center u and radius r ge 0

BP(u r) = v isin Fnq dP(u v) le r

Luciano Panek (UNIOESTE) LAWCI 2018 6 19

Basic Definitions Codes Posets Poset Metrics andPoset Codes

bull Given u = (u1 un) isin Fnq the support of u is the set

supp(u) = i isin [n] ui ∕= 0

bull The P-distance of u and v is the cardinality

dP(u v) = |〈supp(u minus v)〉|

bull BP(u r) is the P-sphere with center u and radius r ge 0

BP(u r) = v isin Fnq dP(u v) le r

Luciano Panek (UNIOESTE) LAWCI 2018 6 19

Basic Definitions Codes Posets Poset Metrics andPoset Codes

Let P = ([5]leP) be the Y order If u = 11100 and v = 10110 we havethat u minus v = 01010 and so supp(u minus v) = 2 4

1

2

3

54

Luciano Panek (UNIOESTE) LAWCI 2018 7 19

Basic Definitions Codes Posets Poset Metrics andPoset Codes

Let P = ([5]leP) be the Y order If u = 11100 and v = 10110 we havethat u minus v = 01010 and so supp(u minus v) = 2 4 Therefore dP(u v) = 4

1

2

3

54

Luciano Panek (UNIOESTE) LAWCI 2018 8 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

bull A poset code is a linear subspace C of the metric space (Fnq dP)

bull dP(C ) is the minimum distance of a poset code C

dP(C ) = mindP(c c prime) c c prime isin C c ∕= c prime

bull RP(C ) is the packing radius of a poset code C

RP(C ) = maxr BP(c r) cap BP(cprime r) = empty c ∕= c prime isin C

bull C sube Fnq is a P-perfect code if

983134

cisinCBP(c RP(C )) = Fn

q

Luciano Panek (UNIOESTE) LAWCI 2018 9 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

bull A poset code is a linear subspace C of the metric space (Fnq dP)

bull dP(C ) is the minimum distance of a poset code C

dP(C ) = mindP(c c prime) c c prime isin C c ∕= c prime

bull RP(C ) is the packing radius of a poset code C

RP(C ) = maxr BP(c r) cap BP(cprime r) = empty c ∕= c prime isin C

bull C sube Fnq is a P-perfect code if

983134

cisinCBP(c RP(C )) = Fn

q

Luciano Panek (UNIOESTE) LAWCI 2018 9 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

bull A poset code is a linear subspace C of the metric space (Fnq dP)

bull dP(C ) is the minimum distance of a poset code C

dP(C ) = mindP(c c prime) c c prime isin C c ∕= c prime

bull RP(C ) is the packing radius of a poset code C

RP(C ) = maxr BP(c r) cap BP(cprime r) = empty c ∕= c prime isin C

bull C sube Fnq is a P-perfect code if

983134

cisinCBP(c RP(C )) = Fn

q

Luciano Panek (UNIOESTE) LAWCI 2018 9 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

bull A poset code is a linear subspace C of the metric space (Fnq dP)

bull dP(C ) is the minimum distance of a poset code C

dP(C ) = mindP(c c prime) c c prime isin C c ∕= c prime

bull RP(C ) is the packing radius of a poset code C

RP(C ) = maxr BP(c r) cap BP(cprime r) = empty c ∕= c prime isin C

bull C sube Fnq is a P-perfect code if

983134

cisinCBP(c RP(C )) = Fn

q

Luciano Panek (UNIOESTE) LAWCI 2018 9 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

bull A poset code is a linear subspace C of the metric space (Fnq dP)

bull dP(C ) is the minimum distance of a poset code C

dP(C ) = mindP(c c prime) c c prime isin C c ∕= c prime

bull RP(C ) is the packing radius of a poset code C

RP(C ) = maxr BP(c r) cap BP(cprime r) = empty c ∕= c prime isin C

bull C sube Fnq is a P-perfect code if

983134

cisinCBP(c RP(C )) = Fn

q

Luciano Panek (UNIOESTE) LAWCI 2018 9 19

Examples of P-Perfect Codes

C = 000 111 sube F32

H anti-chain orderdH(u v) = |i ui ∕= vi|

Hamming distance

RdH (C ) = lfloordH(C)minus12 rfloor = 1

P usual total orderdP(u v) = maxi ui ∕= vi

NRT distanceRdP (C ) = dP(C )minus 1 = 2

Luciano Panek (UNIOESTE) LAWCI 2018 10 19

Examples of P-Perfect Codes

C = 000 111 sube F32

H anti-chain orderdH(u v) = |i ui ∕= vi|

Hamming distance

RdH (C ) = lfloordH(C)minus12 rfloor = 1

P usual total orderdP(u v) = maxi ui ∕= vi

NRT distanceRdP (C ) = dP(C )minus 1 = 2

Luciano Panek (UNIOESTE) LAWCI 2018 10 19

Examples of P-Perfect Codes

C = 000 111 sube F32

H anti-chain orderdH(u v) = |i ui ∕= vi|

Hamming distance

RdH (C ) = lfloordH(C)minus12 rfloor = 1

P usual total orderdP(u v) = maxi ui ∕= vi

NRT distanceRdP (C ) = dP(C )minus 1 = 2

Luciano Panek (UNIOESTE) LAWCI 2018 10 19

Examples of P-Perfect Codes

C = 000 111 sube F32

H anti-chain orderdH(u v) = |i ui ∕= vi|

Hamming distance

RdH (C ) = lfloordH(C)minus12 rfloor = 1

P usual total orderdP(u v) = maxi ui ∕= vi

NRT distanceRdP (C ) = dP(C )minus 1 = 2

Luciano Panek (UNIOESTE) LAWCI 2018 10 19

Generalized Ordinal Sum of Posets

bull Given A sube [n] and B sube [m] let

R sube Atimes B

be a relation such that Im(R) = B

bull The R-sum of posets P = ([n] leP) and Q = ([m] leQ) is the posetP oplusR Q over [n +m] determined as follows i lePoplusRQ j if and only if

i j le n and i leP j

orn lt i j and (i minus n) leQ (j minus n)

ori le n lt j and iR (j minus n)

Luciano Panek (UNIOESTE) LAWCI 2018 11 19

Generalized Ordinal Sum of Posets

bull Given A sube [n] and B sube [m] let

R sube Atimes B

be a relation such that Im(R) = B

bull The R-sum of posets P = ([n] leP) and Q = ([m] leQ) is the posetP oplusR Q over [n +m] determined as follows i lePoplusRQ j if and only if

i j le n and i leP j

orn lt i j and (i minus n) leQ (j minus n)

ori le n lt j and iR (j minus n)

Luciano Panek (UNIOESTE) LAWCI 2018 11 19

Generalized Ordinal Sum of Posets

bull Given A sube [n] and B sube [m] let

R sube Atimes B

be a relation such that Im(R) = B

bull The R-sum of posets P = ([n] leP) and Q = ([m] leQ) is the posetP oplusR Q over [n +m] determined as follows

i lePoplusRQ j if and only if

i j le n and i leP j

orn lt i j and (i minus n) leQ (j minus n)

ori le n lt j and iR (j minus n)

Luciano Panek (UNIOESTE) LAWCI 2018 11 19

Generalized Ordinal Sum of Posets

bull Given A sube [n] and B sube [m] let

R sube Atimes B

be a relation such that Im(R) = B

bull The R-sum of posets P = ([n] leP) and Q = ([m] leQ) is the posetP oplusR Q over [n +m] determined as follows i lePoplusRQ j if and only if

i j le n and i leP j

orn lt i j and (i minus n) leQ (j minus n)

ori le n lt j and iR (j minus n)

Luciano Panek (UNIOESTE) LAWCI 2018 11 19

Generalized Ordinal Sum of Posets

Example

If P = ([3]leP) is the usual chain order

1 ltP 2 ltP 3

and Q = ([2]leQ) is the antichain order

1

2

3

21

Luciano Panek (UNIOESTE) LAWCI 2018 12 19

Generalized Ordinal Sum of Posets

Example

If P = ([3]leP) is the usual chain order

1 ltP 2 ltP 3

and Q = ([2]leQ) is the antichain order If R = [3]times [2]

1

2

3

21

Luciano Panek (UNIOESTE) LAWCI 2018 13 19

Generalized Ordinal Sum of Posets

Example

Let P = ([3]leP) be the usual chain order

1 ltP 2 ltP 3

and Q = ([2]leQ) be the antichain order If R = [3]times [2] then theR-sum is the Y order

1

2

3

5 (5-3)(4-3) 4

Luciano Panek (UNIOESTE) LAWCI 2018 14 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111

RdPoplusRQ(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Considering the binary codes C1 = 000 111 C2 = 00 10 andC3 = 00 01 10 11 = F2

2 we have that

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus F22 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 16 19

Generalized Ordinal Sum of Posets

Example - to be continued

Considering the binary codes C1 = 000 111 C2 = 00 10 andC3 = 00 01 10 11 = F2

2 we have that

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus F22 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 17 19

Generalized Ordinal Sum of Posets

Theorem

Let P = ([n] leP) and Q = ([m] leQ) be posets C1 oplus C2 sube Fnq oplus Fm

q be acode where C1 is a P-perfect code RPoplusRQ(C1 oplus C2) = RP (C1) and|BP(0RP(C1))| = |BPoplusRQ(0RP(C1))| The following items areequivalent

(i) C2 ≃ Fmq

(ii) C1 oplus C2 is P oplusR Q-perfect and for each minimal element j isin Q thevector x (j) = ej +

983123iisin[n]iRj ei has packing radius

RPoplusRQ (x (j)) ge RP (C1)

Corollary

If C1 is P-perfect then C1 oplus C2 is P oplus Q-perfect withRPoplusQ(C1 oplus C2) = RP (C1) for every poset Q = ([m] leQ) if and only ifC2 = Fm

q

Luciano Panek (UNIOESTE) LAWCI 2018 18 19

Generalized Ordinal Sum of Posets

Theorem

Let P = ([n] leP) and Q = ([m] leQ) be posets C1 oplus C2 sube Fnq oplus Fm

q be acode where C1 is a P-perfect code RPoplusRQ(C1 oplus C2) = RP (C1) and|BP(0RP(C1))| = |BPoplusRQ(0RP(C1))| The following items areequivalent

(i) C2 ≃ Fmq

(ii) C1 oplus C2 is P oplusR Q-perfect and for each minimal element j isin Q thevector x (j) = ej +

983123iisin[n]iRj ei has packing radius

RPoplusRQ (x (j)) ge RP (C1)

Corollary

If C1 is P-perfect then C1 oplus C2 is P oplus Q-perfect withRPoplusQ(C1 oplus C2) = RP (C1) for every poset Q = ([m] leQ) if and only ifC2 = Fm

q

Luciano Panek (UNIOESTE) LAWCI 2018 18 19

References

J Ahn H K Kim J S Kim and M Kim Classification of perfectlinear codes with crown poset structure Discrete Mathematics 268(2003) 21-30

R Brualdi J S Graves and M Lawrence Codes with a poset metric Discrete Mathematics 147 (1995) 57-72

J Y Hyun and H K Kim The poset structures admitting theextended binary Hamming code to be a perfect code DiscreteMathematics 288 (2004) 37-47

J G Lee Perfect codes on some ordered sets Bulletin of the KoreanMathematical Society 43(2) (2006) 293-297

R G L DrsquoOliveira and M Firer The packing radius of a code andpartitioning problems the case for poset metrics on finite vectorspaces Discrete Mathematics 338 (2015) 2143-2167

Luciano Panek (UNIOESTE) LAWCI 2018 19 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

X = 2 4

1

2

3

54

Luciano Panek (UNIOESTE) LAWCI 2018 4 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

〈X 〉 = 1 2 3 4

1

2

3

54

Luciano Panek (UNIOESTE) LAWCI 2018 5 19

Basic Definitions Codes Posets Poset Metrics andPoset Codes

bull Given u = (u1 un) isin Fnq the support of u is the set

supp(u) = i isin [n] ui ∕= 0

bull The P-distance of u and v is the cardinality

dP(u v) = |〈supp(u minus v)〉|

bull BP(u r) is the P-sphere with center u and radius r ge 0

BP(u r) = v isin Fnq dP(u v) le r

Luciano Panek (UNIOESTE) LAWCI 2018 6 19

Basic Definitions Codes Posets Poset Metrics andPoset Codes

bull Given u = (u1 un) isin Fnq the support of u is the set

supp(u) = i isin [n] ui ∕= 0

bull The P-distance of u and v is the cardinality

dP(u v) = |〈supp(u minus v)〉|

bull BP(u r) is the P-sphere with center u and radius r ge 0

BP(u r) = v isin Fnq dP(u v) le r

Luciano Panek (UNIOESTE) LAWCI 2018 6 19

Basic Definitions Codes Posets Poset Metrics andPoset Codes

bull Given u = (u1 un) isin Fnq the support of u is the set

supp(u) = i isin [n] ui ∕= 0

bull The P-distance of u and v is the cardinality

dP(u v) = |〈supp(u minus v)〉|

bull BP(u r) is the P-sphere with center u and radius r ge 0

BP(u r) = v isin Fnq dP(u v) le r

Luciano Panek (UNIOESTE) LAWCI 2018 6 19

Basic Definitions Codes Posets Poset Metrics andPoset Codes

bull Given u = (u1 un) isin Fnq the support of u is the set

supp(u) = i isin [n] ui ∕= 0

bull The P-distance of u and v is the cardinality

dP(u v) = |〈supp(u minus v)〉|

bull BP(u r) is the P-sphere with center u and radius r ge 0

BP(u r) = v isin Fnq dP(u v) le r

Luciano Panek (UNIOESTE) LAWCI 2018 6 19

Basic Definitions Codes Posets Poset Metrics andPoset Codes

Let P = ([5]leP) be the Y order If u = 11100 and v = 10110 we havethat u minus v = 01010 and so supp(u minus v) = 2 4

1

2

3

54

Luciano Panek (UNIOESTE) LAWCI 2018 7 19

Basic Definitions Codes Posets Poset Metrics andPoset Codes

Let P = ([5]leP) be the Y order If u = 11100 and v = 10110 we havethat u minus v = 01010 and so supp(u minus v) = 2 4 Therefore dP(u v) = 4

1

2

3

54

Luciano Panek (UNIOESTE) LAWCI 2018 8 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

bull A poset code is a linear subspace C of the metric space (Fnq dP)

bull dP(C ) is the minimum distance of a poset code C

dP(C ) = mindP(c c prime) c c prime isin C c ∕= c prime

bull RP(C ) is the packing radius of a poset code C

RP(C ) = maxr BP(c r) cap BP(cprime r) = empty c ∕= c prime isin C

bull C sube Fnq is a P-perfect code if

983134

cisinCBP(c RP(C )) = Fn

q

Luciano Panek (UNIOESTE) LAWCI 2018 9 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

bull A poset code is a linear subspace C of the metric space (Fnq dP)

bull dP(C ) is the minimum distance of a poset code C

dP(C ) = mindP(c c prime) c c prime isin C c ∕= c prime

bull RP(C ) is the packing radius of a poset code C

RP(C ) = maxr BP(c r) cap BP(cprime r) = empty c ∕= c prime isin C

bull C sube Fnq is a P-perfect code if

983134

cisinCBP(c RP(C )) = Fn

q

Luciano Panek (UNIOESTE) LAWCI 2018 9 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

bull A poset code is a linear subspace C of the metric space (Fnq dP)

bull dP(C ) is the minimum distance of a poset code C

dP(C ) = mindP(c c prime) c c prime isin C c ∕= c prime

bull RP(C ) is the packing radius of a poset code C

RP(C ) = maxr BP(c r) cap BP(cprime r) = empty c ∕= c prime isin C

bull C sube Fnq is a P-perfect code if

983134

cisinCBP(c RP(C )) = Fn

q

Luciano Panek (UNIOESTE) LAWCI 2018 9 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

bull A poset code is a linear subspace C of the metric space (Fnq dP)

bull dP(C ) is the minimum distance of a poset code C

dP(C ) = mindP(c c prime) c c prime isin C c ∕= c prime

bull RP(C ) is the packing radius of a poset code C

RP(C ) = maxr BP(c r) cap BP(cprime r) = empty c ∕= c prime isin C

bull C sube Fnq is a P-perfect code if

983134

cisinCBP(c RP(C )) = Fn

q

Luciano Panek (UNIOESTE) LAWCI 2018 9 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

bull A poset code is a linear subspace C of the metric space (Fnq dP)

bull dP(C ) is the minimum distance of a poset code C

dP(C ) = mindP(c c prime) c c prime isin C c ∕= c prime

bull RP(C ) is the packing radius of a poset code C

RP(C ) = maxr BP(c r) cap BP(cprime r) = empty c ∕= c prime isin C

bull C sube Fnq is a P-perfect code if

983134

cisinCBP(c RP(C )) = Fn

q

Luciano Panek (UNIOESTE) LAWCI 2018 9 19

Examples of P-Perfect Codes

C = 000 111 sube F32

H anti-chain orderdH(u v) = |i ui ∕= vi|

Hamming distance

RdH (C ) = lfloordH(C)minus12 rfloor = 1

P usual total orderdP(u v) = maxi ui ∕= vi

NRT distanceRdP (C ) = dP(C )minus 1 = 2

Luciano Panek (UNIOESTE) LAWCI 2018 10 19

Examples of P-Perfect Codes

C = 000 111 sube F32

H anti-chain orderdH(u v) = |i ui ∕= vi|

Hamming distance

RdH (C ) = lfloordH(C)minus12 rfloor = 1

P usual total orderdP(u v) = maxi ui ∕= vi

NRT distanceRdP (C ) = dP(C )minus 1 = 2

Luciano Panek (UNIOESTE) LAWCI 2018 10 19

Examples of P-Perfect Codes

C = 000 111 sube F32

H anti-chain orderdH(u v) = |i ui ∕= vi|

Hamming distance

RdH (C ) = lfloordH(C)minus12 rfloor = 1

P usual total orderdP(u v) = maxi ui ∕= vi

NRT distanceRdP (C ) = dP(C )minus 1 = 2

Luciano Panek (UNIOESTE) LAWCI 2018 10 19

Examples of P-Perfect Codes

C = 000 111 sube F32

H anti-chain orderdH(u v) = |i ui ∕= vi|

Hamming distance

RdH (C ) = lfloordH(C)minus12 rfloor = 1

P usual total orderdP(u v) = maxi ui ∕= vi

NRT distanceRdP (C ) = dP(C )minus 1 = 2

Luciano Panek (UNIOESTE) LAWCI 2018 10 19

Generalized Ordinal Sum of Posets

bull Given A sube [n] and B sube [m] let

R sube Atimes B

be a relation such that Im(R) = B

bull The R-sum of posets P = ([n] leP) and Q = ([m] leQ) is the posetP oplusR Q over [n +m] determined as follows i lePoplusRQ j if and only if

i j le n and i leP j

orn lt i j and (i minus n) leQ (j minus n)

ori le n lt j and iR (j minus n)

Luciano Panek (UNIOESTE) LAWCI 2018 11 19

Generalized Ordinal Sum of Posets

bull Given A sube [n] and B sube [m] let

R sube Atimes B

be a relation such that Im(R) = B

bull The R-sum of posets P = ([n] leP) and Q = ([m] leQ) is the posetP oplusR Q over [n +m] determined as follows i lePoplusRQ j if and only if

i j le n and i leP j

orn lt i j and (i minus n) leQ (j minus n)

ori le n lt j and iR (j minus n)

Luciano Panek (UNIOESTE) LAWCI 2018 11 19

Generalized Ordinal Sum of Posets

bull Given A sube [n] and B sube [m] let

R sube Atimes B

be a relation such that Im(R) = B

bull The R-sum of posets P = ([n] leP) and Q = ([m] leQ) is the posetP oplusR Q over [n +m] determined as follows

i lePoplusRQ j if and only if

i j le n and i leP j

orn lt i j and (i minus n) leQ (j minus n)

ori le n lt j and iR (j minus n)

Luciano Panek (UNIOESTE) LAWCI 2018 11 19

Generalized Ordinal Sum of Posets

bull Given A sube [n] and B sube [m] let

R sube Atimes B

be a relation such that Im(R) = B

bull The R-sum of posets P = ([n] leP) and Q = ([m] leQ) is the posetP oplusR Q over [n +m] determined as follows i lePoplusRQ j if and only if

i j le n and i leP j

orn lt i j and (i minus n) leQ (j minus n)

ori le n lt j and iR (j minus n)

Luciano Panek (UNIOESTE) LAWCI 2018 11 19

Generalized Ordinal Sum of Posets

Example

If P = ([3]leP) is the usual chain order

1 ltP 2 ltP 3

and Q = ([2]leQ) is the antichain order

1

2

3

21

Luciano Panek (UNIOESTE) LAWCI 2018 12 19

Generalized Ordinal Sum of Posets

Example

If P = ([3]leP) is the usual chain order

1 ltP 2 ltP 3

and Q = ([2]leQ) is the antichain order If R = [3]times [2]

1

2

3

21

Luciano Panek (UNIOESTE) LAWCI 2018 13 19

Generalized Ordinal Sum of Posets

Example

Let P = ([3]leP) be the usual chain order

1 ltP 2 ltP 3

and Q = ([2]leQ) be the antichain order If R = [3]times [2] then theR-sum is the Y order

1

2

3

5 (5-3)(4-3) 4

Luciano Panek (UNIOESTE) LAWCI 2018 14 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111

RdPoplusRQ(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Considering the binary codes C1 = 000 111 C2 = 00 10 andC3 = 00 01 10 11 = F2

2 we have that

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus F22 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 16 19

Generalized Ordinal Sum of Posets

Example - to be continued

Considering the binary codes C1 = 000 111 C2 = 00 10 andC3 = 00 01 10 11 = F2

2 we have that

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus F22 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 17 19

Generalized Ordinal Sum of Posets

Theorem

Let P = ([n] leP) and Q = ([m] leQ) be posets C1 oplus C2 sube Fnq oplus Fm

q be acode where C1 is a P-perfect code RPoplusRQ(C1 oplus C2) = RP (C1) and|BP(0RP(C1))| = |BPoplusRQ(0RP(C1))| The following items areequivalent

(i) C2 ≃ Fmq

(ii) C1 oplus C2 is P oplusR Q-perfect and for each minimal element j isin Q thevector x (j) = ej +

983123iisin[n]iRj ei has packing radius

RPoplusRQ (x (j)) ge RP (C1)

Corollary

If C1 is P-perfect then C1 oplus C2 is P oplus Q-perfect withRPoplusQ(C1 oplus C2) = RP (C1) for every poset Q = ([m] leQ) if and only ifC2 = Fm

q

Luciano Panek (UNIOESTE) LAWCI 2018 18 19

Generalized Ordinal Sum of Posets

Theorem

Let P = ([n] leP) and Q = ([m] leQ) be posets C1 oplus C2 sube Fnq oplus Fm

q be acode where C1 is a P-perfect code RPoplusRQ(C1 oplus C2) = RP (C1) and|BP(0RP(C1))| = |BPoplusRQ(0RP(C1))| The following items areequivalent

(i) C2 ≃ Fmq

(ii) C1 oplus C2 is P oplusR Q-perfect and for each minimal element j isin Q thevector x (j) = ej +

983123iisin[n]iRj ei has packing radius

RPoplusRQ (x (j)) ge RP (C1)

Corollary

If C1 is P-perfect then C1 oplus C2 is P oplus Q-perfect withRPoplusQ(C1 oplus C2) = RP (C1) for every poset Q = ([m] leQ) if and only ifC2 = Fm

q

Luciano Panek (UNIOESTE) LAWCI 2018 18 19

References

J Ahn H K Kim J S Kim and M Kim Classification of perfectlinear codes with crown poset structure Discrete Mathematics 268(2003) 21-30

R Brualdi J S Graves and M Lawrence Codes with a poset metric Discrete Mathematics 147 (1995) 57-72

J Y Hyun and H K Kim The poset structures admitting theextended binary Hamming code to be a perfect code DiscreteMathematics 288 (2004) 37-47

J G Lee Perfect codes on some ordered sets Bulletin of the KoreanMathematical Society 43(2) (2006) 293-297

R G L DrsquoOliveira and M Firer The packing radius of a code andpartitioning problems the case for poset metrics on finite vectorspaces Discrete Mathematics 338 (2015) 2143-2167

Luciano Panek (UNIOESTE) LAWCI 2018 19 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

〈X 〉 = 1 2 3 4

1

2

3

54

Luciano Panek (UNIOESTE) LAWCI 2018 5 19

Basic Definitions Codes Posets Poset Metrics andPoset Codes

bull Given u = (u1 un) isin Fnq the support of u is the set

supp(u) = i isin [n] ui ∕= 0

bull The P-distance of u and v is the cardinality

dP(u v) = |〈supp(u minus v)〉|

bull BP(u r) is the P-sphere with center u and radius r ge 0

BP(u r) = v isin Fnq dP(u v) le r

Luciano Panek (UNIOESTE) LAWCI 2018 6 19

Basic Definitions Codes Posets Poset Metrics andPoset Codes

bull Given u = (u1 un) isin Fnq the support of u is the set

supp(u) = i isin [n] ui ∕= 0

bull The P-distance of u and v is the cardinality

dP(u v) = |〈supp(u minus v)〉|

bull BP(u r) is the P-sphere with center u and radius r ge 0

BP(u r) = v isin Fnq dP(u v) le r

Luciano Panek (UNIOESTE) LAWCI 2018 6 19

Basic Definitions Codes Posets Poset Metrics andPoset Codes

bull Given u = (u1 un) isin Fnq the support of u is the set

supp(u) = i isin [n] ui ∕= 0

bull The P-distance of u and v is the cardinality

dP(u v) = |〈supp(u minus v)〉|

bull BP(u r) is the P-sphere with center u and radius r ge 0

BP(u r) = v isin Fnq dP(u v) le r

Luciano Panek (UNIOESTE) LAWCI 2018 6 19

Basic Definitions Codes Posets Poset Metrics andPoset Codes

bull Given u = (u1 un) isin Fnq the support of u is the set

supp(u) = i isin [n] ui ∕= 0

bull The P-distance of u and v is the cardinality

dP(u v) = |〈supp(u minus v)〉|

bull BP(u r) is the P-sphere with center u and radius r ge 0

BP(u r) = v isin Fnq dP(u v) le r

Luciano Panek (UNIOESTE) LAWCI 2018 6 19

Basic Definitions Codes Posets Poset Metrics andPoset Codes

Let P = ([5]leP) be the Y order If u = 11100 and v = 10110 we havethat u minus v = 01010 and so supp(u minus v) = 2 4

1

2

3

54

Luciano Panek (UNIOESTE) LAWCI 2018 7 19

Basic Definitions Codes Posets Poset Metrics andPoset Codes

Let P = ([5]leP) be the Y order If u = 11100 and v = 10110 we havethat u minus v = 01010 and so supp(u minus v) = 2 4 Therefore dP(u v) = 4

1

2

3

54

Luciano Panek (UNIOESTE) LAWCI 2018 8 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

bull A poset code is a linear subspace C of the metric space (Fnq dP)

bull dP(C ) is the minimum distance of a poset code C

dP(C ) = mindP(c c prime) c c prime isin C c ∕= c prime

bull RP(C ) is the packing radius of a poset code C

RP(C ) = maxr BP(c r) cap BP(cprime r) = empty c ∕= c prime isin C

bull C sube Fnq is a P-perfect code if

983134

cisinCBP(c RP(C )) = Fn

q

Luciano Panek (UNIOESTE) LAWCI 2018 9 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

bull A poset code is a linear subspace C of the metric space (Fnq dP)

bull dP(C ) is the minimum distance of a poset code C

dP(C ) = mindP(c c prime) c c prime isin C c ∕= c prime

bull RP(C ) is the packing radius of a poset code C

RP(C ) = maxr BP(c r) cap BP(cprime r) = empty c ∕= c prime isin C

bull C sube Fnq is a P-perfect code if

983134

cisinCBP(c RP(C )) = Fn

q

Luciano Panek (UNIOESTE) LAWCI 2018 9 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

bull A poset code is a linear subspace C of the metric space (Fnq dP)

bull dP(C ) is the minimum distance of a poset code C

dP(C ) = mindP(c c prime) c c prime isin C c ∕= c prime

bull RP(C ) is the packing radius of a poset code C

RP(C ) = maxr BP(c r) cap BP(cprime r) = empty c ∕= c prime isin C

bull C sube Fnq is a P-perfect code if

983134

cisinCBP(c RP(C )) = Fn

q

Luciano Panek (UNIOESTE) LAWCI 2018 9 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

bull A poset code is a linear subspace C of the metric space (Fnq dP)

bull dP(C ) is the minimum distance of a poset code C

dP(C ) = mindP(c c prime) c c prime isin C c ∕= c prime

bull RP(C ) is the packing radius of a poset code C

RP(C ) = maxr BP(c r) cap BP(cprime r) = empty c ∕= c prime isin C

bull C sube Fnq is a P-perfect code if

983134

cisinCBP(c RP(C )) = Fn

q

Luciano Panek (UNIOESTE) LAWCI 2018 9 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

bull A poset code is a linear subspace C of the metric space (Fnq dP)

bull dP(C ) is the minimum distance of a poset code C

dP(C ) = mindP(c c prime) c c prime isin C c ∕= c prime

bull RP(C ) is the packing radius of a poset code C

RP(C ) = maxr BP(c r) cap BP(cprime r) = empty c ∕= c prime isin C

bull C sube Fnq is a P-perfect code if

983134

cisinCBP(c RP(C )) = Fn

q

Luciano Panek (UNIOESTE) LAWCI 2018 9 19

Examples of P-Perfect Codes

C = 000 111 sube F32

H anti-chain orderdH(u v) = |i ui ∕= vi|

Hamming distance

RdH (C ) = lfloordH(C)minus12 rfloor = 1

P usual total orderdP(u v) = maxi ui ∕= vi

NRT distanceRdP (C ) = dP(C )minus 1 = 2

Luciano Panek (UNIOESTE) LAWCI 2018 10 19

Examples of P-Perfect Codes

C = 000 111 sube F32

H anti-chain orderdH(u v) = |i ui ∕= vi|

Hamming distance

RdH (C ) = lfloordH(C)minus12 rfloor = 1

P usual total orderdP(u v) = maxi ui ∕= vi

NRT distanceRdP (C ) = dP(C )minus 1 = 2

Luciano Panek (UNIOESTE) LAWCI 2018 10 19

Examples of P-Perfect Codes

C = 000 111 sube F32

H anti-chain orderdH(u v) = |i ui ∕= vi|

Hamming distance

RdH (C ) = lfloordH(C)minus12 rfloor = 1

P usual total orderdP(u v) = maxi ui ∕= vi

NRT distanceRdP (C ) = dP(C )minus 1 = 2

Luciano Panek (UNIOESTE) LAWCI 2018 10 19

Examples of P-Perfect Codes

C = 000 111 sube F32

H anti-chain orderdH(u v) = |i ui ∕= vi|

Hamming distance

RdH (C ) = lfloordH(C)minus12 rfloor = 1

P usual total orderdP(u v) = maxi ui ∕= vi

NRT distanceRdP (C ) = dP(C )minus 1 = 2

Luciano Panek (UNIOESTE) LAWCI 2018 10 19

Generalized Ordinal Sum of Posets

bull Given A sube [n] and B sube [m] let

R sube Atimes B

be a relation such that Im(R) = B

bull The R-sum of posets P = ([n] leP) and Q = ([m] leQ) is the posetP oplusR Q over [n +m] determined as follows i lePoplusRQ j if and only if

i j le n and i leP j

orn lt i j and (i minus n) leQ (j minus n)

ori le n lt j and iR (j minus n)

Luciano Panek (UNIOESTE) LAWCI 2018 11 19

Generalized Ordinal Sum of Posets

bull Given A sube [n] and B sube [m] let

R sube Atimes B

be a relation such that Im(R) = B

bull The R-sum of posets P = ([n] leP) and Q = ([m] leQ) is the posetP oplusR Q over [n +m] determined as follows i lePoplusRQ j if and only if

i j le n and i leP j

orn lt i j and (i minus n) leQ (j minus n)

ori le n lt j and iR (j minus n)

Luciano Panek (UNIOESTE) LAWCI 2018 11 19

Generalized Ordinal Sum of Posets

bull Given A sube [n] and B sube [m] let

R sube Atimes B

be a relation such that Im(R) = B

bull The R-sum of posets P = ([n] leP) and Q = ([m] leQ) is the posetP oplusR Q over [n +m] determined as follows

i lePoplusRQ j if and only if

i j le n and i leP j

orn lt i j and (i minus n) leQ (j minus n)

ori le n lt j and iR (j minus n)

Luciano Panek (UNIOESTE) LAWCI 2018 11 19

Generalized Ordinal Sum of Posets

bull Given A sube [n] and B sube [m] let

R sube Atimes B

be a relation such that Im(R) = B

bull The R-sum of posets P = ([n] leP) and Q = ([m] leQ) is the posetP oplusR Q over [n +m] determined as follows i lePoplusRQ j if and only if

i j le n and i leP j

orn lt i j and (i minus n) leQ (j minus n)

ori le n lt j and iR (j minus n)

Luciano Panek (UNIOESTE) LAWCI 2018 11 19

Generalized Ordinal Sum of Posets

Example

If P = ([3]leP) is the usual chain order

1 ltP 2 ltP 3

and Q = ([2]leQ) is the antichain order

1

2

3

21

Luciano Panek (UNIOESTE) LAWCI 2018 12 19

Generalized Ordinal Sum of Posets

Example

If P = ([3]leP) is the usual chain order

1 ltP 2 ltP 3

and Q = ([2]leQ) is the antichain order If R = [3]times [2]

1

2

3

21

Luciano Panek (UNIOESTE) LAWCI 2018 13 19

Generalized Ordinal Sum of Posets

Example

Let P = ([3]leP) be the usual chain order

1 ltP 2 ltP 3

and Q = ([2]leQ) be the antichain order If R = [3]times [2] then theR-sum is the Y order

1

2

3

5 (5-3)(4-3) 4

Luciano Panek (UNIOESTE) LAWCI 2018 14 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111

RdPoplusRQ(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Considering the binary codes C1 = 000 111 C2 = 00 10 andC3 = 00 01 10 11 = F2

2 we have that

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus F22 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 16 19

Generalized Ordinal Sum of Posets

Example - to be continued

Considering the binary codes C1 = 000 111 C2 = 00 10 andC3 = 00 01 10 11 = F2

2 we have that

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus F22 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 17 19

Generalized Ordinal Sum of Posets

Theorem

Let P = ([n] leP) and Q = ([m] leQ) be posets C1 oplus C2 sube Fnq oplus Fm

q be acode where C1 is a P-perfect code RPoplusRQ(C1 oplus C2) = RP (C1) and|BP(0RP(C1))| = |BPoplusRQ(0RP(C1))| The following items areequivalent

(i) C2 ≃ Fmq

(ii) C1 oplus C2 is P oplusR Q-perfect and for each minimal element j isin Q thevector x (j) = ej +

983123iisin[n]iRj ei has packing radius

RPoplusRQ (x (j)) ge RP (C1)

Corollary

If C1 is P-perfect then C1 oplus C2 is P oplus Q-perfect withRPoplusQ(C1 oplus C2) = RP (C1) for every poset Q = ([m] leQ) if and only ifC2 = Fm

q

Luciano Panek (UNIOESTE) LAWCI 2018 18 19

Generalized Ordinal Sum of Posets

Theorem

Let P = ([n] leP) and Q = ([m] leQ) be posets C1 oplus C2 sube Fnq oplus Fm

q be acode where C1 is a P-perfect code RPoplusRQ(C1 oplus C2) = RP (C1) and|BP(0RP(C1))| = |BPoplusRQ(0RP(C1))| The following items areequivalent

(i) C2 ≃ Fmq

(ii) C1 oplus C2 is P oplusR Q-perfect and for each minimal element j isin Q thevector x (j) = ej +

983123iisin[n]iRj ei has packing radius

RPoplusRQ (x (j)) ge RP (C1)

Corollary

If C1 is P-perfect then C1 oplus C2 is P oplus Q-perfect withRPoplusQ(C1 oplus C2) = RP (C1) for every poset Q = ([m] leQ) if and only ifC2 = Fm

q

Luciano Panek (UNIOESTE) LAWCI 2018 18 19

References

J Ahn H K Kim J S Kim and M Kim Classification of perfectlinear codes with crown poset structure Discrete Mathematics 268(2003) 21-30

R Brualdi J S Graves and M Lawrence Codes with a poset metric Discrete Mathematics 147 (1995) 57-72

J Y Hyun and H K Kim The poset structures admitting theextended binary Hamming code to be a perfect code DiscreteMathematics 288 (2004) 37-47

J G Lee Perfect codes on some ordered sets Bulletin of the KoreanMathematical Society 43(2) (2006) 293-297

R G L DrsquoOliveira and M Firer The packing radius of a code andpartitioning problems the case for poset metrics on finite vectorspaces Discrete Mathematics 338 (2015) 2143-2167

Luciano Panek (UNIOESTE) LAWCI 2018 19 19

Basic Definitions Codes Posets Poset Metrics andPoset Codes

bull Given u = (u1 un) isin Fnq the support of u is the set

supp(u) = i isin [n] ui ∕= 0

bull The P-distance of u and v is the cardinality

dP(u v) = |〈supp(u minus v)〉|

bull BP(u r) is the P-sphere with center u and radius r ge 0

BP(u r) = v isin Fnq dP(u v) le r

Luciano Panek (UNIOESTE) LAWCI 2018 6 19

Basic Definitions Codes Posets Poset Metrics andPoset Codes

bull Given u = (u1 un) isin Fnq the support of u is the set

supp(u) = i isin [n] ui ∕= 0

bull The P-distance of u and v is the cardinality

dP(u v) = |〈supp(u minus v)〉|

bull BP(u r) is the P-sphere with center u and radius r ge 0

BP(u r) = v isin Fnq dP(u v) le r

Luciano Panek (UNIOESTE) LAWCI 2018 6 19

Basic Definitions Codes Posets Poset Metrics andPoset Codes

bull Given u = (u1 un) isin Fnq the support of u is the set

supp(u) = i isin [n] ui ∕= 0

bull The P-distance of u and v is the cardinality

dP(u v) = |〈supp(u minus v)〉|

bull BP(u r) is the P-sphere with center u and radius r ge 0

BP(u r) = v isin Fnq dP(u v) le r

Luciano Panek (UNIOESTE) LAWCI 2018 6 19

Basic Definitions Codes Posets Poset Metrics andPoset Codes

bull Given u = (u1 un) isin Fnq the support of u is the set

supp(u) = i isin [n] ui ∕= 0

bull The P-distance of u and v is the cardinality

dP(u v) = |〈supp(u minus v)〉|

bull BP(u r) is the P-sphere with center u and radius r ge 0

BP(u r) = v isin Fnq dP(u v) le r

Luciano Panek (UNIOESTE) LAWCI 2018 6 19

Basic Definitions Codes Posets Poset Metrics andPoset Codes

Let P = ([5]leP) be the Y order If u = 11100 and v = 10110 we havethat u minus v = 01010 and so supp(u minus v) = 2 4

1

2

3

54

Luciano Panek (UNIOESTE) LAWCI 2018 7 19

Basic Definitions Codes Posets Poset Metrics andPoset Codes

Let P = ([5]leP) be the Y order If u = 11100 and v = 10110 we havethat u minus v = 01010 and so supp(u minus v) = 2 4 Therefore dP(u v) = 4

1

2

3

54

Luciano Panek (UNIOESTE) LAWCI 2018 8 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

bull A poset code is a linear subspace C of the metric space (Fnq dP)

bull dP(C ) is the minimum distance of a poset code C

dP(C ) = mindP(c c prime) c c prime isin C c ∕= c prime

bull RP(C ) is the packing radius of a poset code C

RP(C ) = maxr BP(c r) cap BP(cprime r) = empty c ∕= c prime isin C

bull C sube Fnq is a P-perfect code if

983134

cisinCBP(c RP(C )) = Fn

q

Luciano Panek (UNIOESTE) LAWCI 2018 9 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

bull A poset code is a linear subspace C of the metric space (Fnq dP)

bull dP(C ) is the minimum distance of a poset code C

dP(C ) = mindP(c c prime) c c prime isin C c ∕= c prime

bull RP(C ) is the packing radius of a poset code C

RP(C ) = maxr BP(c r) cap BP(cprime r) = empty c ∕= c prime isin C

bull C sube Fnq is a P-perfect code if

983134

cisinCBP(c RP(C )) = Fn

q

Luciano Panek (UNIOESTE) LAWCI 2018 9 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

bull A poset code is a linear subspace C of the metric space (Fnq dP)

bull dP(C ) is the minimum distance of a poset code C

dP(C ) = mindP(c c prime) c c prime isin C c ∕= c prime

bull RP(C ) is the packing radius of a poset code C

RP(C ) = maxr BP(c r) cap BP(cprime r) = empty c ∕= c prime isin C

bull C sube Fnq is a P-perfect code if

983134

cisinCBP(c RP(C )) = Fn

q

Luciano Panek (UNIOESTE) LAWCI 2018 9 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

bull A poset code is a linear subspace C of the metric space (Fnq dP)

bull dP(C ) is the minimum distance of a poset code C

dP(C ) = mindP(c c prime) c c prime isin C c ∕= c prime

bull RP(C ) is the packing radius of a poset code C

RP(C ) = maxr BP(c r) cap BP(cprime r) = empty c ∕= c prime isin C

bull C sube Fnq is a P-perfect code if

983134

cisinCBP(c RP(C )) = Fn

q

Luciano Panek (UNIOESTE) LAWCI 2018 9 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

bull A poset code is a linear subspace C of the metric space (Fnq dP)

bull dP(C ) is the minimum distance of a poset code C

dP(C ) = mindP(c c prime) c c prime isin C c ∕= c prime

bull RP(C ) is the packing radius of a poset code C

RP(C ) = maxr BP(c r) cap BP(cprime r) = empty c ∕= c prime isin C

bull C sube Fnq is a P-perfect code if

983134

cisinCBP(c RP(C )) = Fn

q

Luciano Panek (UNIOESTE) LAWCI 2018 9 19

Examples of P-Perfect Codes

C = 000 111 sube F32

H anti-chain orderdH(u v) = |i ui ∕= vi|

Hamming distance

RdH (C ) = lfloordH(C)minus12 rfloor = 1

P usual total orderdP(u v) = maxi ui ∕= vi

NRT distanceRdP (C ) = dP(C )minus 1 = 2

Luciano Panek (UNIOESTE) LAWCI 2018 10 19

Examples of P-Perfect Codes

C = 000 111 sube F32

H anti-chain orderdH(u v) = |i ui ∕= vi|

Hamming distance

RdH (C ) = lfloordH(C)minus12 rfloor = 1

P usual total orderdP(u v) = maxi ui ∕= vi

NRT distanceRdP (C ) = dP(C )minus 1 = 2

Luciano Panek (UNIOESTE) LAWCI 2018 10 19

Examples of P-Perfect Codes

C = 000 111 sube F32

H anti-chain orderdH(u v) = |i ui ∕= vi|

Hamming distance

RdH (C ) = lfloordH(C)minus12 rfloor = 1

P usual total orderdP(u v) = maxi ui ∕= vi

NRT distanceRdP (C ) = dP(C )minus 1 = 2

Luciano Panek (UNIOESTE) LAWCI 2018 10 19

Examples of P-Perfect Codes

C = 000 111 sube F32

H anti-chain orderdH(u v) = |i ui ∕= vi|

Hamming distance

RdH (C ) = lfloordH(C)minus12 rfloor = 1

P usual total orderdP(u v) = maxi ui ∕= vi

NRT distanceRdP (C ) = dP(C )minus 1 = 2

Luciano Panek (UNIOESTE) LAWCI 2018 10 19

Generalized Ordinal Sum of Posets

bull Given A sube [n] and B sube [m] let

R sube Atimes B

be a relation such that Im(R) = B

bull The R-sum of posets P = ([n] leP) and Q = ([m] leQ) is the posetP oplusR Q over [n +m] determined as follows i lePoplusRQ j if and only if

i j le n and i leP j

orn lt i j and (i minus n) leQ (j minus n)

ori le n lt j and iR (j minus n)

Luciano Panek (UNIOESTE) LAWCI 2018 11 19

Generalized Ordinal Sum of Posets

bull Given A sube [n] and B sube [m] let

R sube Atimes B

be a relation such that Im(R) = B

bull The R-sum of posets P = ([n] leP) and Q = ([m] leQ) is the posetP oplusR Q over [n +m] determined as follows i lePoplusRQ j if and only if

i j le n and i leP j

orn lt i j and (i minus n) leQ (j minus n)

ori le n lt j and iR (j minus n)

Luciano Panek (UNIOESTE) LAWCI 2018 11 19

Generalized Ordinal Sum of Posets

bull Given A sube [n] and B sube [m] let

R sube Atimes B

be a relation such that Im(R) = B

bull The R-sum of posets P = ([n] leP) and Q = ([m] leQ) is the posetP oplusR Q over [n +m] determined as follows

i lePoplusRQ j if and only if

i j le n and i leP j

orn lt i j and (i minus n) leQ (j minus n)

ori le n lt j and iR (j minus n)

Luciano Panek (UNIOESTE) LAWCI 2018 11 19

Generalized Ordinal Sum of Posets

bull Given A sube [n] and B sube [m] let

R sube Atimes B

be a relation such that Im(R) = B

bull The R-sum of posets P = ([n] leP) and Q = ([m] leQ) is the posetP oplusR Q over [n +m] determined as follows i lePoplusRQ j if and only if

i j le n and i leP j

orn lt i j and (i minus n) leQ (j minus n)

ori le n lt j and iR (j minus n)

Luciano Panek (UNIOESTE) LAWCI 2018 11 19

Generalized Ordinal Sum of Posets

Example

If P = ([3]leP) is the usual chain order

1 ltP 2 ltP 3

and Q = ([2]leQ) is the antichain order

1

2

3

21

Luciano Panek (UNIOESTE) LAWCI 2018 12 19

Generalized Ordinal Sum of Posets

Example

If P = ([3]leP) is the usual chain order

1 ltP 2 ltP 3

and Q = ([2]leQ) is the antichain order If R = [3]times [2]

1

2

3

21

Luciano Panek (UNIOESTE) LAWCI 2018 13 19

Generalized Ordinal Sum of Posets

Example

Let P = ([3]leP) be the usual chain order

1 ltP 2 ltP 3

and Q = ([2]leQ) be the antichain order If R = [3]times [2] then theR-sum is the Y order

1

2

3

5 (5-3)(4-3) 4

Luciano Panek (UNIOESTE) LAWCI 2018 14 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111

RdPoplusRQ(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Considering the binary codes C1 = 000 111 C2 = 00 10 andC3 = 00 01 10 11 = F2

2 we have that

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus F22 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 16 19

Generalized Ordinal Sum of Posets

Example - to be continued

Considering the binary codes C1 = 000 111 C2 = 00 10 andC3 = 00 01 10 11 = F2

2 we have that

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus F22 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 17 19

Generalized Ordinal Sum of Posets

Theorem

Let P = ([n] leP) and Q = ([m] leQ) be posets C1 oplus C2 sube Fnq oplus Fm

q be acode where C1 is a P-perfect code RPoplusRQ(C1 oplus C2) = RP (C1) and|BP(0RP(C1))| = |BPoplusRQ(0RP(C1))| The following items areequivalent

(i) C2 ≃ Fmq

(ii) C1 oplus C2 is P oplusR Q-perfect and for each minimal element j isin Q thevector x (j) = ej +

983123iisin[n]iRj ei has packing radius

RPoplusRQ (x (j)) ge RP (C1)

Corollary

If C1 is P-perfect then C1 oplus C2 is P oplus Q-perfect withRPoplusQ(C1 oplus C2) = RP (C1) for every poset Q = ([m] leQ) if and only ifC2 = Fm

q

Luciano Panek (UNIOESTE) LAWCI 2018 18 19

Generalized Ordinal Sum of Posets

Theorem

Let P = ([n] leP) and Q = ([m] leQ) be posets C1 oplus C2 sube Fnq oplus Fm

q be acode where C1 is a P-perfect code RPoplusRQ(C1 oplus C2) = RP (C1) and|BP(0RP(C1))| = |BPoplusRQ(0RP(C1))| The following items areequivalent

(i) C2 ≃ Fmq

(ii) C1 oplus C2 is P oplusR Q-perfect and for each minimal element j isin Q thevector x (j) = ej +

983123iisin[n]iRj ei has packing radius

RPoplusRQ (x (j)) ge RP (C1)

Corollary

If C1 is P-perfect then C1 oplus C2 is P oplus Q-perfect withRPoplusQ(C1 oplus C2) = RP (C1) for every poset Q = ([m] leQ) if and only ifC2 = Fm

q

Luciano Panek (UNIOESTE) LAWCI 2018 18 19

References

J Ahn H K Kim J S Kim and M Kim Classification of perfectlinear codes with crown poset structure Discrete Mathematics 268(2003) 21-30

R Brualdi J S Graves and M Lawrence Codes with a poset metric Discrete Mathematics 147 (1995) 57-72

J Y Hyun and H K Kim The poset structures admitting theextended binary Hamming code to be a perfect code DiscreteMathematics 288 (2004) 37-47

J G Lee Perfect codes on some ordered sets Bulletin of the KoreanMathematical Society 43(2) (2006) 293-297

R G L DrsquoOliveira and M Firer The packing radius of a code andpartitioning problems the case for poset metrics on finite vectorspaces Discrete Mathematics 338 (2015) 2143-2167

Luciano Panek (UNIOESTE) LAWCI 2018 19 19

Basic Definitions Codes Posets Poset Metrics andPoset Codes

bull Given u = (u1 un) isin Fnq the support of u is the set

supp(u) = i isin [n] ui ∕= 0

bull The P-distance of u and v is the cardinality

dP(u v) = |〈supp(u minus v)〉|

bull BP(u r) is the P-sphere with center u and radius r ge 0

BP(u r) = v isin Fnq dP(u v) le r

Luciano Panek (UNIOESTE) LAWCI 2018 6 19

Basic Definitions Codes Posets Poset Metrics andPoset Codes

bull Given u = (u1 un) isin Fnq the support of u is the set

supp(u) = i isin [n] ui ∕= 0

bull The P-distance of u and v is the cardinality

dP(u v) = |〈supp(u minus v)〉|

bull BP(u r) is the P-sphere with center u and radius r ge 0

BP(u r) = v isin Fnq dP(u v) le r

Luciano Panek (UNIOESTE) LAWCI 2018 6 19

Basic Definitions Codes Posets Poset Metrics andPoset Codes

bull Given u = (u1 un) isin Fnq the support of u is the set

supp(u) = i isin [n] ui ∕= 0

bull The P-distance of u and v is the cardinality

dP(u v) = |〈supp(u minus v)〉|

bull BP(u r) is the P-sphere with center u and radius r ge 0

BP(u r) = v isin Fnq dP(u v) le r

Luciano Panek (UNIOESTE) LAWCI 2018 6 19

Basic Definitions Codes Posets Poset Metrics andPoset Codes

Let P = ([5]leP) be the Y order If u = 11100 and v = 10110 we havethat u minus v = 01010 and so supp(u minus v) = 2 4

1

2

3

54

Luciano Panek (UNIOESTE) LAWCI 2018 7 19

Basic Definitions Codes Posets Poset Metrics andPoset Codes

Let P = ([5]leP) be the Y order If u = 11100 and v = 10110 we havethat u minus v = 01010 and so supp(u minus v) = 2 4 Therefore dP(u v) = 4

1

2

3

54

Luciano Panek (UNIOESTE) LAWCI 2018 8 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

bull A poset code is a linear subspace C of the metric space (Fnq dP)

bull dP(C ) is the minimum distance of a poset code C

dP(C ) = mindP(c c prime) c c prime isin C c ∕= c prime

bull RP(C ) is the packing radius of a poset code C

RP(C ) = maxr BP(c r) cap BP(cprime r) = empty c ∕= c prime isin C

bull C sube Fnq is a P-perfect code if

983134

cisinCBP(c RP(C )) = Fn

q

Luciano Panek (UNIOESTE) LAWCI 2018 9 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

bull A poset code is a linear subspace C of the metric space (Fnq dP)

bull dP(C ) is the minimum distance of a poset code C

dP(C ) = mindP(c c prime) c c prime isin C c ∕= c prime

bull RP(C ) is the packing radius of a poset code C

RP(C ) = maxr BP(c r) cap BP(cprime r) = empty c ∕= c prime isin C

bull C sube Fnq is a P-perfect code if

983134

cisinCBP(c RP(C )) = Fn

q

Luciano Panek (UNIOESTE) LAWCI 2018 9 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

bull A poset code is a linear subspace C of the metric space (Fnq dP)

bull dP(C ) is the minimum distance of a poset code C

dP(C ) = mindP(c c prime) c c prime isin C c ∕= c prime

bull RP(C ) is the packing radius of a poset code C

RP(C ) = maxr BP(c r) cap BP(cprime r) = empty c ∕= c prime isin C

bull C sube Fnq is a P-perfect code if

983134

cisinCBP(c RP(C )) = Fn

q

Luciano Panek (UNIOESTE) LAWCI 2018 9 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

bull A poset code is a linear subspace C of the metric space (Fnq dP)

bull dP(C ) is the minimum distance of a poset code C

dP(C ) = mindP(c c prime) c c prime isin C c ∕= c prime

bull RP(C ) is the packing radius of a poset code C

RP(C ) = maxr BP(c r) cap BP(cprime r) = empty c ∕= c prime isin C

bull C sube Fnq is a P-perfect code if

983134

cisinCBP(c RP(C )) = Fn

q

Luciano Panek (UNIOESTE) LAWCI 2018 9 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

bull A poset code is a linear subspace C of the metric space (Fnq dP)

bull dP(C ) is the minimum distance of a poset code C

dP(C ) = mindP(c c prime) c c prime isin C c ∕= c prime

bull RP(C ) is the packing radius of a poset code C

RP(C ) = maxr BP(c r) cap BP(cprime r) = empty c ∕= c prime isin C

bull C sube Fnq is a P-perfect code if

983134

cisinCBP(c RP(C )) = Fn

q

Luciano Panek (UNIOESTE) LAWCI 2018 9 19

Examples of P-Perfect Codes

C = 000 111 sube F32

H anti-chain orderdH(u v) = |i ui ∕= vi|

Hamming distance

RdH (C ) = lfloordH(C)minus12 rfloor = 1

P usual total orderdP(u v) = maxi ui ∕= vi

NRT distanceRdP (C ) = dP(C )minus 1 = 2

Luciano Panek (UNIOESTE) LAWCI 2018 10 19

Examples of P-Perfect Codes

C = 000 111 sube F32

H anti-chain orderdH(u v) = |i ui ∕= vi|

Hamming distance

RdH (C ) = lfloordH(C)minus12 rfloor = 1

P usual total orderdP(u v) = maxi ui ∕= vi

NRT distanceRdP (C ) = dP(C )minus 1 = 2

Luciano Panek (UNIOESTE) LAWCI 2018 10 19

Examples of P-Perfect Codes

C = 000 111 sube F32

H anti-chain orderdH(u v) = |i ui ∕= vi|

Hamming distance

RdH (C ) = lfloordH(C)minus12 rfloor = 1

P usual total orderdP(u v) = maxi ui ∕= vi

NRT distanceRdP (C ) = dP(C )minus 1 = 2

Luciano Panek (UNIOESTE) LAWCI 2018 10 19

Examples of P-Perfect Codes

C = 000 111 sube F32

H anti-chain orderdH(u v) = |i ui ∕= vi|

Hamming distance

RdH (C ) = lfloordH(C)minus12 rfloor = 1

P usual total orderdP(u v) = maxi ui ∕= vi

NRT distanceRdP (C ) = dP(C )minus 1 = 2

Luciano Panek (UNIOESTE) LAWCI 2018 10 19

Generalized Ordinal Sum of Posets

bull Given A sube [n] and B sube [m] let

R sube Atimes B

be a relation such that Im(R) = B

bull The R-sum of posets P = ([n] leP) and Q = ([m] leQ) is the posetP oplusR Q over [n +m] determined as follows i lePoplusRQ j if and only if

i j le n and i leP j

orn lt i j and (i minus n) leQ (j minus n)

ori le n lt j and iR (j minus n)

Luciano Panek (UNIOESTE) LAWCI 2018 11 19

Generalized Ordinal Sum of Posets

bull Given A sube [n] and B sube [m] let

R sube Atimes B

be a relation such that Im(R) = B

bull The R-sum of posets P = ([n] leP) and Q = ([m] leQ) is the posetP oplusR Q over [n +m] determined as follows i lePoplusRQ j if and only if

i j le n and i leP j

orn lt i j and (i minus n) leQ (j minus n)

ori le n lt j and iR (j minus n)

Luciano Panek (UNIOESTE) LAWCI 2018 11 19

Generalized Ordinal Sum of Posets

bull Given A sube [n] and B sube [m] let

R sube Atimes B

be a relation such that Im(R) = B

bull The R-sum of posets P = ([n] leP) and Q = ([m] leQ) is the posetP oplusR Q over [n +m] determined as follows

i lePoplusRQ j if and only if

i j le n and i leP j

orn lt i j and (i minus n) leQ (j minus n)

ori le n lt j and iR (j minus n)

Luciano Panek (UNIOESTE) LAWCI 2018 11 19

Generalized Ordinal Sum of Posets

bull Given A sube [n] and B sube [m] let

R sube Atimes B

be a relation such that Im(R) = B

bull The R-sum of posets P = ([n] leP) and Q = ([m] leQ) is the posetP oplusR Q over [n +m] determined as follows i lePoplusRQ j if and only if

i j le n and i leP j

orn lt i j and (i minus n) leQ (j minus n)

ori le n lt j and iR (j minus n)

Luciano Panek (UNIOESTE) LAWCI 2018 11 19

Generalized Ordinal Sum of Posets

Example

If P = ([3]leP) is the usual chain order

1 ltP 2 ltP 3

and Q = ([2]leQ) is the antichain order

1

2

3

21

Luciano Panek (UNIOESTE) LAWCI 2018 12 19

Generalized Ordinal Sum of Posets

Example

If P = ([3]leP) is the usual chain order

1 ltP 2 ltP 3

and Q = ([2]leQ) is the antichain order If R = [3]times [2]

1

2

3

21

Luciano Panek (UNIOESTE) LAWCI 2018 13 19

Generalized Ordinal Sum of Posets

Example

Let P = ([3]leP) be the usual chain order

1 ltP 2 ltP 3

and Q = ([2]leQ) be the antichain order If R = [3]times [2] then theR-sum is the Y order

1

2

3

5 (5-3)(4-3) 4

Luciano Panek (UNIOESTE) LAWCI 2018 14 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111

RdPoplusRQ(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Considering the binary codes C1 = 000 111 C2 = 00 10 andC3 = 00 01 10 11 = F2

2 we have that

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus F22 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 16 19

Generalized Ordinal Sum of Posets

Example - to be continued

Considering the binary codes C1 = 000 111 C2 = 00 10 andC3 = 00 01 10 11 = F2

2 we have that

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus F22 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 17 19

Generalized Ordinal Sum of Posets

Theorem

Let P = ([n] leP) and Q = ([m] leQ) be posets C1 oplus C2 sube Fnq oplus Fm

q be acode where C1 is a P-perfect code RPoplusRQ(C1 oplus C2) = RP (C1) and|BP(0RP(C1))| = |BPoplusRQ(0RP(C1))| The following items areequivalent

(i) C2 ≃ Fmq

(ii) C1 oplus C2 is P oplusR Q-perfect and for each minimal element j isin Q thevector x (j) = ej +

983123iisin[n]iRj ei has packing radius

RPoplusRQ (x (j)) ge RP (C1)

Corollary

If C1 is P-perfect then C1 oplus C2 is P oplus Q-perfect withRPoplusQ(C1 oplus C2) = RP (C1) for every poset Q = ([m] leQ) if and only ifC2 = Fm

q

Luciano Panek (UNIOESTE) LAWCI 2018 18 19

Generalized Ordinal Sum of Posets

Theorem

Let P = ([n] leP) and Q = ([m] leQ) be posets C1 oplus C2 sube Fnq oplus Fm

q be acode where C1 is a P-perfect code RPoplusRQ(C1 oplus C2) = RP (C1) and|BP(0RP(C1))| = |BPoplusRQ(0RP(C1))| The following items areequivalent

(i) C2 ≃ Fmq

(ii) C1 oplus C2 is P oplusR Q-perfect and for each minimal element j isin Q thevector x (j) = ej +

983123iisin[n]iRj ei has packing radius

RPoplusRQ (x (j)) ge RP (C1)

Corollary

If C1 is P-perfect then C1 oplus C2 is P oplus Q-perfect withRPoplusQ(C1 oplus C2) = RP (C1) for every poset Q = ([m] leQ) if and only ifC2 = Fm

q

Luciano Panek (UNIOESTE) LAWCI 2018 18 19

References

J Ahn H K Kim J S Kim and M Kim Classification of perfectlinear codes with crown poset structure Discrete Mathematics 268(2003) 21-30

R Brualdi J S Graves and M Lawrence Codes with a poset metric Discrete Mathematics 147 (1995) 57-72

J Y Hyun and H K Kim The poset structures admitting theextended binary Hamming code to be a perfect code DiscreteMathematics 288 (2004) 37-47

J G Lee Perfect codes on some ordered sets Bulletin of the KoreanMathematical Society 43(2) (2006) 293-297

R G L DrsquoOliveira and M Firer The packing radius of a code andpartitioning problems the case for poset metrics on finite vectorspaces Discrete Mathematics 338 (2015) 2143-2167

Luciano Panek (UNIOESTE) LAWCI 2018 19 19

Basic Definitions Codes Posets Poset Metrics andPoset Codes

bull Given u = (u1 un) isin Fnq the support of u is the set

supp(u) = i isin [n] ui ∕= 0

bull The P-distance of u and v is the cardinality

dP(u v) = |〈supp(u minus v)〉|

bull BP(u r) is the P-sphere with center u and radius r ge 0

BP(u r) = v isin Fnq dP(u v) le r

Luciano Panek (UNIOESTE) LAWCI 2018 6 19

Basic Definitions Codes Posets Poset Metrics andPoset Codes

bull Given u = (u1 un) isin Fnq the support of u is the set

supp(u) = i isin [n] ui ∕= 0

bull The P-distance of u and v is the cardinality

dP(u v) = |〈supp(u minus v)〉|

bull BP(u r) is the P-sphere with center u and radius r ge 0

BP(u r) = v isin Fnq dP(u v) le r

Luciano Panek (UNIOESTE) LAWCI 2018 6 19

Basic Definitions Codes Posets Poset Metrics andPoset Codes

Let P = ([5]leP) be the Y order If u = 11100 and v = 10110 we havethat u minus v = 01010 and so supp(u minus v) = 2 4

1

2

3

54

Luciano Panek (UNIOESTE) LAWCI 2018 7 19

Basic Definitions Codes Posets Poset Metrics andPoset Codes

Let P = ([5]leP) be the Y order If u = 11100 and v = 10110 we havethat u minus v = 01010 and so supp(u minus v) = 2 4 Therefore dP(u v) = 4

1

2

3

54

Luciano Panek (UNIOESTE) LAWCI 2018 8 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

bull A poset code is a linear subspace C of the metric space (Fnq dP)

bull dP(C ) is the minimum distance of a poset code C

dP(C ) = mindP(c c prime) c c prime isin C c ∕= c prime

bull RP(C ) is the packing radius of a poset code C

RP(C ) = maxr BP(c r) cap BP(cprime r) = empty c ∕= c prime isin C

bull C sube Fnq is a P-perfect code if

983134

cisinCBP(c RP(C )) = Fn

q

Luciano Panek (UNIOESTE) LAWCI 2018 9 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

bull A poset code is a linear subspace C of the metric space (Fnq dP)

bull dP(C ) is the minimum distance of a poset code C

dP(C ) = mindP(c c prime) c c prime isin C c ∕= c prime

bull RP(C ) is the packing radius of a poset code C

RP(C ) = maxr BP(c r) cap BP(cprime r) = empty c ∕= c prime isin C

bull C sube Fnq is a P-perfect code if

983134

cisinCBP(c RP(C )) = Fn

q

Luciano Panek (UNIOESTE) LAWCI 2018 9 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

bull A poset code is a linear subspace C of the metric space (Fnq dP)

bull dP(C ) is the minimum distance of a poset code C

dP(C ) = mindP(c c prime) c c prime isin C c ∕= c prime

bull RP(C ) is the packing radius of a poset code C

RP(C ) = maxr BP(c r) cap BP(cprime r) = empty c ∕= c prime isin C

bull C sube Fnq is a P-perfect code if

983134

cisinCBP(c RP(C )) = Fn

q

Luciano Panek (UNIOESTE) LAWCI 2018 9 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

bull A poset code is a linear subspace C of the metric space (Fnq dP)

bull dP(C ) is the minimum distance of a poset code C

dP(C ) = mindP(c c prime) c c prime isin C c ∕= c prime

bull RP(C ) is the packing radius of a poset code C

RP(C ) = maxr BP(c r) cap BP(cprime r) = empty c ∕= c prime isin C

bull C sube Fnq is a P-perfect code if

983134

cisinCBP(c RP(C )) = Fn

q

Luciano Panek (UNIOESTE) LAWCI 2018 9 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

bull A poset code is a linear subspace C of the metric space (Fnq dP)

bull dP(C ) is the minimum distance of a poset code C

dP(C ) = mindP(c c prime) c c prime isin C c ∕= c prime

bull RP(C ) is the packing radius of a poset code C

RP(C ) = maxr BP(c r) cap BP(cprime r) = empty c ∕= c prime isin C

bull C sube Fnq is a P-perfect code if

983134

cisinCBP(c RP(C )) = Fn

q

Luciano Panek (UNIOESTE) LAWCI 2018 9 19

Examples of P-Perfect Codes

C = 000 111 sube F32

H anti-chain orderdH(u v) = |i ui ∕= vi|

Hamming distance

RdH (C ) = lfloordH(C)minus12 rfloor = 1

P usual total orderdP(u v) = maxi ui ∕= vi

NRT distanceRdP (C ) = dP(C )minus 1 = 2

Luciano Panek (UNIOESTE) LAWCI 2018 10 19

Examples of P-Perfect Codes

C = 000 111 sube F32

H anti-chain orderdH(u v) = |i ui ∕= vi|

Hamming distance

RdH (C ) = lfloordH(C)minus12 rfloor = 1

P usual total orderdP(u v) = maxi ui ∕= vi

NRT distanceRdP (C ) = dP(C )minus 1 = 2

Luciano Panek (UNIOESTE) LAWCI 2018 10 19

Examples of P-Perfect Codes

C = 000 111 sube F32

H anti-chain orderdH(u v) = |i ui ∕= vi|

Hamming distance

RdH (C ) = lfloordH(C)minus12 rfloor = 1

P usual total orderdP(u v) = maxi ui ∕= vi

NRT distanceRdP (C ) = dP(C )minus 1 = 2

Luciano Panek (UNIOESTE) LAWCI 2018 10 19

Examples of P-Perfect Codes

C = 000 111 sube F32

H anti-chain orderdH(u v) = |i ui ∕= vi|

Hamming distance

RdH (C ) = lfloordH(C)minus12 rfloor = 1

P usual total orderdP(u v) = maxi ui ∕= vi

NRT distanceRdP (C ) = dP(C )minus 1 = 2

Luciano Panek (UNIOESTE) LAWCI 2018 10 19

Generalized Ordinal Sum of Posets

bull Given A sube [n] and B sube [m] let

R sube Atimes B

be a relation such that Im(R) = B

bull The R-sum of posets P = ([n] leP) and Q = ([m] leQ) is the posetP oplusR Q over [n +m] determined as follows i lePoplusRQ j if and only if

i j le n and i leP j

orn lt i j and (i minus n) leQ (j minus n)

ori le n lt j and iR (j minus n)

Luciano Panek (UNIOESTE) LAWCI 2018 11 19

Generalized Ordinal Sum of Posets

bull Given A sube [n] and B sube [m] let

R sube Atimes B

be a relation such that Im(R) = B

bull The R-sum of posets P = ([n] leP) and Q = ([m] leQ) is the posetP oplusR Q over [n +m] determined as follows i lePoplusRQ j if and only if

i j le n and i leP j

orn lt i j and (i minus n) leQ (j minus n)

ori le n lt j and iR (j minus n)

Luciano Panek (UNIOESTE) LAWCI 2018 11 19

Generalized Ordinal Sum of Posets

bull Given A sube [n] and B sube [m] let

R sube Atimes B

be a relation such that Im(R) = B

bull The R-sum of posets P = ([n] leP) and Q = ([m] leQ) is the posetP oplusR Q over [n +m] determined as follows

i lePoplusRQ j if and only if

i j le n and i leP j

orn lt i j and (i minus n) leQ (j minus n)

ori le n lt j and iR (j minus n)

Luciano Panek (UNIOESTE) LAWCI 2018 11 19

Generalized Ordinal Sum of Posets

bull Given A sube [n] and B sube [m] let

R sube Atimes B

be a relation such that Im(R) = B

bull The R-sum of posets P = ([n] leP) and Q = ([m] leQ) is the posetP oplusR Q over [n +m] determined as follows i lePoplusRQ j if and only if

i j le n and i leP j

orn lt i j and (i minus n) leQ (j minus n)

ori le n lt j and iR (j minus n)

Luciano Panek (UNIOESTE) LAWCI 2018 11 19

Generalized Ordinal Sum of Posets

Example

If P = ([3]leP) is the usual chain order

1 ltP 2 ltP 3

and Q = ([2]leQ) is the antichain order

1

2

3

21

Luciano Panek (UNIOESTE) LAWCI 2018 12 19

Generalized Ordinal Sum of Posets

Example

If P = ([3]leP) is the usual chain order

1 ltP 2 ltP 3

and Q = ([2]leQ) is the antichain order If R = [3]times [2]

1

2

3

21

Luciano Panek (UNIOESTE) LAWCI 2018 13 19

Generalized Ordinal Sum of Posets

Example

Let P = ([3]leP) be the usual chain order

1 ltP 2 ltP 3

and Q = ([2]leQ) be the antichain order If R = [3]times [2] then theR-sum is the Y order

1

2

3

5 (5-3)(4-3) 4

Luciano Panek (UNIOESTE) LAWCI 2018 14 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111

RdPoplusRQ(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Considering the binary codes C1 = 000 111 C2 = 00 10 andC3 = 00 01 10 11 = F2

2 we have that

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus F22 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 16 19

Generalized Ordinal Sum of Posets

Example - to be continued

Considering the binary codes C1 = 000 111 C2 = 00 10 andC3 = 00 01 10 11 = F2

2 we have that

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus F22 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 17 19

Generalized Ordinal Sum of Posets

Theorem

Let P = ([n] leP) and Q = ([m] leQ) be posets C1 oplus C2 sube Fnq oplus Fm

q be acode where C1 is a P-perfect code RPoplusRQ(C1 oplus C2) = RP (C1) and|BP(0RP(C1))| = |BPoplusRQ(0RP(C1))| The following items areequivalent

(i) C2 ≃ Fmq

(ii) C1 oplus C2 is P oplusR Q-perfect and for each minimal element j isin Q thevector x (j) = ej +

983123iisin[n]iRj ei has packing radius

RPoplusRQ (x (j)) ge RP (C1)

Corollary

If C1 is P-perfect then C1 oplus C2 is P oplus Q-perfect withRPoplusQ(C1 oplus C2) = RP (C1) for every poset Q = ([m] leQ) if and only ifC2 = Fm

q

Luciano Panek (UNIOESTE) LAWCI 2018 18 19

Generalized Ordinal Sum of Posets

Theorem

Let P = ([n] leP) and Q = ([m] leQ) be posets C1 oplus C2 sube Fnq oplus Fm

q be acode where C1 is a P-perfect code RPoplusRQ(C1 oplus C2) = RP (C1) and|BP(0RP(C1))| = |BPoplusRQ(0RP(C1))| The following items areequivalent

(i) C2 ≃ Fmq

(ii) C1 oplus C2 is P oplusR Q-perfect and for each minimal element j isin Q thevector x (j) = ej +

983123iisin[n]iRj ei has packing radius

RPoplusRQ (x (j)) ge RP (C1)

Corollary

If C1 is P-perfect then C1 oplus C2 is P oplus Q-perfect withRPoplusQ(C1 oplus C2) = RP (C1) for every poset Q = ([m] leQ) if and only ifC2 = Fm

q

Luciano Panek (UNIOESTE) LAWCI 2018 18 19

References

J Ahn H K Kim J S Kim and M Kim Classification of perfectlinear codes with crown poset structure Discrete Mathematics 268(2003) 21-30

R Brualdi J S Graves and M Lawrence Codes with a poset metric Discrete Mathematics 147 (1995) 57-72

J Y Hyun and H K Kim The poset structures admitting theextended binary Hamming code to be a perfect code DiscreteMathematics 288 (2004) 37-47

J G Lee Perfect codes on some ordered sets Bulletin of the KoreanMathematical Society 43(2) (2006) 293-297

R G L DrsquoOliveira and M Firer The packing radius of a code andpartitioning problems the case for poset metrics on finite vectorspaces Discrete Mathematics 338 (2015) 2143-2167

Luciano Panek (UNIOESTE) LAWCI 2018 19 19

Basic Definitions Codes Posets Poset Metrics andPoset Codes

bull Given u = (u1 un) isin Fnq the support of u is the set

supp(u) = i isin [n] ui ∕= 0

bull The P-distance of u and v is the cardinality

dP(u v) = |〈supp(u minus v)〉|

bull BP(u r) is the P-sphere with center u and radius r ge 0

BP(u r) = v isin Fnq dP(u v) le r

Luciano Panek (UNIOESTE) LAWCI 2018 6 19

Basic Definitions Codes Posets Poset Metrics andPoset Codes

Let P = ([5]leP) be the Y order If u = 11100 and v = 10110 we havethat u minus v = 01010 and so supp(u minus v) = 2 4

1

2

3

54

Luciano Panek (UNIOESTE) LAWCI 2018 7 19

Basic Definitions Codes Posets Poset Metrics andPoset Codes

Let P = ([5]leP) be the Y order If u = 11100 and v = 10110 we havethat u minus v = 01010 and so supp(u minus v) = 2 4 Therefore dP(u v) = 4

1

2

3

54

Luciano Panek (UNIOESTE) LAWCI 2018 8 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

bull A poset code is a linear subspace C of the metric space (Fnq dP)

bull dP(C ) is the minimum distance of a poset code C

dP(C ) = mindP(c c prime) c c prime isin C c ∕= c prime

bull RP(C ) is the packing radius of a poset code C

RP(C ) = maxr BP(c r) cap BP(cprime r) = empty c ∕= c prime isin C

bull C sube Fnq is a P-perfect code if

983134

cisinCBP(c RP(C )) = Fn

q

Luciano Panek (UNIOESTE) LAWCI 2018 9 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

bull A poset code is a linear subspace C of the metric space (Fnq dP)

bull dP(C ) is the minimum distance of a poset code C

dP(C ) = mindP(c c prime) c c prime isin C c ∕= c prime

bull RP(C ) is the packing radius of a poset code C

RP(C ) = maxr BP(c r) cap BP(cprime r) = empty c ∕= c prime isin C

bull C sube Fnq is a P-perfect code if

983134

cisinCBP(c RP(C )) = Fn

q

Luciano Panek (UNIOESTE) LAWCI 2018 9 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

bull A poset code is a linear subspace C of the metric space (Fnq dP)

bull dP(C ) is the minimum distance of a poset code C

dP(C ) = mindP(c c prime) c c prime isin C c ∕= c prime

bull RP(C ) is the packing radius of a poset code C

RP(C ) = maxr BP(c r) cap BP(cprime r) = empty c ∕= c prime isin C

bull C sube Fnq is a P-perfect code if

983134

cisinCBP(c RP(C )) = Fn

q

Luciano Panek (UNIOESTE) LAWCI 2018 9 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

bull A poset code is a linear subspace C of the metric space (Fnq dP)

bull dP(C ) is the minimum distance of a poset code C

dP(C ) = mindP(c c prime) c c prime isin C c ∕= c prime

bull RP(C ) is the packing radius of a poset code C

RP(C ) = maxr BP(c r) cap BP(cprime r) = empty c ∕= c prime isin C

bull C sube Fnq is a P-perfect code if

983134

cisinCBP(c RP(C )) = Fn

q

Luciano Panek (UNIOESTE) LAWCI 2018 9 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

bull A poset code is a linear subspace C of the metric space (Fnq dP)

bull dP(C ) is the minimum distance of a poset code C

dP(C ) = mindP(c c prime) c c prime isin C c ∕= c prime

bull RP(C ) is the packing radius of a poset code C

RP(C ) = maxr BP(c r) cap BP(cprime r) = empty c ∕= c prime isin C

bull C sube Fnq is a P-perfect code if

983134

cisinCBP(c RP(C )) = Fn

q

Luciano Panek (UNIOESTE) LAWCI 2018 9 19

Examples of P-Perfect Codes

C = 000 111 sube F32

H anti-chain orderdH(u v) = |i ui ∕= vi|

Hamming distance

RdH (C ) = lfloordH(C)minus12 rfloor = 1

P usual total orderdP(u v) = maxi ui ∕= vi

NRT distanceRdP (C ) = dP(C )minus 1 = 2

Luciano Panek (UNIOESTE) LAWCI 2018 10 19

Examples of P-Perfect Codes

C = 000 111 sube F32

H anti-chain orderdH(u v) = |i ui ∕= vi|

Hamming distance

RdH (C ) = lfloordH(C)minus12 rfloor = 1

P usual total orderdP(u v) = maxi ui ∕= vi

NRT distanceRdP (C ) = dP(C )minus 1 = 2

Luciano Panek (UNIOESTE) LAWCI 2018 10 19

Examples of P-Perfect Codes

C = 000 111 sube F32

H anti-chain orderdH(u v) = |i ui ∕= vi|

Hamming distance

RdH (C ) = lfloordH(C)minus12 rfloor = 1

P usual total orderdP(u v) = maxi ui ∕= vi

NRT distanceRdP (C ) = dP(C )minus 1 = 2

Luciano Panek (UNIOESTE) LAWCI 2018 10 19

Examples of P-Perfect Codes

C = 000 111 sube F32

H anti-chain orderdH(u v) = |i ui ∕= vi|

Hamming distance

RdH (C ) = lfloordH(C)minus12 rfloor = 1

P usual total orderdP(u v) = maxi ui ∕= vi

NRT distanceRdP (C ) = dP(C )minus 1 = 2

Luciano Panek (UNIOESTE) LAWCI 2018 10 19

Generalized Ordinal Sum of Posets

bull Given A sube [n] and B sube [m] let

R sube Atimes B

be a relation such that Im(R) = B

bull The R-sum of posets P = ([n] leP) and Q = ([m] leQ) is the posetP oplusR Q over [n +m] determined as follows i lePoplusRQ j if and only if

i j le n and i leP j

orn lt i j and (i minus n) leQ (j minus n)

ori le n lt j and iR (j minus n)

Luciano Panek (UNIOESTE) LAWCI 2018 11 19

Generalized Ordinal Sum of Posets

bull Given A sube [n] and B sube [m] let

R sube Atimes B

be a relation such that Im(R) = B

bull The R-sum of posets P = ([n] leP) and Q = ([m] leQ) is the posetP oplusR Q over [n +m] determined as follows i lePoplusRQ j if and only if

i j le n and i leP j

orn lt i j and (i minus n) leQ (j minus n)

ori le n lt j and iR (j minus n)

Luciano Panek (UNIOESTE) LAWCI 2018 11 19

Generalized Ordinal Sum of Posets

bull Given A sube [n] and B sube [m] let

R sube Atimes B

be a relation such that Im(R) = B

bull The R-sum of posets P = ([n] leP) and Q = ([m] leQ) is the posetP oplusR Q over [n +m] determined as follows

i lePoplusRQ j if and only if

i j le n and i leP j

orn lt i j and (i minus n) leQ (j minus n)

ori le n lt j and iR (j minus n)

Luciano Panek (UNIOESTE) LAWCI 2018 11 19

Generalized Ordinal Sum of Posets

bull Given A sube [n] and B sube [m] let

R sube Atimes B

be a relation such that Im(R) = B

bull The R-sum of posets P = ([n] leP) and Q = ([m] leQ) is the posetP oplusR Q over [n +m] determined as follows i lePoplusRQ j if and only if

i j le n and i leP j

orn lt i j and (i minus n) leQ (j minus n)

ori le n lt j and iR (j minus n)

Luciano Panek (UNIOESTE) LAWCI 2018 11 19

Generalized Ordinal Sum of Posets

Example

If P = ([3]leP) is the usual chain order

1 ltP 2 ltP 3

and Q = ([2]leQ) is the antichain order

1

2

3

21

Luciano Panek (UNIOESTE) LAWCI 2018 12 19

Generalized Ordinal Sum of Posets

Example

If P = ([3]leP) is the usual chain order

1 ltP 2 ltP 3

and Q = ([2]leQ) is the antichain order If R = [3]times [2]

1

2

3

21

Luciano Panek (UNIOESTE) LAWCI 2018 13 19

Generalized Ordinal Sum of Posets

Example

Let P = ([3]leP) be the usual chain order

1 ltP 2 ltP 3

and Q = ([2]leQ) be the antichain order If R = [3]times [2] then theR-sum is the Y order

1

2

3

5 (5-3)(4-3) 4

Luciano Panek (UNIOESTE) LAWCI 2018 14 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111

RdPoplusRQ(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Considering the binary codes C1 = 000 111 C2 = 00 10 andC3 = 00 01 10 11 = F2

2 we have that

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus F22 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 16 19

Generalized Ordinal Sum of Posets

Example - to be continued

Considering the binary codes C1 = 000 111 C2 = 00 10 andC3 = 00 01 10 11 = F2

2 we have that

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus F22 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 17 19

Generalized Ordinal Sum of Posets

Theorem

Let P = ([n] leP) and Q = ([m] leQ) be posets C1 oplus C2 sube Fnq oplus Fm

q be acode where C1 is a P-perfect code RPoplusRQ(C1 oplus C2) = RP (C1) and|BP(0RP(C1))| = |BPoplusRQ(0RP(C1))| The following items areequivalent

(i) C2 ≃ Fmq

(ii) C1 oplus C2 is P oplusR Q-perfect and for each minimal element j isin Q thevector x (j) = ej +

983123iisin[n]iRj ei has packing radius

RPoplusRQ (x (j)) ge RP (C1)

Corollary

If C1 is P-perfect then C1 oplus C2 is P oplus Q-perfect withRPoplusQ(C1 oplus C2) = RP (C1) for every poset Q = ([m] leQ) if and only ifC2 = Fm

q

Luciano Panek (UNIOESTE) LAWCI 2018 18 19

Generalized Ordinal Sum of Posets

Theorem

Let P = ([n] leP) and Q = ([m] leQ) be posets C1 oplus C2 sube Fnq oplus Fm

q be acode where C1 is a P-perfect code RPoplusRQ(C1 oplus C2) = RP (C1) and|BP(0RP(C1))| = |BPoplusRQ(0RP(C1))| The following items areequivalent

(i) C2 ≃ Fmq

(ii) C1 oplus C2 is P oplusR Q-perfect and for each minimal element j isin Q thevector x (j) = ej +

983123iisin[n]iRj ei has packing radius

RPoplusRQ (x (j)) ge RP (C1)

Corollary

If C1 is P-perfect then C1 oplus C2 is P oplus Q-perfect withRPoplusQ(C1 oplus C2) = RP (C1) for every poset Q = ([m] leQ) if and only ifC2 = Fm

q

Luciano Panek (UNIOESTE) LAWCI 2018 18 19

References

J Ahn H K Kim J S Kim and M Kim Classification of perfectlinear codes with crown poset structure Discrete Mathematics 268(2003) 21-30

R Brualdi J S Graves and M Lawrence Codes with a poset metric Discrete Mathematics 147 (1995) 57-72

J Y Hyun and H K Kim The poset structures admitting theextended binary Hamming code to be a perfect code DiscreteMathematics 288 (2004) 37-47

J G Lee Perfect codes on some ordered sets Bulletin of the KoreanMathematical Society 43(2) (2006) 293-297

R G L DrsquoOliveira and M Firer The packing radius of a code andpartitioning problems the case for poset metrics on finite vectorspaces Discrete Mathematics 338 (2015) 2143-2167

Luciano Panek (UNIOESTE) LAWCI 2018 19 19

Basic Definitions Codes Posets Poset Metrics andPoset Codes

Let P = ([5]leP) be the Y order If u = 11100 and v = 10110 we havethat u minus v = 01010 and so supp(u minus v) = 2 4

1

2

3

54

Luciano Panek (UNIOESTE) LAWCI 2018 7 19

Basic Definitions Codes Posets Poset Metrics andPoset Codes

Let P = ([5]leP) be the Y order If u = 11100 and v = 10110 we havethat u minus v = 01010 and so supp(u minus v) = 2 4 Therefore dP(u v) = 4

1

2

3

54

Luciano Panek (UNIOESTE) LAWCI 2018 8 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

bull A poset code is a linear subspace C of the metric space (Fnq dP)

bull dP(C ) is the minimum distance of a poset code C

dP(C ) = mindP(c c prime) c c prime isin C c ∕= c prime

bull RP(C ) is the packing radius of a poset code C

RP(C ) = maxr BP(c r) cap BP(cprime r) = empty c ∕= c prime isin C

bull C sube Fnq is a P-perfect code if

983134

cisinCBP(c RP(C )) = Fn

q

Luciano Panek (UNIOESTE) LAWCI 2018 9 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

bull A poset code is a linear subspace C of the metric space (Fnq dP)

bull dP(C ) is the minimum distance of a poset code C

dP(C ) = mindP(c c prime) c c prime isin C c ∕= c prime

bull RP(C ) is the packing radius of a poset code C

RP(C ) = maxr BP(c r) cap BP(cprime r) = empty c ∕= c prime isin C

bull C sube Fnq is a P-perfect code if

983134

cisinCBP(c RP(C )) = Fn

q

Luciano Panek (UNIOESTE) LAWCI 2018 9 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

bull A poset code is a linear subspace C of the metric space (Fnq dP)

bull dP(C ) is the minimum distance of a poset code C

dP(C ) = mindP(c c prime) c c prime isin C c ∕= c prime

bull RP(C ) is the packing radius of a poset code C

RP(C ) = maxr BP(c r) cap BP(cprime r) = empty c ∕= c prime isin C

bull C sube Fnq is a P-perfect code if

983134

cisinCBP(c RP(C )) = Fn

q

Luciano Panek (UNIOESTE) LAWCI 2018 9 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

bull A poset code is a linear subspace C of the metric space (Fnq dP)

bull dP(C ) is the minimum distance of a poset code C

dP(C ) = mindP(c c prime) c c prime isin C c ∕= c prime

bull RP(C ) is the packing radius of a poset code C

RP(C ) = maxr BP(c r) cap BP(cprime r) = empty c ∕= c prime isin C

bull C sube Fnq is a P-perfect code if

983134

cisinCBP(c RP(C )) = Fn

q

Luciano Panek (UNIOESTE) LAWCI 2018 9 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

bull A poset code is a linear subspace C of the metric space (Fnq dP)

bull dP(C ) is the minimum distance of a poset code C

dP(C ) = mindP(c c prime) c c prime isin C c ∕= c prime

bull RP(C ) is the packing radius of a poset code C

RP(C ) = maxr BP(c r) cap BP(cprime r) = empty c ∕= c prime isin C

bull C sube Fnq is a P-perfect code if

983134

cisinCBP(c RP(C )) = Fn

q

Luciano Panek (UNIOESTE) LAWCI 2018 9 19

Examples of P-Perfect Codes

C = 000 111 sube F32

H anti-chain orderdH(u v) = |i ui ∕= vi|

Hamming distance

RdH (C ) = lfloordH(C)minus12 rfloor = 1

P usual total orderdP(u v) = maxi ui ∕= vi

NRT distanceRdP (C ) = dP(C )minus 1 = 2

Luciano Panek (UNIOESTE) LAWCI 2018 10 19

Examples of P-Perfect Codes

C = 000 111 sube F32

H anti-chain orderdH(u v) = |i ui ∕= vi|

Hamming distance

RdH (C ) = lfloordH(C)minus12 rfloor = 1

P usual total orderdP(u v) = maxi ui ∕= vi

NRT distanceRdP (C ) = dP(C )minus 1 = 2

Luciano Panek (UNIOESTE) LAWCI 2018 10 19

Examples of P-Perfect Codes

C = 000 111 sube F32

H anti-chain orderdH(u v) = |i ui ∕= vi|

Hamming distance

RdH (C ) = lfloordH(C)minus12 rfloor = 1

P usual total orderdP(u v) = maxi ui ∕= vi

NRT distanceRdP (C ) = dP(C )minus 1 = 2

Luciano Panek (UNIOESTE) LAWCI 2018 10 19

Examples of P-Perfect Codes

C = 000 111 sube F32

H anti-chain orderdH(u v) = |i ui ∕= vi|

Hamming distance

RdH (C ) = lfloordH(C)minus12 rfloor = 1

P usual total orderdP(u v) = maxi ui ∕= vi

NRT distanceRdP (C ) = dP(C )minus 1 = 2

Luciano Panek (UNIOESTE) LAWCI 2018 10 19

Generalized Ordinal Sum of Posets

bull Given A sube [n] and B sube [m] let

R sube Atimes B

be a relation such that Im(R) = B

bull The R-sum of posets P = ([n] leP) and Q = ([m] leQ) is the posetP oplusR Q over [n +m] determined as follows i lePoplusRQ j if and only if

i j le n and i leP j

orn lt i j and (i minus n) leQ (j minus n)

ori le n lt j and iR (j minus n)

Luciano Panek (UNIOESTE) LAWCI 2018 11 19

Generalized Ordinal Sum of Posets

bull Given A sube [n] and B sube [m] let

R sube Atimes B

be a relation such that Im(R) = B

bull The R-sum of posets P = ([n] leP) and Q = ([m] leQ) is the posetP oplusR Q over [n +m] determined as follows i lePoplusRQ j if and only if

i j le n and i leP j

orn lt i j and (i minus n) leQ (j minus n)

ori le n lt j and iR (j minus n)

Luciano Panek (UNIOESTE) LAWCI 2018 11 19

Generalized Ordinal Sum of Posets

bull Given A sube [n] and B sube [m] let

R sube Atimes B

be a relation such that Im(R) = B

bull The R-sum of posets P = ([n] leP) and Q = ([m] leQ) is the posetP oplusR Q over [n +m] determined as follows

i lePoplusRQ j if and only if

i j le n and i leP j

orn lt i j and (i minus n) leQ (j minus n)

ori le n lt j and iR (j minus n)

Luciano Panek (UNIOESTE) LAWCI 2018 11 19

Generalized Ordinal Sum of Posets

bull Given A sube [n] and B sube [m] let

R sube Atimes B

be a relation such that Im(R) = B

bull The R-sum of posets P = ([n] leP) and Q = ([m] leQ) is the posetP oplusR Q over [n +m] determined as follows i lePoplusRQ j if and only if

i j le n and i leP j

orn lt i j and (i minus n) leQ (j minus n)

ori le n lt j and iR (j minus n)

Luciano Panek (UNIOESTE) LAWCI 2018 11 19

Generalized Ordinal Sum of Posets

Example

If P = ([3]leP) is the usual chain order

1 ltP 2 ltP 3

and Q = ([2]leQ) is the antichain order

1

2

3

21

Luciano Panek (UNIOESTE) LAWCI 2018 12 19

Generalized Ordinal Sum of Posets

Example

If P = ([3]leP) is the usual chain order

1 ltP 2 ltP 3

and Q = ([2]leQ) is the antichain order If R = [3]times [2]

1

2

3

21

Luciano Panek (UNIOESTE) LAWCI 2018 13 19

Generalized Ordinal Sum of Posets

Example

Let P = ([3]leP) be the usual chain order

1 ltP 2 ltP 3

and Q = ([2]leQ) be the antichain order If R = [3]times [2] then theR-sum is the Y order

1

2

3

5 (5-3)(4-3) 4

Luciano Panek (UNIOESTE) LAWCI 2018 14 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111

RdPoplusRQ(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Considering the binary codes C1 = 000 111 C2 = 00 10 andC3 = 00 01 10 11 = F2

2 we have that

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus F22 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 16 19

Generalized Ordinal Sum of Posets

Example - to be continued

Considering the binary codes C1 = 000 111 C2 = 00 10 andC3 = 00 01 10 11 = F2

2 we have that

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus F22 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 17 19

Generalized Ordinal Sum of Posets

Theorem

Let P = ([n] leP) and Q = ([m] leQ) be posets C1 oplus C2 sube Fnq oplus Fm

q be acode where C1 is a P-perfect code RPoplusRQ(C1 oplus C2) = RP (C1) and|BP(0RP(C1))| = |BPoplusRQ(0RP(C1))| The following items areequivalent

(i) C2 ≃ Fmq

(ii) C1 oplus C2 is P oplusR Q-perfect and for each minimal element j isin Q thevector x (j) = ej +

983123iisin[n]iRj ei has packing radius

RPoplusRQ (x (j)) ge RP (C1)

Corollary

If C1 is P-perfect then C1 oplus C2 is P oplus Q-perfect withRPoplusQ(C1 oplus C2) = RP (C1) for every poset Q = ([m] leQ) if and only ifC2 = Fm

q

Luciano Panek (UNIOESTE) LAWCI 2018 18 19

Generalized Ordinal Sum of Posets

Theorem

Let P = ([n] leP) and Q = ([m] leQ) be posets C1 oplus C2 sube Fnq oplus Fm

q be acode where C1 is a P-perfect code RPoplusRQ(C1 oplus C2) = RP (C1) and|BP(0RP(C1))| = |BPoplusRQ(0RP(C1))| The following items areequivalent

(i) C2 ≃ Fmq

(ii) C1 oplus C2 is P oplusR Q-perfect and for each minimal element j isin Q thevector x (j) = ej +

983123iisin[n]iRj ei has packing radius

RPoplusRQ (x (j)) ge RP (C1)

Corollary

If C1 is P-perfect then C1 oplus C2 is P oplus Q-perfect withRPoplusQ(C1 oplus C2) = RP (C1) for every poset Q = ([m] leQ) if and only ifC2 = Fm

q

Luciano Panek (UNIOESTE) LAWCI 2018 18 19

References

J Ahn H K Kim J S Kim and M Kim Classification of perfectlinear codes with crown poset structure Discrete Mathematics 268(2003) 21-30

R Brualdi J S Graves and M Lawrence Codes with a poset metric Discrete Mathematics 147 (1995) 57-72

J Y Hyun and H K Kim The poset structures admitting theextended binary Hamming code to be a perfect code DiscreteMathematics 288 (2004) 37-47

J G Lee Perfect codes on some ordered sets Bulletin of the KoreanMathematical Society 43(2) (2006) 293-297

R G L DrsquoOliveira and M Firer The packing radius of a code andpartitioning problems the case for poset metrics on finite vectorspaces Discrete Mathematics 338 (2015) 2143-2167

Luciano Panek (UNIOESTE) LAWCI 2018 19 19

Basic Definitions Codes Posets Poset Metrics andPoset Codes

Let P = ([5]leP) be the Y order If u = 11100 and v = 10110 we havethat u minus v = 01010 and so supp(u minus v) = 2 4 Therefore dP(u v) = 4

1

2

3

54

Luciano Panek (UNIOESTE) LAWCI 2018 8 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

bull A poset code is a linear subspace C of the metric space (Fnq dP)

bull dP(C ) is the minimum distance of a poset code C

dP(C ) = mindP(c c prime) c c prime isin C c ∕= c prime

bull RP(C ) is the packing radius of a poset code C

RP(C ) = maxr BP(c r) cap BP(cprime r) = empty c ∕= c prime isin C

bull C sube Fnq is a P-perfect code if

983134

cisinCBP(c RP(C )) = Fn

q

Luciano Panek (UNIOESTE) LAWCI 2018 9 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

bull A poset code is a linear subspace C of the metric space (Fnq dP)

bull dP(C ) is the minimum distance of a poset code C

dP(C ) = mindP(c c prime) c c prime isin C c ∕= c prime

bull RP(C ) is the packing radius of a poset code C

RP(C ) = maxr BP(c r) cap BP(cprime r) = empty c ∕= c prime isin C

bull C sube Fnq is a P-perfect code if

983134

cisinCBP(c RP(C )) = Fn

q

Luciano Panek (UNIOESTE) LAWCI 2018 9 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

bull A poset code is a linear subspace C of the metric space (Fnq dP)

bull dP(C ) is the minimum distance of a poset code C

dP(C ) = mindP(c c prime) c c prime isin C c ∕= c prime

bull RP(C ) is the packing radius of a poset code C

RP(C ) = maxr BP(c r) cap BP(cprime r) = empty c ∕= c prime isin C

bull C sube Fnq is a P-perfect code if

983134

cisinCBP(c RP(C )) = Fn

q

Luciano Panek (UNIOESTE) LAWCI 2018 9 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

bull A poset code is a linear subspace C of the metric space (Fnq dP)

bull dP(C ) is the minimum distance of a poset code C

dP(C ) = mindP(c c prime) c c prime isin C c ∕= c prime

bull RP(C ) is the packing radius of a poset code C

RP(C ) = maxr BP(c r) cap BP(cprime r) = empty c ∕= c prime isin C

bull C sube Fnq is a P-perfect code if

983134

cisinCBP(c RP(C )) = Fn

q

Luciano Panek (UNIOESTE) LAWCI 2018 9 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

bull A poset code is a linear subspace C of the metric space (Fnq dP)

bull dP(C ) is the minimum distance of a poset code C

dP(C ) = mindP(c c prime) c c prime isin C c ∕= c prime

bull RP(C ) is the packing radius of a poset code C

RP(C ) = maxr BP(c r) cap BP(cprime r) = empty c ∕= c prime isin C

bull C sube Fnq is a P-perfect code if

983134

cisinCBP(c RP(C )) = Fn

q

Luciano Panek (UNIOESTE) LAWCI 2018 9 19

Examples of P-Perfect Codes

C = 000 111 sube F32

H anti-chain orderdH(u v) = |i ui ∕= vi|

Hamming distance

RdH (C ) = lfloordH(C)minus12 rfloor = 1

P usual total orderdP(u v) = maxi ui ∕= vi

NRT distanceRdP (C ) = dP(C )minus 1 = 2

Luciano Panek (UNIOESTE) LAWCI 2018 10 19

Examples of P-Perfect Codes

C = 000 111 sube F32

H anti-chain orderdH(u v) = |i ui ∕= vi|

Hamming distance

RdH (C ) = lfloordH(C)minus12 rfloor = 1

P usual total orderdP(u v) = maxi ui ∕= vi

NRT distanceRdP (C ) = dP(C )minus 1 = 2

Luciano Panek (UNIOESTE) LAWCI 2018 10 19

Examples of P-Perfect Codes

C = 000 111 sube F32

H anti-chain orderdH(u v) = |i ui ∕= vi|

Hamming distance

RdH (C ) = lfloordH(C)minus12 rfloor = 1

P usual total orderdP(u v) = maxi ui ∕= vi

NRT distanceRdP (C ) = dP(C )minus 1 = 2

Luciano Panek (UNIOESTE) LAWCI 2018 10 19

Examples of P-Perfect Codes

C = 000 111 sube F32

H anti-chain orderdH(u v) = |i ui ∕= vi|

Hamming distance

RdH (C ) = lfloordH(C)minus12 rfloor = 1

P usual total orderdP(u v) = maxi ui ∕= vi

NRT distanceRdP (C ) = dP(C )minus 1 = 2

Luciano Panek (UNIOESTE) LAWCI 2018 10 19

Generalized Ordinal Sum of Posets

bull Given A sube [n] and B sube [m] let

R sube Atimes B

be a relation such that Im(R) = B

bull The R-sum of posets P = ([n] leP) and Q = ([m] leQ) is the posetP oplusR Q over [n +m] determined as follows i lePoplusRQ j if and only if

i j le n and i leP j

orn lt i j and (i minus n) leQ (j minus n)

ori le n lt j and iR (j minus n)

Luciano Panek (UNIOESTE) LAWCI 2018 11 19

Generalized Ordinal Sum of Posets

bull Given A sube [n] and B sube [m] let

R sube Atimes B

be a relation such that Im(R) = B

bull The R-sum of posets P = ([n] leP) and Q = ([m] leQ) is the posetP oplusR Q over [n +m] determined as follows i lePoplusRQ j if and only if

i j le n and i leP j

orn lt i j and (i minus n) leQ (j minus n)

ori le n lt j and iR (j minus n)

Luciano Panek (UNIOESTE) LAWCI 2018 11 19

Generalized Ordinal Sum of Posets

bull Given A sube [n] and B sube [m] let

R sube Atimes B

be a relation such that Im(R) = B

bull The R-sum of posets P = ([n] leP) and Q = ([m] leQ) is the posetP oplusR Q over [n +m] determined as follows

i lePoplusRQ j if and only if

i j le n and i leP j

orn lt i j and (i minus n) leQ (j minus n)

ori le n lt j and iR (j minus n)

Luciano Panek (UNIOESTE) LAWCI 2018 11 19

Generalized Ordinal Sum of Posets

bull Given A sube [n] and B sube [m] let

R sube Atimes B

be a relation such that Im(R) = B

bull The R-sum of posets P = ([n] leP) and Q = ([m] leQ) is the posetP oplusR Q over [n +m] determined as follows i lePoplusRQ j if and only if

i j le n and i leP j

orn lt i j and (i minus n) leQ (j minus n)

ori le n lt j and iR (j minus n)

Luciano Panek (UNIOESTE) LAWCI 2018 11 19

Generalized Ordinal Sum of Posets

Example

If P = ([3]leP) is the usual chain order

1 ltP 2 ltP 3

and Q = ([2]leQ) is the antichain order

1

2

3

21

Luciano Panek (UNIOESTE) LAWCI 2018 12 19

Generalized Ordinal Sum of Posets

Example

If P = ([3]leP) is the usual chain order

1 ltP 2 ltP 3

and Q = ([2]leQ) is the antichain order If R = [3]times [2]

1

2

3

21

Luciano Panek (UNIOESTE) LAWCI 2018 13 19

Generalized Ordinal Sum of Posets

Example

Let P = ([3]leP) be the usual chain order

1 ltP 2 ltP 3

and Q = ([2]leQ) be the antichain order If R = [3]times [2] then theR-sum is the Y order

1

2

3

5 (5-3)(4-3) 4

Luciano Panek (UNIOESTE) LAWCI 2018 14 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111

RdPoplusRQ(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Considering the binary codes C1 = 000 111 C2 = 00 10 andC3 = 00 01 10 11 = F2

2 we have that

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus F22 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 16 19

Generalized Ordinal Sum of Posets

Example - to be continued

Considering the binary codes C1 = 000 111 C2 = 00 10 andC3 = 00 01 10 11 = F2

2 we have that

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus F22 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 17 19

Generalized Ordinal Sum of Posets

Theorem

Let P = ([n] leP) and Q = ([m] leQ) be posets C1 oplus C2 sube Fnq oplus Fm

q be acode where C1 is a P-perfect code RPoplusRQ(C1 oplus C2) = RP (C1) and|BP(0RP(C1))| = |BPoplusRQ(0RP(C1))| The following items areequivalent

(i) C2 ≃ Fmq

(ii) C1 oplus C2 is P oplusR Q-perfect and for each minimal element j isin Q thevector x (j) = ej +

983123iisin[n]iRj ei has packing radius

RPoplusRQ (x (j)) ge RP (C1)

Corollary

If C1 is P-perfect then C1 oplus C2 is P oplus Q-perfect withRPoplusQ(C1 oplus C2) = RP (C1) for every poset Q = ([m] leQ) if and only ifC2 = Fm

q

Luciano Panek (UNIOESTE) LAWCI 2018 18 19

Generalized Ordinal Sum of Posets

Theorem

Let P = ([n] leP) and Q = ([m] leQ) be posets C1 oplus C2 sube Fnq oplus Fm

q be acode where C1 is a P-perfect code RPoplusRQ(C1 oplus C2) = RP (C1) and|BP(0RP(C1))| = |BPoplusRQ(0RP(C1))| The following items areequivalent

(i) C2 ≃ Fmq

(ii) C1 oplus C2 is P oplusR Q-perfect and for each minimal element j isin Q thevector x (j) = ej +

983123iisin[n]iRj ei has packing radius

RPoplusRQ (x (j)) ge RP (C1)

Corollary

If C1 is P-perfect then C1 oplus C2 is P oplus Q-perfect withRPoplusQ(C1 oplus C2) = RP (C1) for every poset Q = ([m] leQ) if and only ifC2 = Fm

q

Luciano Panek (UNIOESTE) LAWCI 2018 18 19

References

J Ahn H K Kim J S Kim and M Kim Classification of perfectlinear codes with crown poset structure Discrete Mathematics 268(2003) 21-30

R Brualdi J S Graves and M Lawrence Codes with a poset metric Discrete Mathematics 147 (1995) 57-72

J Y Hyun and H K Kim The poset structures admitting theextended binary Hamming code to be a perfect code DiscreteMathematics 288 (2004) 37-47

J G Lee Perfect codes on some ordered sets Bulletin of the KoreanMathematical Society 43(2) (2006) 293-297

R G L DrsquoOliveira and M Firer The packing radius of a code andpartitioning problems the case for poset metrics on finite vectorspaces Discrete Mathematics 338 (2015) 2143-2167

Luciano Panek (UNIOESTE) LAWCI 2018 19 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

bull A poset code is a linear subspace C of the metric space (Fnq dP)

bull dP(C ) is the minimum distance of a poset code C

dP(C ) = mindP(c c prime) c c prime isin C c ∕= c prime

bull RP(C ) is the packing radius of a poset code C

RP(C ) = maxr BP(c r) cap BP(cprime r) = empty c ∕= c prime isin C

bull C sube Fnq is a P-perfect code if

983134

cisinCBP(c RP(C )) = Fn

q

Luciano Panek (UNIOESTE) LAWCI 2018 9 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

bull A poset code is a linear subspace C of the metric space (Fnq dP)

bull dP(C ) is the minimum distance of a poset code C

dP(C ) = mindP(c c prime) c c prime isin C c ∕= c prime

bull RP(C ) is the packing radius of a poset code C

RP(C ) = maxr BP(c r) cap BP(cprime r) = empty c ∕= c prime isin C

bull C sube Fnq is a P-perfect code if

983134

cisinCBP(c RP(C )) = Fn

q

Luciano Panek (UNIOESTE) LAWCI 2018 9 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

bull A poset code is a linear subspace C of the metric space (Fnq dP)

bull dP(C ) is the minimum distance of a poset code C

dP(C ) = mindP(c c prime) c c prime isin C c ∕= c prime

bull RP(C ) is the packing radius of a poset code C

RP(C ) = maxr BP(c r) cap BP(cprime r) = empty c ∕= c prime isin C

bull C sube Fnq is a P-perfect code if

983134

cisinCBP(c RP(C )) = Fn

q

Luciano Panek (UNIOESTE) LAWCI 2018 9 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

bull A poset code is a linear subspace C of the metric space (Fnq dP)

bull dP(C ) is the minimum distance of a poset code C

dP(C ) = mindP(c c prime) c c prime isin C c ∕= c prime

bull RP(C ) is the packing radius of a poset code C

RP(C ) = maxr BP(c r) cap BP(cprime r) = empty c ∕= c prime isin C

bull C sube Fnq is a P-perfect code if

983134

cisinCBP(c RP(C )) = Fn

q

Luciano Panek (UNIOESTE) LAWCI 2018 9 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

bull A poset code is a linear subspace C of the metric space (Fnq dP)

bull dP(C ) is the minimum distance of a poset code C

dP(C ) = mindP(c c prime) c c prime isin C c ∕= c prime

bull RP(C ) is the packing radius of a poset code C

RP(C ) = maxr BP(c r) cap BP(cprime r) = empty c ∕= c prime isin C

bull C sube Fnq is a P-perfect code if

983134

cisinCBP(c RP(C )) = Fn

q

Luciano Panek (UNIOESTE) LAWCI 2018 9 19

Examples of P-Perfect Codes

C = 000 111 sube F32

H anti-chain orderdH(u v) = |i ui ∕= vi|

Hamming distance

RdH (C ) = lfloordH(C)minus12 rfloor = 1

P usual total orderdP(u v) = maxi ui ∕= vi

NRT distanceRdP (C ) = dP(C )minus 1 = 2

Luciano Panek (UNIOESTE) LAWCI 2018 10 19

Examples of P-Perfect Codes

C = 000 111 sube F32

H anti-chain orderdH(u v) = |i ui ∕= vi|

Hamming distance

RdH (C ) = lfloordH(C)minus12 rfloor = 1

P usual total orderdP(u v) = maxi ui ∕= vi

NRT distanceRdP (C ) = dP(C )minus 1 = 2

Luciano Panek (UNIOESTE) LAWCI 2018 10 19

Examples of P-Perfect Codes

C = 000 111 sube F32

H anti-chain orderdH(u v) = |i ui ∕= vi|

Hamming distance

RdH (C ) = lfloordH(C)minus12 rfloor = 1

P usual total orderdP(u v) = maxi ui ∕= vi

NRT distanceRdP (C ) = dP(C )minus 1 = 2

Luciano Panek (UNIOESTE) LAWCI 2018 10 19

Examples of P-Perfect Codes

C = 000 111 sube F32

H anti-chain orderdH(u v) = |i ui ∕= vi|

Hamming distance

RdH (C ) = lfloordH(C)minus12 rfloor = 1

P usual total orderdP(u v) = maxi ui ∕= vi

NRT distanceRdP (C ) = dP(C )minus 1 = 2

Luciano Panek (UNIOESTE) LAWCI 2018 10 19

Generalized Ordinal Sum of Posets

bull Given A sube [n] and B sube [m] let

R sube Atimes B

be a relation such that Im(R) = B

bull The R-sum of posets P = ([n] leP) and Q = ([m] leQ) is the posetP oplusR Q over [n +m] determined as follows i lePoplusRQ j if and only if

i j le n and i leP j

orn lt i j and (i minus n) leQ (j minus n)

ori le n lt j and iR (j minus n)

Luciano Panek (UNIOESTE) LAWCI 2018 11 19

Generalized Ordinal Sum of Posets

bull Given A sube [n] and B sube [m] let

R sube Atimes B

be a relation such that Im(R) = B

bull The R-sum of posets P = ([n] leP) and Q = ([m] leQ) is the posetP oplusR Q over [n +m] determined as follows i lePoplusRQ j if and only if

i j le n and i leP j

orn lt i j and (i minus n) leQ (j minus n)

ori le n lt j and iR (j minus n)

Luciano Panek (UNIOESTE) LAWCI 2018 11 19

Generalized Ordinal Sum of Posets

bull Given A sube [n] and B sube [m] let

R sube Atimes B

be a relation such that Im(R) = B

bull The R-sum of posets P = ([n] leP) and Q = ([m] leQ) is the posetP oplusR Q over [n +m] determined as follows

i lePoplusRQ j if and only if

i j le n and i leP j

orn lt i j and (i minus n) leQ (j minus n)

ori le n lt j and iR (j minus n)

Luciano Panek (UNIOESTE) LAWCI 2018 11 19

Generalized Ordinal Sum of Posets

bull Given A sube [n] and B sube [m] let

R sube Atimes B

be a relation such that Im(R) = B

bull The R-sum of posets P = ([n] leP) and Q = ([m] leQ) is the posetP oplusR Q over [n +m] determined as follows i lePoplusRQ j if and only if

i j le n and i leP j

orn lt i j and (i minus n) leQ (j minus n)

ori le n lt j and iR (j minus n)

Luciano Panek (UNIOESTE) LAWCI 2018 11 19

Generalized Ordinal Sum of Posets

Example

If P = ([3]leP) is the usual chain order

1 ltP 2 ltP 3

and Q = ([2]leQ) is the antichain order

1

2

3

21

Luciano Panek (UNIOESTE) LAWCI 2018 12 19

Generalized Ordinal Sum of Posets

Example

If P = ([3]leP) is the usual chain order

1 ltP 2 ltP 3

and Q = ([2]leQ) is the antichain order If R = [3]times [2]

1

2

3

21

Luciano Panek (UNIOESTE) LAWCI 2018 13 19

Generalized Ordinal Sum of Posets

Example

Let P = ([3]leP) be the usual chain order

1 ltP 2 ltP 3

and Q = ([2]leQ) be the antichain order If R = [3]times [2] then theR-sum is the Y order

1

2

3

5 (5-3)(4-3) 4

Luciano Panek (UNIOESTE) LAWCI 2018 14 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111

RdPoplusRQ(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Considering the binary codes C1 = 000 111 C2 = 00 10 andC3 = 00 01 10 11 = F2

2 we have that

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus F22 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 16 19

Generalized Ordinal Sum of Posets

Example - to be continued

Considering the binary codes C1 = 000 111 C2 = 00 10 andC3 = 00 01 10 11 = F2

2 we have that

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus F22 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 17 19

Generalized Ordinal Sum of Posets

Theorem

Let P = ([n] leP) and Q = ([m] leQ) be posets C1 oplus C2 sube Fnq oplus Fm

q be acode where C1 is a P-perfect code RPoplusRQ(C1 oplus C2) = RP (C1) and|BP(0RP(C1))| = |BPoplusRQ(0RP(C1))| The following items areequivalent

(i) C2 ≃ Fmq

(ii) C1 oplus C2 is P oplusR Q-perfect and for each minimal element j isin Q thevector x (j) = ej +

983123iisin[n]iRj ei has packing radius

RPoplusRQ (x (j)) ge RP (C1)

Corollary

If C1 is P-perfect then C1 oplus C2 is P oplus Q-perfect withRPoplusQ(C1 oplus C2) = RP (C1) for every poset Q = ([m] leQ) if and only ifC2 = Fm

q

Luciano Panek (UNIOESTE) LAWCI 2018 18 19

Generalized Ordinal Sum of Posets

Theorem

Let P = ([n] leP) and Q = ([m] leQ) be posets C1 oplus C2 sube Fnq oplus Fm

q be acode where C1 is a P-perfect code RPoplusRQ(C1 oplus C2) = RP (C1) and|BP(0RP(C1))| = |BPoplusRQ(0RP(C1))| The following items areequivalent

(i) C2 ≃ Fmq

(ii) C1 oplus C2 is P oplusR Q-perfect and for each minimal element j isin Q thevector x (j) = ej +

983123iisin[n]iRj ei has packing radius

RPoplusRQ (x (j)) ge RP (C1)

Corollary

If C1 is P-perfect then C1 oplus C2 is P oplus Q-perfect withRPoplusQ(C1 oplus C2) = RP (C1) for every poset Q = ([m] leQ) if and only ifC2 = Fm

q

Luciano Panek (UNIOESTE) LAWCI 2018 18 19

References

J Ahn H K Kim J S Kim and M Kim Classification of perfectlinear codes with crown poset structure Discrete Mathematics 268(2003) 21-30

R Brualdi J S Graves and M Lawrence Codes with a poset metric Discrete Mathematics 147 (1995) 57-72

J Y Hyun and H K Kim The poset structures admitting theextended binary Hamming code to be a perfect code DiscreteMathematics 288 (2004) 37-47

J G Lee Perfect codes on some ordered sets Bulletin of the KoreanMathematical Society 43(2) (2006) 293-297

R G L DrsquoOliveira and M Firer The packing radius of a code andpartitioning problems the case for poset metrics on finite vectorspaces Discrete Mathematics 338 (2015) 2143-2167

Luciano Panek (UNIOESTE) LAWCI 2018 19 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

bull A poset code is a linear subspace C of the metric space (Fnq dP)

bull dP(C ) is the minimum distance of a poset code C

dP(C ) = mindP(c c prime) c c prime isin C c ∕= c prime

bull RP(C ) is the packing radius of a poset code C

RP(C ) = maxr BP(c r) cap BP(cprime r) = empty c ∕= c prime isin C

bull C sube Fnq is a P-perfect code if

983134

cisinCBP(c RP(C )) = Fn

q

Luciano Panek (UNIOESTE) LAWCI 2018 9 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

bull A poset code is a linear subspace C of the metric space (Fnq dP)

bull dP(C ) is the minimum distance of a poset code C

dP(C ) = mindP(c c prime) c c prime isin C c ∕= c prime

bull RP(C ) is the packing radius of a poset code C

RP(C ) = maxr BP(c r) cap BP(cprime r) = empty c ∕= c prime isin C

bull C sube Fnq is a P-perfect code if

983134

cisinCBP(c RP(C )) = Fn

q

Luciano Panek (UNIOESTE) LAWCI 2018 9 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

bull A poset code is a linear subspace C of the metric space (Fnq dP)

bull dP(C ) is the minimum distance of a poset code C

dP(C ) = mindP(c c prime) c c prime isin C c ∕= c prime

bull RP(C ) is the packing radius of a poset code C

RP(C ) = maxr BP(c r) cap BP(cprime r) = empty c ∕= c prime isin C

bull C sube Fnq is a P-perfect code if

983134

cisinCBP(c RP(C )) = Fn

q

Luciano Panek (UNIOESTE) LAWCI 2018 9 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

bull A poset code is a linear subspace C of the metric space (Fnq dP)

bull dP(C ) is the minimum distance of a poset code C

dP(C ) = mindP(c c prime) c c prime isin C c ∕= c prime

bull RP(C ) is the packing radius of a poset code C

RP(C ) = maxr BP(c r) cap BP(cprime r) = empty c ∕= c prime isin C

bull C sube Fnq is a P-perfect code if

983134

cisinCBP(c RP(C )) = Fn

q

Luciano Panek (UNIOESTE) LAWCI 2018 9 19

Examples of P-Perfect Codes

C = 000 111 sube F32

H anti-chain orderdH(u v) = |i ui ∕= vi|

Hamming distance

RdH (C ) = lfloordH(C)minus12 rfloor = 1

P usual total orderdP(u v) = maxi ui ∕= vi

NRT distanceRdP (C ) = dP(C )minus 1 = 2

Luciano Panek (UNIOESTE) LAWCI 2018 10 19

Examples of P-Perfect Codes

C = 000 111 sube F32

H anti-chain orderdH(u v) = |i ui ∕= vi|

Hamming distance

RdH (C ) = lfloordH(C)minus12 rfloor = 1

P usual total orderdP(u v) = maxi ui ∕= vi

NRT distanceRdP (C ) = dP(C )minus 1 = 2

Luciano Panek (UNIOESTE) LAWCI 2018 10 19

Examples of P-Perfect Codes

C = 000 111 sube F32

H anti-chain orderdH(u v) = |i ui ∕= vi|

Hamming distance

RdH (C ) = lfloordH(C)minus12 rfloor = 1

P usual total orderdP(u v) = maxi ui ∕= vi

NRT distanceRdP (C ) = dP(C )minus 1 = 2

Luciano Panek (UNIOESTE) LAWCI 2018 10 19

Examples of P-Perfect Codes

C = 000 111 sube F32

H anti-chain orderdH(u v) = |i ui ∕= vi|

Hamming distance

RdH (C ) = lfloordH(C)minus12 rfloor = 1

P usual total orderdP(u v) = maxi ui ∕= vi

NRT distanceRdP (C ) = dP(C )minus 1 = 2

Luciano Panek (UNIOESTE) LAWCI 2018 10 19

Generalized Ordinal Sum of Posets

bull Given A sube [n] and B sube [m] let

R sube Atimes B

be a relation such that Im(R) = B

bull The R-sum of posets P = ([n] leP) and Q = ([m] leQ) is the posetP oplusR Q over [n +m] determined as follows i lePoplusRQ j if and only if

i j le n and i leP j

orn lt i j and (i minus n) leQ (j minus n)

ori le n lt j and iR (j minus n)

Luciano Panek (UNIOESTE) LAWCI 2018 11 19

Generalized Ordinal Sum of Posets

bull Given A sube [n] and B sube [m] let

R sube Atimes B

be a relation such that Im(R) = B

bull The R-sum of posets P = ([n] leP) and Q = ([m] leQ) is the posetP oplusR Q over [n +m] determined as follows i lePoplusRQ j if and only if

i j le n and i leP j

orn lt i j and (i minus n) leQ (j minus n)

ori le n lt j and iR (j minus n)

Luciano Panek (UNIOESTE) LAWCI 2018 11 19

Generalized Ordinal Sum of Posets

bull Given A sube [n] and B sube [m] let

R sube Atimes B

be a relation such that Im(R) = B

bull The R-sum of posets P = ([n] leP) and Q = ([m] leQ) is the posetP oplusR Q over [n +m] determined as follows

i lePoplusRQ j if and only if

i j le n and i leP j

orn lt i j and (i minus n) leQ (j minus n)

ori le n lt j and iR (j minus n)

Luciano Panek (UNIOESTE) LAWCI 2018 11 19

Generalized Ordinal Sum of Posets

bull Given A sube [n] and B sube [m] let

R sube Atimes B

be a relation such that Im(R) = B

bull The R-sum of posets P = ([n] leP) and Q = ([m] leQ) is the posetP oplusR Q over [n +m] determined as follows i lePoplusRQ j if and only if

i j le n and i leP j

orn lt i j and (i minus n) leQ (j minus n)

ori le n lt j and iR (j minus n)

Luciano Panek (UNIOESTE) LAWCI 2018 11 19

Generalized Ordinal Sum of Posets

Example

If P = ([3]leP) is the usual chain order

1 ltP 2 ltP 3

and Q = ([2]leQ) is the antichain order

1

2

3

21

Luciano Panek (UNIOESTE) LAWCI 2018 12 19

Generalized Ordinal Sum of Posets

Example

If P = ([3]leP) is the usual chain order

1 ltP 2 ltP 3

and Q = ([2]leQ) is the antichain order If R = [3]times [2]

1

2

3

21

Luciano Panek (UNIOESTE) LAWCI 2018 13 19

Generalized Ordinal Sum of Posets

Example

Let P = ([3]leP) be the usual chain order

1 ltP 2 ltP 3

and Q = ([2]leQ) be the antichain order If R = [3]times [2] then theR-sum is the Y order

1

2

3

5 (5-3)(4-3) 4

Luciano Panek (UNIOESTE) LAWCI 2018 14 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111

RdPoplusRQ(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Considering the binary codes C1 = 000 111 C2 = 00 10 andC3 = 00 01 10 11 = F2

2 we have that

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus F22 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 16 19

Generalized Ordinal Sum of Posets

Example - to be continued

Considering the binary codes C1 = 000 111 C2 = 00 10 andC3 = 00 01 10 11 = F2

2 we have that

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus F22 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 17 19

Generalized Ordinal Sum of Posets

Theorem

Let P = ([n] leP) and Q = ([m] leQ) be posets C1 oplus C2 sube Fnq oplus Fm

q be acode where C1 is a P-perfect code RPoplusRQ(C1 oplus C2) = RP (C1) and|BP(0RP(C1))| = |BPoplusRQ(0RP(C1))| The following items areequivalent

(i) C2 ≃ Fmq

(ii) C1 oplus C2 is P oplusR Q-perfect and for each minimal element j isin Q thevector x (j) = ej +

983123iisin[n]iRj ei has packing radius

RPoplusRQ (x (j)) ge RP (C1)

Corollary

If C1 is P-perfect then C1 oplus C2 is P oplus Q-perfect withRPoplusQ(C1 oplus C2) = RP (C1) for every poset Q = ([m] leQ) if and only ifC2 = Fm

q

Luciano Panek (UNIOESTE) LAWCI 2018 18 19

Generalized Ordinal Sum of Posets

Theorem

Let P = ([n] leP) and Q = ([m] leQ) be posets C1 oplus C2 sube Fnq oplus Fm

q be acode where C1 is a P-perfect code RPoplusRQ(C1 oplus C2) = RP (C1) and|BP(0RP(C1))| = |BPoplusRQ(0RP(C1))| The following items areequivalent

(i) C2 ≃ Fmq

(ii) C1 oplus C2 is P oplusR Q-perfect and for each minimal element j isin Q thevector x (j) = ej +

983123iisin[n]iRj ei has packing radius

RPoplusRQ (x (j)) ge RP (C1)

Corollary

If C1 is P-perfect then C1 oplus C2 is P oplus Q-perfect withRPoplusQ(C1 oplus C2) = RP (C1) for every poset Q = ([m] leQ) if and only ifC2 = Fm

q

Luciano Panek (UNIOESTE) LAWCI 2018 18 19

References

J Ahn H K Kim J S Kim and M Kim Classification of perfectlinear codes with crown poset structure Discrete Mathematics 268(2003) 21-30

R Brualdi J S Graves and M Lawrence Codes with a poset metric Discrete Mathematics 147 (1995) 57-72

J Y Hyun and H K Kim The poset structures admitting theextended binary Hamming code to be a perfect code DiscreteMathematics 288 (2004) 37-47

J G Lee Perfect codes on some ordered sets Bulletin of the KoreanMathematical Society 43(2) (2006) 293-297

R G L DrsquoOliveira and M Firer The packing radius of a code andpartitioning problems the case for poset metrics on finite vectorspaces Discrete Mathematics 338 (2015) 2143-2167

Luciano Panek (UNIOESTE) LAWCI 2018 19 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

bull A poset code is a linear subspace C of the metric space (Fnq dP)

bull dP(C ) is the minimum distance of a poset code C

dP(C ) = mindP(c c prime) c c prime isin C c ∕= c prime

bull RP(C ) is the packing radius of a poset code C

RP(C ) = maxr BP(c r) cap BP(cprime r) = empty c ∕= c prime isin C

bull C sube Fnq is a P-perfect code if

983134

cisinCBP(c RP(C )) = Fn

q

Luciano Panek (UNIOESTE) LAWCI 2018 9 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

bull A poset code is a linear subspace C of the metric space (Fnq dP)

bull dP(C ) is the minimum distance of a poset code C

dP(C ) = mindP(c c prime) c c prime isin C c ∕= c prime

bull RP(C ) is the packing radius of a poset code C

RP(C ) = maxr BP(c r) cap BP(cprime r) = empty c ∕= c prime isin C

bull C sube Fnq is a P-perfect code if

983134

cisinCBP(c RP(C )) = Fn

q

Luciano Panek (UNIOESTE) LAWCI 2018 9 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

bull A poset code is a linear subspace C of the metric space (Fnq dP)

bull dP(C ) is the minimum distance of a poset code C

dP(C ) = mindP(c c prime) c c prime isin C c ∕= c prime

bull RP(C ) is the packing radius of a poset code C

RP(C ) = maxr BP(c r) cap BP(cprime r) = empty c ∕= c prime isin C

bull C sube Fnq is a P-perfect code if

983134

cisinCBP(c RP(C )) = Fn

q

Luciano Panek (UNIOESTE) LAWCI 2018 9 19

Examples of P-Perfect Codes

C = 000 111 sube F32

H anti-chain orderdH(u v) = |i ui ∕= vi|

Hamming distance

RdH (C ) = lfloordH(C)minus12 rfloor = 1

P usual total orderdP(u v) = maxi ui ∕= vi

NRT distanceRdP (C ) = dP(C )minus 1 = 2

Luciano Panek (UNIOESTE) LAWCI 2018 10 19

Examples of P-Perfect Codes

C = 000 111 sube F32

H anti-chain orderdH(u v) = |i ui ∕= vi|

Hamming distance

RdH (C ) = lfloordH(C)minus12 rfloor = 1

P usual total orderdP(u v) = maxi ui ∕= vi

NRT distanceRdP (C ) = dP(C )minus 1 = 2

Luciano Panek (UNIOESTE) LAWCI 2018 10 19

Examples of P-Perfect Codes

C = 000 111 sube F32

H anti-chain orderdH(u v) = |i ui ∕= vi|

Hamming distance

RdH (C ) = lfloordH(C)minus12 rfloor = 1

P usual total orderdP(u v) = maxi ui ∕= vi

NRT distanceRdP (C ) = dP(C )minus 1 = 2

Luciano Panek (UNIOESTE) LAWCI 2018 10 19

Examples of P-Perfect Codes

C = 000 111 sube F32

H anti-chain orderdH(u v) = |i ui ∕= vi|

Hamming distance

RdH (C ) = lfloordH(C)minus12 rfloor = 1

P usual total orderdP(u v) = maxi ui ∕= vi

NRT distanceRdP (C ) = dP(C )minus 1 = 2

Luciano Panek (UNIOESTE) LAWCI 2018 10 19

Generalized Ordinal Sum of Posets

bull Given A sube [n] and B sube [m] let

R sube Atimes B

be a relation such that Im(R) = B

bull The R-sum of posets P = ([n] leP) and Q = ([m] leQ) is the posetP oplusR Q over [n +m] determined as follows i lePoplusRQ j if and only if

i j le n and i leP j

orn lt i j and (i minus n) leQ (j minus n)

ori le n lt j and iR (j minus n)

Luciano Panek (UNIOESTE) LAWCI 2018 11 19

Generalized Ordinal Sum of Posets

bull Given A sube [n] and B sube [m] let

R sube Atimes B

be a relation such that Im(R) = B

bull The R-sum of posets P = ([n] leP) and Q = ([m] leQ) is the posetP oplusR Q over [n +m] determined as follows i lePoplusRQ j if and only if

i j le n and i leP j

orn lt i j and (i minus n) leQ (j minus n)

ori le n lt j and iR (j minus n)

Luciano Panek (UNIOESTE) LAWCI 2018 11 19

Generalized Ordinal Sum of Posets

bull Given A sube [n] and B sube [m] let

R sube Atimes B

be a relation such that Im(R) = B

bull The R-sum of posets P = ([n] leP) and Q = ([m] leQ) is the posetP oplusR Q over [n +m] determined as follows

i lePoplusRQ j if and only if

i j le n and i leP j

orn lt i j and (i minus n) leQ (j minus n)

ori le n lt j and iR (j minus n)

Luciano Panek (UNIOESTE) LAWCI 2018 11 19

Generalized Ordinal Sum of Posets

bull Given A sube [n] and B sube [m] let

R sube Atimes B

be a relation such that Im(R) = B

bull The R-sum of posets P = ([n] leP) and Q = ([m] leQ) is the posetP oplusR Q over [n +m] determined as follows i lePoplusRQ j if and only if

i j le n and i leP j

orn lt i j and (i minus n) leQ (j minus n)

ori le n lt j and iR (j minus n)

Luciano Panek (UNIOESTE) LAWCI 2018 11 19

Generalized Ordinal Sum of Posets

Example

If P = ([3]leP) is the usual chain order

1 ltP 2 ltP 3

and Q = ([2]leQ) is the antichain order

1

2

3

21

Luciano Panek (UNIOESTE) LAWCI 2018 12 19

Generalized Ordinal Sum of Posets

Example

If P = ([3]leP) is the usual chain order

1 ltP 2 ltP 3

and Q = ([2]leQ) is the antichain order If R = [3]times [2]

1

2

3

21

Luciano Panek (UNIOESTE) LAWCI 2018 13 19

Generalized Ordinal Sum of Posets

Example

Let P = ([3]leP) be the usual chain order

1 ltP 2 ltP 3

and Q = ([2]leQ) be the antichain order If R = [3]times [2] then theR-sum is the Y order

1

2

3

5 (5-3)(4-3) 4

Luciano Panek (UNIOESTE) LAWCI 2018 14 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111

RdPoplusRQ(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Considering the binary codes C1 = 000 111 C2 = 00 10 andC3 = 00 01 10 11 = F2

2 we have that

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus F22 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 16 19

Generalized Ordinal Sum of Posets

Example - to be continued

Considering the binary codes C1 = 000 111 C2 = 00 10 andC3 = 00 01 10 11 = F2

2 we have that

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus F22 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 17 19

Generalized Ordinal Sum of Posets

Theorem

Let P = ([n] leP) and Q = ([m] leQ) be posets C1 oplus C2 sube Fnq oplus Fm

q be acode where C1 is a P-perfect code RPoplusRQ(C1 oplus C2) = RP (C1) and|BP(0RP(C1))| = |BPoplusRQ(0RP(C1))| The following items areequivalent

(i) C2 ≃ Fmq

(ii) C1 oplus C2 is P oplusR Q-perfect and for each minimal element j isin Q thevector x (j) = ej +

983123iisin[n]iRj ei has packing radius

RPoplusRQ (x (j)) ge RP (C1)

Corollary

If C1 is P-perfect then C1 oplus C2 is P oplus Q-perfect withRPoplusQ(C1 oplus C2) = RP (C1) for every poset Q = ([m] leQ) if and only ifC2 = Fm

q

Luciano Panek (UNIOESTE) LAWCI 2018 18 19

Generalized Ordinal Sum of Posets

Theorem

Let P = ([n] leP) and Q = ([m] leQ) be posets C1 oplus C2 sube Fnq oplus Fm

q be acode where C1 is a P-perfect code RPoplusRQ(C1 oplus C2) = RP (C1) and|BP(0RP(C1))| = |BPoplusRQ(0RP(C1))| The following items areequivalent

(i) C2 ≃ Fmq

(ii) C1 oplus C2 is P oplusR Q-perfect and for each minimal element j isin Q thevector x (j) = ej +

983123iisin[n]iRj ei has packing radius

RPoplusRQ (x (j)) ge RP (C1)

Corollary

If C1 is P-perfect then C1 oplus C2 is P oplus Q-perfect withRPoplusQ(C1 oplus C2) = RP (C1) for every poset Q = ([m] leQ) if and only ifC2 = Fm

q

Luciano Panek (UNIOESTE) LAWCI 2018 18 19

References

J Ahn H K Kim J S Kim and M Kim Classification of perfectlinear codes with crown poset structure Discrete Mathematics 268(2003) 21-30

R Brualdi J S Graves and M Lawrence Codes with a poset metric Discrete Mathematics 147 (1995) 57-72

J Y Hyun and H K Kim The poset structures admitting theextended binary Hamming code to be a perfect code DiscreteMathematics 288 (2004) 37-47

J G Lee Perfect codes on some ordered sets Bulletin of the KoreanMathematical Society 43(2) (2006) 293-297

R G L DrsquoOliveira and M Firer The packing radius of a code andpartitioning problems the case for poset metrics on finite vectorspaces Discrete Mathematics 338 (2015) 2143-2167

Luciano Panek (UNIOESTE) LAWCI 2018 19 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

bull A poset code is a linear subspace C of the metric space (Fnq dP)

bull dP(C ) is the minimum distance of a poset code C

dP(C ) = mindP(c c prime) c c prime isin C c ∕= c prime

bull RP(C ) is the packing radius of a poset code C

RP(C ) = maxr BP(c r) cap BP(cprime r) = empty c ∕= c prime isin C

bull C sube Fnq is a P-perfect code if

983134

cisinCBP(c RP(C )) = Fn

q

Luciano Panek (UNIOESTE) LAWCI 2018 9 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

bull A poset code is a linear subspace C of the metric space (Fnq dP)

bull dP(C ) is the minimum distance of a poset code C

dP(C ) = mindP(c c prime) c c prime isin C c ∕= c prime

bull RP(C ) is the packing radius of a poset code C

RP(C ) = maxr BP(c r) cap BP(cprime r) = empty c ∕= c prime isin C

bull C sube Fnq is a P-perfect code if

983134

cisinCBP(c RP(C )) = Fn

q

Luciano Panek (UNIOESTE) LAWCI 2018 9 19

Examples of P-Perfect Codes

C = 000 111 sube F32

H anti-chain orderdH(u v) = |i ui ∕= vi|

Hamming distance

RdH (C ) = lfloordH(C)minus12 rfloor = 1

P usual total orderdP(u v) = maxi ui ∕= vi

NRT distanceRdP (C ) = dP(C )minus 1 = 2

Luciano Panek (UNIOESTE) LAWCI 2018 10 19

Examples of P-Perfect Codes

C = 000 111 sube F32

H anti-chain orderdH(u v) = |i ui ∕= vi|

Hamming distance

RdH (C ) = lfloordH(C)minus12 rfloor = 1

P usual total orderdP(u v) = maxi ui ∕= vi

NRT distanceRdP (C ) = dP(C )minus 1 = 2

Luciano Panek (UNIOESTE) LAWCI 2018 10 19

Examples of P-Perfect Codes

C = 000 111 sube F32

H anti-chain orderdH(u v) = |i ui ∕= vi|

Hamming distance

RdH (C ) = lfloordH(C)minus12 rfloor = 1

P usual total orderdP(u v) = maxi ui ∕= vi

NRT distanceRdP (C ) = dP(C )minus 1 = 2

Luciano Panek (UNIOESTE) LAWCI 2018 10 19

Examples of P-Perfect Codes

C = 000 111 sube F32

H anti-chain orderdH(u v) = |i ui ∕= vi|

Hamming distance

RdH (C ) = lfloordH(C)minus12 rfloor = 1

P usual total orderdP(u v) = maxi ui ∕= vi

NRT distanceRdP (C ) = dP(C )minus 1 = 2

Luciano Panek (UNIOESTE) LAWCI 2018 10 19

Generalized Ordinal Sum of Posets

bull Given A sube [n] and B sube [m] let

R sube Atimes B

be a relation such that Im(R) = B

bull The R-sum of posets P = ([n] leP) and Q = ([m] leQ) is the posetP oplusR Q over [n +m] determined as follows i lePoplusRQ j if and only if

i j le n and i leP j

orn lt i j and (i minus n) leQ (j minus n)

ori le n lt j and iR (j minus n)

Luciano Panek (UNIOESTE) LAWCI 2018 11 19

Generalized Ordinal Sum of Posets

bull Given A sube [n] and B sube [m] let

R sube Atimes B

be a relation such that Im(R) = B

bull The R-sum of posets P = ([n] leP) and Q = ([m] leQ) is the posetP oplusR Q over [n +m] determined as follows i lePoplusRQ j if and only if

i j le n and i leP j

orn lt i j and (i minus n) leQ (j minus n)

ori le n lt j and iR (j minus n)

Luciano Panek (UNIOESTE) LAWCI 2018 11 19

Generalized Ordinal Sum of Posets

bull Given A sube [n] and B sube [m] let

R sube Atimes B

be a relation such that Im(R) = B

bull The R-sum of posets P = ([n] leP) and Q = ([m] leQ) is the posetP oplusR Q over [n +m] determined as follows

i lePoplusRQ j if and only if

i j le n and i leP j

orn lt i j and (i minus n) leQ (j minus n)

ori le n lt j and iR (j minus n)

Luciano Panek (UNIOESTE) LAWCI 2018 11 19

Generalized Ordinal Sum of Posets

bull Given A sube [n] and B sube [m] let

R sube Atimes B

be a relation such that Im(R) = B

bull The R-sum of posets P = ([n] leP) and Q = ([m] leQ) is the posetP oplusR Q over [n +m] determined as follows i lePoplusRQ j if and only if

i j le n and i leP j

orn lt i j and (i minus n) leQ (j minus n)

ori le n lt j and iR (j minus n)

Luciano Panek (UNIOESTE) LAWCI 2018 11 19

Generalized Ordinal Sum of Posets

Example

If P = ([3]leP) is the usual chain order

1 ltP 2 ltP 3

and Q = ([2]leQ) is the antichain order

1

2

3

21

Luciano Panek (UNIOESTE) LAWCI 2018 12 19

Generalized Ordinal Sum of Posets

Example

If P = ([3]leP) is the usual chain order

1 ltP 2 ltP 3

and Q = ([2]leQ) is the antichain order If R = [3]times [2]

1

2

3

21

Luciano Panek (UNIOESTE) LAWCI 2018 13 19

Generalized Ordinal Sum of Posets

Example

Let P = ([3]leP) be the usual chain order

1 ltP 2 ltP 3

and Q = ([2]leQ) be the antichain order If R = [3]times [2] then theR-sum is the Y order

1

2

3

5 (5-3)(4-3) 4

Luciano Panek (UNIOESTE) LAWCI 2018 14 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111

RdPoplusRQ(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Considering the binary codes C1 = 000 111 C2 = 00 10 andC3 = 00 01 10 11 = F2

2 we have that

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus F22 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 16 19

Generalized Ordinal Sum of Posets

Example - to be continued

Considering the binary codes C1 = 000 111 C2 = 00 10 andC3 = 00 01 10 11 = F2

2 we have that

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus F22 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 17 19

Generalized Ordinal Sum of Posets

Theorem

Let P = ([n] leP) and Q = ([m] leQ) be posets C1 oplus C2 sube Fnq oplus Fm

q be acode where C1 is a P-perfect code RPoplusRQ(C1 oplus C2) = RP (C1) and|BP(0RP(C1))| = |BPoplusRQ(0RP(C1))| The following items areequivalent

(i) C2 ≃ Fmq

(ii) C1 oplus C2 is P oplusR Q-perfect and for each minimal element j isin Q thevector x (j) = ej +

983123iisin[n]iRj ei has packing radius

RPoplusRQ (x (j)) ge RP (C1)

Corollary

If C1 is P-perfect then C1 oplus C2 is P oplus Q-perfect withRPoplusQ(C1 oplus C2) = RP (C1) for every poset Q = ([m] leQ) if and only ifC2 = Fm

q

Luciano Panek (UNIOESTE) LAWCI 2018 18 19

Generalized Ordinal Sum of Posets

Theorem

Let P = ([n] leP) and Q = ([m] leQ) be posets C1 oplus C2 sube Fnq oplus Fm

q be acode where C1 is a P-perfect code RPoplusRQ(C1 oplus C2) = RP (C1) and|BP(0RP(C1))| = |BPoplusRQ(0RP(C1))| The following items areequivalent

(i) C2 ≃ Fmq

(ii) C1 oplus C2 is P oplusR Q-perfect and for each minimal element j isin Q thevector x (j) = ej +

983123iisin[n]iRj ei has packing radius

RPoplusRQ (x (j)) ge RP (C1)

Corollary

If C1 is P-perfect then C1 oplus C2 is P oplus Q-perfect withRPoplusQ(C1 oplus C2) = RP (C1) for every poset Q = ([m] leQ) if and only ifC2 = Fm

q

Luciano Panek (UNIOESTE) LAWCI 2018 18 19

References

J Ahn H K Kim J S Kim and M Kim Classification of perfectlinear codes with crown poset structure Discrete Mathematics 268(2003) 21-30

R Brualdi J S Graves and M Lawrence Codes with a poset metric Discrete Mathematics 147 (1995) 57-72

J Y Hyun and H K Kim The poset structures admitting theextended binary Hamming code to be a perfect code DiscreteMathematics 288 (2004) 37-47

J G Lee Perfect codes on some ordered sets Bulletin of the KoreanMathematical Society 43(2) (2006) 293-297

R G L DrsquoOliveira and M Firer The packing radius of a code andpartitioning problems the case for poset metrics on finite vectorspaces Discrete Mathematics 338 (2015) 2143-2167

Luciano Panek (UNIOESTE) LAWCI 2018 19 19

Basic Definitions Codes Posets Poset Metrics and PosetCodes

bull A poset code is a linear subspace C of the metric space (Fnq dP)

bull dP(C ) is the minimum distance of a poset code C

dP(C ) = mindP(c c prime) c c prime isin C c ∕= c prime

bull RP(C ) is the packing radius of a poset code C

RP(C ) = maxr BP(c r) cap BP(cprime r) = empty c ∕= c prime isin C

bull C sube Fnq is a P-perfect code if

983134

cisinCBP(c RP(C )) = Fn

q

Luciano Panek (UNIOESTE) LAWCI 2018 9 19

Examples of P-Perfect Codes

C = 000 111 sube F32

H anti-chain orderdH(u v) = |i ui ∕= vi|

Hamming distance

RdH (C ) = lfloordH(C)minus12 rfloor = 1

P usual total orderdP(u v) = maxi ui ∕= vi

NRT distanceRdP (C ) = dP(C )minus 1 = 2

Luciano Panek (UNIOESTE) LAWCI 2018 10 19

Examples of P-Perfect Codes

C = 000 111 sube F32

H anti-chain orderdH(u v) = |i ui ∕= vi|

Hamming distance

RdH (C ) = lfloordH(C)minus12 rfloor = 1

P usual total orderdP(u v) = maxi ui ∕= vi

NRT distanceRdP (C ) = dP(C )minus 1 = 2

Luciano Panek (UNIOESTE) LAWCI 2018 10 19

Examples of P-Perfect Codes

C = 000 111 sube F32

H anti-chain orderdH(u v) = |i ui ∕= vi|

Hamming distance

RdH (C ) = lfloordH(C)minus12 rfloor = 1

P usual total orderdP(u v) = maxi ui ∕= vi

NRT distanceRdP (C ) = dP(C )minus 1 = 2

Luciano Panek (UNIOESTE) LAWCI 2018 10 19

Examples of P-Perfect Codes

C = 000 111 sube F32

H anti-chain orderdH(u v) = |i ui ∕= vi|

Hamming distance

RdH (C ) = lfloordH(C)minus12 rfloor = 1

P usual total orderdP(u v) = maxi ui ∕= vi

NRT distanceRdP (C ) = dP(C )minus 1 = 2

Luciano Panek (UNIOESTE) LAWCI 2018 10 19

Generalized Ordinal Sum of Posets

bull Given A sube [n] and B sube [m] let

R sube Atimes B

be a relation such that Im(R) = B

bull The R-sum of posets P = ([n] leP) and Q = ([m] leQ) is the posetP oplusR Q over [n +m] determined as follows i lePoplusRQ j if and only if

i j le n and i leP j

orn lt i j and (i minus n) leQ (j minus n)

ori le n lt j and iR (j minus n)

Luciano Panek (UNIOESTE) LAWCI 2018 11 19

Generalized Ordinal Sum of Posets

bull Given A sube [n] and B sube [m] let

R sube Atimes B

be a relation such that Im(R) = B

bull The R-sum of posets P = ([n] leP) and Q = ([m] leQ) is the posetP oplusR Q over [n +m] determined as follows i lePoplusRQ j if and only if

i j le n and i leP j

orn lt i j and (i minus n) leQ (j minus n)

ori le n lt j and iR (j minus n)

Luciano Panek (UNIOESTE) LAWCI 2018 11 19

Generalized Ordinal Sum of Posets

bull Given A sube [n] and B sube [m] let

R sube Atimes B

be a relation such that Im(R) = B

bull The R-sum of posets P = ([n] leP) and Q = ([m] leQ) is the posetP oplusR Q over [n +m] determined as follows

i lePoplusRQ j if and only if

i j le n and i leP j

orn lt i j and (i minus n) leQ (j minus n)

ori le n lt j and iR (j minus n)

Luciano Panek (UNIOESTE) LAWCI 2018 11 19

Generalized Ordinal Sum of Posets

bull Given A sube [n] and B sube [m] let

R sube Atimes B

be a relation such that Im(R) = B

bull The R-sum of posets P = ([n] leP) and Q = ([m] leQ) is the posetP oplusR Q over [n +m] determined as follows i lePoplusRQ j if and only if

i j le n and i leP j

orn lt i j and (i minus n) leQ (j minus n)

ori le n lt j and iR (j minus n)

Luciano Panek (UNIOESTE) LAWCI 2018 11 19

Generalized Ordinal Sum of Posets

Example

If P = ([3]leP) is the usual chain order

1 ltP 2 ltP 3

and Q = ([2]leQ) is the antichain order

1

2

3

21

Luciano Panek (UNIOESTE) LAWCI 2018 12 19

Generalized Ordinal Sum of Posets

Example

If P = ([3]leP) is the usual chain order

1 ltP 2 ltP 3

and Q = ([2]leQ) is the antichain order If R = [3]times [2]

1

2

3

21

Luciano Panek (UNIOESTE) LAWCI 2018 13 19

Generalized Ordinal Sum of Posets

Example

Let P = ([3]leP) be the usual chain order

1 ltP 2 ltP 3

and Q = ([2]leQ) be the antichain order If R = [3]times [2] then theR-sum is the Y order

1

2

3

5 (5-3)(4-3) 4

Luciano Panek (UNIOESTE) LAWCI 2018 14 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111

RdPoplusRQ(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Considering the binary codes C1 = 000 111 C2 = 00 10 andC3 = 00 01 10 11 = F2

2 we have that

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus F22 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 16 19

Generalized Ordinal Sum of Posets

Example - to be continued

Considering the binary codes C1 = 000 111 C2 = 00 10 andC3 = 00 01 10 11 = F2

2 we have that

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus F22 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 17 19

Generalized Ordinal Sum of Posets

Theorem

Let P = ([n] leP) and Q = ([m] leQ) be posets C1 oplus C2 sube Fnq oplus Fm

q be acode where C1 is a P-perfect code RPoplusRQ(C1 oplus C2) = RP (C1) and|BP(0RP(C1))| = |BPoplusRQ(0RP(C1))| The following items areequivalent

(i) C2 ≃ Fmq

(ii) C1 oplus C2 is P oplusR Q-perfect and for each minimal element j isin Q thevector x (j) = ej +

983123iisin[n]iRj ei has packing radius

RPoplusRQ (x (j)) ge RP (C1)

Corollary

If C1 is P-perfect then C1 oplus C2 is P oplus Q-perfect withRPoplusQ(C1 oplus C2) = RP (C1) for every poset Q = ([m] leQ) if and only ifC2 = Fm

q

Luciano Panek (UNIOESTE) LAWCI 2018 18 19

Generalized Ordinal Sum of Posets

Theorem

Let P = ([n] leP) and Q = ([m] leQ) be posets C1 oplus C2 sube Fnq oplus Fm

q be acode where C1 is a P-perfect code RPoplusRQ(C1 oplus C2) = RP (C1) and|BP(0RP(C1))| = |BPoplusRQ(0RP(C1))| The following items areequivalent

(i) C2 ≃ Fmq

(ii) C1 oplus C2 is P oplusR Q-perfect and for each minimal element j isin Q thevector x (j) = ej +

983123iisin[n]iRj ei has packing radius

RPoplusRQ (x (j)) ge RP (C1)

Corollary

If C1 is P-perfect then C1 oplus C2 is P oplus Q-perfect withRPoplusQ(C1 oplus C2) = RP (C1) for every poset Q = ([m] leQ) if and only ifC2 = Fm

q

Luciano Panek (UNIOESTE) LAWCI 2018 18 19

References

J Ahn H K Kim J S Kim and M Kim Classification of perfectlinear codes with crown poset structure Discrete Mathematics 268(2003) 21-30

R Brualdi J S Graves and M Lawrence Codes with a poset metric Discrete Mathematics 147 (1995) 57-72

J Y Hyun and H K Kim The poset structures admitting theextended binary Hamming code to be a perfect code DiscreteMathematics 288 (2004) 37-47

J G Lee Perfect codes on some ordered sets Bulletin of the KoreanMathematical Society 43(2) (2006) 293-297

R G L DrsquoOliveira and M Firer The packing radius of a code andpartitioning problems the case for poset metrics on finite vectorspaces Discrete Mathematics 338 (2015) 2143-2167

Luciano Panek (UNIOESTE) LAWCI 2018 19 19

Examples of P-Perfect Codes

C = 000 111 sube F32

H anti-chain orderdH(u v) = |i ui ∕= vi|

Hamming distance

RdH (C ) = lfloordH(C)minus12 rfloor = 1

P usual total orderdP(u v) = maxi ui ∕= vi

NRT distanceRdP (C ) = dP(C )minus 1 = 2

Luciano Panek (UNIOESTE) LAWCI 2018 10 19

Examples of P-Perfect Codes

C = 000 111 sube F32

H anti-chain orderdH(u v) = |i ui ∕= vi|

Hamming distance

RdH (C ) = lfloordH(C)minus12 rfloor = 1

P usual total orderdP(u v) = maxi ui ∕= vi

NRT distanceRdP (C ) = dP(C )minus 1 = 2

Luciano Panek (UNIOESTE) LAWCI 2018 10 19

Examples of P-Perfect Codes

C = 000 111 sube F32

H anti-chain orderdH(u v) = |i ui ∕= vi|

Hamming distance

RdH (C ) = lfloordH(C)minus12 rfloor = 1

P usual total orderdP(u v) = maxi ui ∕= vi

NRT distanceRdP (C ) = dP(C )minus 1 = 2

Luciano Panek (UNIOESTE) LAWCI 2018 10 19

Examples of P-Perfect Codes

C = 000 111 sube F32

H anti-chain orderdH(u v) = |i ui ∕= vi|

Hamming distance

RdH (C ) = lfloordH(C)minus12 rfloor = 1

P usual total orderdP(u v) = maxi ui ∕= vi

NRT distanceRdP (C ) = dP(C )minus 1 = 2

Luciano Panek (UNIOESTE) LAWCI 2018 10 19

Generalized Ordinal Sum of Posets

bull Given A sube [n] and B sube [m] let

R sube Atimes B

be a relation such that Im(R) = B

bull The R-sum of posets P = ([n] leP) and Q = ([m] leQ) is the posetP oplusR Q over [n +m] determined as follows i lePoplusRQ j if and only if

i j le n and i leP j

orn lt i j and (i minus n) leQ (j minus n)

ori le n lt j and iR (j minus n)

Luciano Panek (UNIOESTE) LAWCI 2018 11 19

Generalized Ordinal Sum of Posets

bull Given A sube [n] and B sube [m] let

R sube Atimes B

be a relation such that Im(R) = B

bull The R-sum of posets P = ([n] leP) and Q = ([m] leQ) is the posetP oplusR Q over [n +m] determined as follows i lePoplusRQ j if and only if

i j le n and i leP j

orn lt i j and (i minus n) leQ (j minus n)

ori le n lt j and iR (j minus n)

Luciano Panek (UNIOESTE) LAWCI 2018 11 19

Generalized Ordinal Sum of Posets

bull Given A sube [n] and B sube [m] let

R sube Atimes B

be a relation such that Im(R) = B

bull The R-sum of posets P = ([n] leP) and Q = ([m] leQ) is the posetP oplusR Q over [n +m] determined as follows

i lePoplusRQ j if and only if

i j le n and i leP j

orn lt i j and (i minus n) leQ (j minus n)

ori le n lt j and iR (j minus n)

Luciano Panek (UNIOESTE) LAWCI 2018 11 19

Generalized Ordinal Sum of Posets

bull Given A sube [n] and B sube [m] let

R sube Atimes B

be a relation such that Im(R) = B

bull The R-sum of posets P = ([n] leP) and Q = ([m] leQ) is the posetP oplusR Q over [n +m] determined as follows i lePoplusRQ j if and only if

i j le n and i leP j

orn lt i j and (i minus n) leQ (j minus n)

ori le n lt j and iR (j minus n)

Luciano Panek (UNIOESTE) LAWCI 2018 11 19

Generalized Ordinal Sum of Posets

Example

If P = ([3]leP) is the usual chain order

1 ltP 2 ltP 3

and Q = ([2]leQ) is the antichain order

1

2

3

21

Luciano Panek (UNIOESTE) LAWCI 2018 12 19

Generalized Ordinal Sum of Posets

Example

If P = ([3]leP) is the usual chain order

1 ltP 2 ltP 3

and Q = ([2]leQ) is the antichain order If R = [3]times [2]

1

2

3

21

Luciano Panek (UNIOESTE) LAWCI 2018 13 19

Generalized Ordinal Sum of Posets

Example

Let P = ([3]leP) be the usual chain order

1 ltP 2 ltP 3

and Q = ([2]leQ) be the antichain order If R = [3]times [2] then theR-sum is the Y order

1

2

3

5 (5-3)(4-3) 4

Luciano Panek (UNIOESTE) LAWCI 2018 14 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111

RdPoplusRQ(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Considering the binary codes C1 = 000 111 C2 = 00 10 andC3 = 00 01 10 11 = F2

2 we have that

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus F22 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 16 19

Generalized Ordinal Sum of Posets

Example - to be continued

Considering the binary codes C1 = 000 111 C2 = 00 10 andC3 = 00 01 10 11 = F2

2 we have that

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus F22 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 17 19

Generalized Ordinal Sum of Posets

Theorem

Let P = ([n] leP) and Q = ([m] leQ) be posets C1 oplus C2 sube Fnq oplus Fm

q be acode where C1 is a P-perfect code RPoplusRQ(C1 oplus C2) = RP (C1) and|BP(0RP(C1))| = |BPoplusRQ(0RP(C1))| The following items areequivalent

(i) C2 ≃ Fmq

(ii) C1 oplus C2 is P oplusR Q-perfect and for each minimal element j isin Q thevector x (j) = ej +

983123iisin[n]iRj ei has packing radius

RPoplusRQ (x (j)) ge RP (C1)

Corollary

If C1 is P-perfect then C1 oplus C2 is P oplus Q-perfect withRPoplusQ(C1 oplus C2) = RP (C1) for every poset Q = ([m] leQ) if and only ifC2 = Fm

q

Luciano Panek (UNIOESTE) LAWCI 2018 18 19

Generalized Ordinal Sum of Posets

Theorem

Let P = ([n] leP) and Q = ([m] leQ) be posets C1 oplus C2 sube Fnq oplus Fm

q be acode where C1 is a P-perfect code RPoplusRQ(C1 oplus C2) = RP (C1) and|BP(0RP(C1))| = |BPoplusRQ(0RP(C1))| The following items areequivalent

(i) C2 ≃ Fmq

(ii) C1 oplus C2 is P oplusR Q-perfect and for each minimal element j isin Q thevector x (j) = ej +

983123iisin[n]iRj ei has packing radius

RPoplusRQ (x (j)) ge RP (C1)

Corollary

If C1 is P-perfect then C1 oplus C2 is P oplus Q-perfect withRPoplusQ(C1 oplus C2) = RP (C1) for every poset Q = ([m] leQ) if and only ifC2 = Fm

q

Luciano Panek (UNIOESTE) LAWCI 2018 18 19

References

J Ahn H K Kim J S Kim and M Kim Classification of perfectlinear codes with crown poset structure Discrete Mathematics 268(2003) 21-30

R Brualdi J S Graves and M Lawrence Codes with a poset metric Discrete Mathematics 147 (1995) 57-72

J Y Hyun and H K Kim The poset structures admitting theextended binary Hamming code to be a perfect code DiscreteMathematics 288 (2004) 37-47

J G Lee Perfect codes on some ordered sets Bulletin of the KoreanMathematical Society 43(2) (2006) 293-297

R G L DrsquoOliveira and M Firer The packing radius of a code andpartitioning problems the case for poset metrics on finite vectorspaces Discrete Mathematics 338 (2015) 2143-2167

Luciano Panek (UNIOESTE) LAWCI 2018 19 19

Examples of P-Perfect Codes

C = 000 111 sube F32

H anti-chain orderdH(u v) = |i ui ∕= vi|

Hamming distance

RdH (C ) = lfloordH(C)minus12 rfloor = 1

P usual total orderdP(u v) = maxi ui ∕= vi

NRT distanceRdP (C ) = dP(C )minus 1 = 2

Luciano Panek (UNIOESTE) LAWCI 2018 10 19

Examples of P-Perfect Codes

C = 000 111 sube F32

H anti-chain orderdH(u v) = |i ui ∕= vi|

Hamming distance

RdH (C ) = lfloordH(C)minus12 rfloor = 1

P usual total orderdP(u v) = maxi ui ∕= vi

NRT distanceRdP (C ) = dP(C )minus 1 = 2

Luciano Panek (UNIOESTE) LAWCI 2018 10 19

Examples of P-Perfect Codes

C = 000 111 sube F32

H anti-chain orderdH(u v) = |i ui ∕= vi|

Hamming distance

RdH (C ) = lfloordH(C)minus12 rfloor = 1

P usual total orderdP(u v) = maxi ui ∕= vi

NRT distanceRdP (C ) = dP(C )minus 1 = 2

Luciano Panek (UNIOESTE) LAWCI 2018 10 19

Generalized Ordinal Sum of Posets

bull Given A sube [n] and B sube [m] let

R sube Atimes B

be a relation such that Im(R) = B

bull The R-sum of posets P = ([n] leP) and Q = ([m] leQ) is the posetP oplusR Q over [n +m] determined as follows i lePoplusRQ j if and only if

i j le n and i leP j

orn lt i j and (i minus n) leQ (j minus n)

ori le n lt j and iR (j minus n)

Luciano Panek (UNIOESTE) LAWCI 2018 11 19

Generalized Ordinal Sum of Posets

bull Given A sube [n] and B sube [m] let

R sube Atimes B

be a relation such that Im(R) = B

bull The R-sum of posets P = ([n] leP) and Q = ([m] leQ) is the posetP oplusR Q over [n +m] determined as follows i lePoplusRQ j if and only if

i j le n and i leP j

orn lt i j and (i minus n) leQ (j minus n)

ori le n lt j and iR (j minus n)

Luciano Panek (UNIOESTE) LAWCI 2018 11 19

Generalized Ordinal Sum of Posets

bull Given A sube [n] and B sube [m] let

R sube Atimes B

be a relation such that Im(R) = B

bull The R-sum of posets P = ([n] leP) and Q = ([m] leQ) is the posetP oplusR Q over [n +m] determined as follows

i lePoplusRQ j if and only if

i j le n and i leP j

orn lt i j and (i minus n) leQ (j minus n)

ori le n lt j and iR (j minus n)

Luciano Panek (UNIOESTE) LAWCI 2018 11 19

Generalized Ordinal Sum of Posets

bull Given A sube [n] and B sube [m] let

R sube Atimes B

be a relation such that Im(R) = B

bull The R-sum of posets P = ([n] leP) and Q = ([m] leQ) is the posetP oplusR Q over [n +m] determined as follows i lePoplusRQ j if and only if

i j le n and i leP j

orn lt i j and (i minus n) leQ (j minus n)

ori le n lt j and iR (j minus n)

Luciano Panek (UNIOESTE) LAWCI 2018 11 19

Generalized Ordinal Sum of Posets

Example

If P = ([3]leP) is the usual chain order

1 ltP 2 ltP 3

and Q = ([2]leQ) is the antichain order

1

2

3

21

Luciano Panek (UNIOESTE) LAWCI 2018 12 19

Generalized Ordinal Sum of Posets

Example

If P = ([3]leP) is the usual chain order

1 ltP 2 ltP 3

and Q = ([2]leQ) is the antichain order If R = [3]times [2]

1

2

3

21

Luciano Panek (UNIOESTE) LAWCI 2018 13 19

Generalized Ordinal Sum of Posets

Example

Let P = ([3]leP) be the usual chain order

1 ltP 2 ltP 3

and Q = ([2]leQ) be the antichain order If R = [3]times [2] then theR-sum is the Y order

1

2

3

5 (5-3)(4-3) 4

Luciano Panek (UNIOESTE) LAWCI 2018 14 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111

RdPoplusRQ(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Considering the binary codes C1 = 000 111 C2 = 00 10 andC3 = 00 01 10 11 = F2

2 we have that

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus F22 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 16 19

Generalized Ordinal Sum of Posets

Example - to be continued

Considering the binary codes C1 = 000 111 C2 = 00 10 andC3 = 00 01 10 11 = F2

2 we have that

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus F22 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 17 19

Generalized Ordinal Sum of Posets

Theorem

Let P = ([n] leP) and Q = ([m] leQ) be posets C1 oplus C2 sube Fnq oplus Fm

q be acode where C1 is a P-perfect code RPoplusRQ(C1 oplus C2) = RP (C1) and|BP(0RP(C1))| = |BPoplusRQ(0RP(C1))| The following items areequivalent

(i) C2 ≃ Fmq

(ii) C1 oplus C2 is P oplusR Q-perfect and for each minimal element j isin Q thevector x (j) = ej +

983123iisin[n]iRj ei has packing radius

RPoplusRQ (x (j)) ge RP (C1)

Corollary

If C1 is P-perfect then C1 oplus C2 is P oplus Q-perfect withRPoplusQ(C1 oplus C2) = RP (C1) for every poset Q = ([m] leQ) if and only ifC2 = Fm

q

Luciano Panek (UNIOESTE) LAWCI 2018 18 19

Generalized Ordinal Sum of Posets

Theorem

Let P = ([n] leP) and Q = ([m] leQ) be posets C1 oplus C2 sube Fnq oplus Fm

q be acode where C1 is a P-perfect code RPoplusRQ(C1 oplus C2) = RP (C1) and|BP(0RP(C1))| = |BPoplusRQ(0RP(C1))| The following items areequivalent

(i) C2 ≃ Fmq

(ii) C1 oplus C2 is P oplusR Q-perfect and for each minimal element j isin Q thevector x (j) = ej +

983123iisin[n]iRj ei has packing radius

RPoplusRQ (x (j)) ge RP (C1)

Corollary

If C1 is P-perfect then C1 oplus C2 is P oplus Q-perfect withRPoplusQ(C1 oplus C2) = RP (C1) for every poset Q = ([m] leQ) if and only ifC2 = Fm

q

Luciano Panek (UNIOESTE) LAWCI 2018 18 19

References

J Ahn H K Kim J S Kim and M Kim Classification of perfectlinear codes with crown poset structure Discrete Mathematics 268(2003) 21-30

R Brualdi J S Graves and M Lawrence Codes with a poset metric Discrete Mathematics 147 (1995) 57-72

J Y Hyun and H K Kim The poset structures admitting theextended binary Hamming code to be a perfect code DiscreteMathematics 288 (2004) 37-47

J G Lee Perfect codes on some ordered sets Bulletin of the KoreanMathematical Society 43(2) (2006) 293-297

R G L DrsquoOliveira and M Firer The packing radius of a code andpartitioning problems the case for poset metrics on finite vectorspaces Discrete Mathematics 338 (2015) 2143-2167

Luciano Panek (UNIOESTE) LAWCI 2018 19 19

Examples of P-Perfect Codes

C = 000 111 sube F32

H anti-chain orderdH(u v) = |i ui ∕= vi|

Hamming distance

RdH (C ) = lfloordH(C)minus12 rfloor = 1

P usual total orderdP(u v) = maxi ui ∕= vi

NRT distanceRdP (C ) = dP(C )minus 1 = 2

Luciano Panek (UNIOESTE) LAWCI 2018 10 19

Examples of P-Perfect Codes

C = 000 111 sube F32

H anti-chain orderdH(u v) = |i ui ∕= vi|

Hamming distance

RdH (C ) = lfloordH(C)minus12 rfloor = 1

P usual total orderdP(u v) = maxi ui ∕= vi

NRT distanceRdP (C ) = dP(C )minus 1 = 2

Luciano Panek (UNIOESTE) LAWCI 2018 10 19

Generalized Ordinal Sum of Posets

bull Given A sube [n] and B sube [m] let

R sube Atimes B

be a relation such that Im(R) = B

bull The R-sum of posets P = ([n] leP) and Q = ([m] leQ) is the posetP oplusR Q over [n +m] determined as follows i lePoplusRQ j if and only if

i j le n and i leP j

orn lt i j and (i minus n) leQ (j minus n)

ori le n lt j and iR (j minus n)

Luciano Panek (UNIOESTE) LAWCI 2018 11 19

Generalized Ordinal Sum of Posets

bull Given A sube [n] and B sube [m] let

R sube Atimes B

be a relation such that Im(R) = B

bull The R-sum of posets P = ([n] leP) and Q = ([m] leQ) is the posetP oplusR Q over [n +m] determined as follows i lePoplusRQ j if and only if

i j le n and i leP j

orn lt i j and (i minus n) leQ (j minus n)

ori le n lt j and iR (j minus n)

Luciano Panek (UNIOESTE) LAWCI 2018 11 19

Generalized Ordinal Sum of Posets

bull Given A sube [n] and B sube [m] let

R sube Atimes B

be a relation such that Im(R) = B

bull The R-sum of posets P = ([n] leP) and Q = ([m] leQ) is the posetP oplusR Q over [n +m] determined as follows

i lePoplusRQ j if and only if

i j le n and i leP j

orn lt i j and (i minus n) leQ (j minus n)

ori le n lt j and iR (j minus n)

Luciano Panek (UNIOESTE) LAWCI 2018 11 19

Generalized Ordinal Sum of Posets

bull Given A sube [n] and B sube [m] let

R sube Atimes B

be a relation such that Im(R) = B

bull The R-sum of posets P = ([n] leP) and Q = ([m] leQ) is the posetP oplusR Q over [n +m] determined as follows i lePoplusRQ j if and only if

i j le n and i leP j

orn lt i j and (i minus n) leQ (j minus n)

ori le n lt j and iR (j minus n)

Luciano Panek (UNIOESTE) LAWCI 2018 11 19

Generalized Ordinal Sum of Posets

Example

If P = ([3]leP) is the usual chain order

1 ltP 2 ltP 3

and Q = ([2]leQ) is the antichain order

1

2

3

21

Luciano Panek (UNIOESTE) LAWCI 2018 12 19

Generalized Ordinal Sum of Posets

Example

If P = ([3]leP) is the usual chain order

1 ltP 2 ltP 3

and Q = ([2]leQ) is the antichain order If R = [3]times [2]

1

2

3

21

Luciano Panek (UNIOESTE) LAWCI 2018 13 19

Generalized Ordinal Sum of Posets

Example

Let P = ([3]leP) be the usual chain order

1 ltP 2 ltP 3

and Q = ([2]leQ) be the antichain order If R = [3]times [2] then theR-sum is the Y order

1

2

3

5 (5-3)(4-3) 4

Luciano Panek (UNIOESTE) LAWCI 2018 14 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111

RdPoplusRQ(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Considering the binary codes C1 = 000 111 C2 = 00 10 andC3 = 00 01 10 11 = F2

2 we have that

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus F22 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 16 19

Generalized Ordinal Sum of Posets

Example - to be continued

Considering the binary codes C1 = 000 111 C2 = 00 10 andC3 = 00 01 10 11 = F2

2 we have that

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus F22 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 17 19

Generalized Ordinal Sum of Posets

Theorem

Let P = ([n] leP) and Q = ([m] leQ) be posets C1 oplus C2 sube Fnq oplus Fm

q be acode where C1 is a P-perfect code RPoplusRQ(C1 oplus C2) = RP (C1) and|BP(0RP(C1))| = |BPoplusRQ(0RP(C1))| The following items areequivalent

(i) C2 ≃ Fmq

(ii) C1 oplus C2 is P oplusR Q-perfect and for each minimal element j isin Q thevector x (j) = ej +

983123iisin[n]iRj ei has packing radius

RPoplusRQ (x (j)) ge RP (C1)

Corollary

If C1 is P-perfect then C1 oplus C2 is P oplus Q-perfect withRPoplusQ(C1 oplus C2) = RP (C1) for every poset Q = ([m] leQ) if and only ifC2 = Fm

q

Luciano Panek (UNIOESTE) LAWCI 2018 18 19

Generalized Ordinal Sum of Posets

Theorem

Let P = ([n] leP) and Q = ([m] leQ) be posets C1 oplus C2 sube Fnq oplus Fm

q be acode where C1 is a P-perfect code RPoplusRQ(C1 oplus C2) = RP (C1) and|BP(0RP(C1))| = |BPoplusRQ(0RP(C1))| The following items areequivalent

(i) C2 ≃ Fmq

(ii) C1 oplus C2 is P oplusR Q-perfect and for each minimal element j isin Q thevector x (j) = ej +

983123iisin[n]iRj ei has packing radius

RPoplusRQ (x (j)) ge RP (C1)

Corollary

If C1 is P-perfect then C1 oplus C2 is P oplus Q-perfect withRPoplusQ(C1 oplus C2) = RP (C1) for every poset Q = ([m] leQ) if and only ifC2 = Fm

q

Luciano Panek (UNIOESTE) LAWCI 2018 18 19

References

J Ahn H K Kim J S Kim and M Kim Classification of perfectlinear codes with crown poset structure Discrete Mathematics 268(2003) 21-30

R Brualdi J S Graves and M Lawrence Codes with a poset metric Discrete Mathematics 147 (1995) 57-72

J Y Hyun and H K Kim The poset structures admitting theextended binary Hamming code to be a perfect code DiscreteMathematics 288 (2004) 37-47

J G Lee Perfect codes on some ordered sets Bulletin of the KoreanMathematical Society 43(2) (2006) 293-297

R G L DrsquoOliveira and M Firer The packing radius of a code andpartitioning problems the case for poset metrics on finite vectorspaces Discrete Mathematics 338 (2015) 2143-2167

Luciano Panek (UNIOESTE) LAWCI 2018 19 19

Examples of P-Perfect Codes

C = 000 111 sube F32

H anti-chain orderdH(u v) = |i ui ∕= vi|

Hamming distance

RdH (C ) = lfloordH(C)minus12 rfloor = 1

P usual total orderdP(u v) = maxi ui ∕= vi

NRT distanceRdP (C ) = dP(C )minus 1 = 2

Luciano Panek (UNIOESTE) LAWCI 2018 10 19

Generalized Ordinal Sum of Posets

bull Given A sube [n] and B sube [m] let

R sube Atimes B

be a relation such that Im(R) = B

bull The R-sum of posets P = ([n] leP) and Q = ([m] leQ) is the posetP oplusR Q over [n +m] determined as follows i lePoplusRQ j if and only if

i j le n and i leP j

orn lt i j and (i minus n) leQ (j minus n)

ori le n lt j and iR (j minus n)

Luciano Panek (UNIOESTE) LAWCI 2018 11 19

Generalized Ordinal Sum of Posets

bull Given A sube [n] and B sube [m] let

R sube Atimes B

be a relation such that Im(R) = B

bull The R-sum of posets P = ([n] leP) and Q = ([m] leQ) is the posetP oplusR Q over [n +m] determined as follows i lePoplusRQ j if and only if

i j le n and i leP j

orn lt i j and (i minus n) leQ (j minus n)

ori le n lt j and iR (j minus n)

Luciano Panek (UNIOESTE) LAWCI 2018 11 19

Generalized Ordinal Sum of Posets

bull Given A sube [n] and B sube [m] let

R sube Atimes B

be a relation such that Im(R) = B

bull The R-sum of posets P = ([n] leP) and Q = ([m] leQ) is the posetP oplusR Q over [n +m] determined as follows

i lePoplusRQ j if and only if

i j le n and i leP j

orn lt i j and (i minus n) leQ (j minus n)

ori le n lt j and iR (j minus n)

Luciano Panek (UNIOESTE) LAWCI 2018 11 19

Generalized Ordinal Sum of Posets

bull Given A sube [n] and B sube [m] let

R sube Atimes B

be a relation such that Im(R) = B

bull The R-sum of posets P = ([n] leP) and Q = ([m] leQ) is the posetP oplusR Q over [n +m] determined as follows i lePoplusRQ j if and only if

i j le n and i leP j

orn lt i j and (i minus n) leQ (j minus n)

ori le n lt j and iR (j minus n)

Luciano Panek (UNIOESTE) LAWCI 2018 11 19

Generalized Ordinal Sum of Posets

Example

If P = ([3]leP) is the usual chain order

1 ltP 2 ltP 3

and Q = ([2]leQ) is the antichain order

1

2

3

21

Luciano Panek (UNIOESTE) LAWCI 2018 12 19

Generalized Ordinal Sum of Posets

Example

If P = ([3]leP) is the usual chain order

1 ltP 2 ltP 3

and Q = ([2]leQ) is the antichain order If R = [3]times [2]

1

2

3

21

Luciano Panek (UNIOESTE) LAWCI 2018 13 19

Generalized Ordinal Sum of Posets

Example

Let P = ([3]leP) be the usual chain order

1 ltP 2 ltP 3

and Q = ([2]leQ) be the antichain order If R = [3]times [2] then theR-sum is the Y order

1

2

3

5 (5-3)(4-3) 4

Luciano Panek (UNIOESTE) LAWCI 2018 14 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111

RdPoplusRQ(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Considering the binary codes C1 = 000 111 C2 = 00 10 andC3 = 00 01 10 11 = F2

2 we have that

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus F22 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 16 19

Generalized Ordinal Sum of Posets

Example - to be continued

Considering the binary codes C1 = 000 111 C2 = 00 10 andC3 = 00 01 10 11 = F2

2 we have that

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus F22 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 17 19

Generalized Ordinal Sum of Posets

Theorem

Let P = ([n] leP) and Q = ([m] leQ) be posets C1 oplus C2 sube Fnq oplus Fm

q be acode where C1 is a P-perfect code RPoplusRQ(C1 oplus C2) = RP (C1) and|BP(0RP(C1))| = |BPoplusRQ(0RP(C1))| The following items areequivalent

(i) C2 ≃ Fmq

(ii) C1 oplus C2 is P oplusR Q-perfect and for each minimal element j isin Q thevector x (j) = ej +

983123iisin[n]iRj ei has packing radius

RPoplusRQ (x (j)) ge RP (C1)

Corollary

If C1 is P-perfect then C1 oplus C2 is P oplus Q-perfect withRPoplusQ(C1 oplus C2) = RP (C1) for every poset Q = ([m] leQ) if and only ifC2 = Fm

q

Luciano Panek (UNIOESTE) LAWCI 2018 18 19

Generalized Ordinal Sum of Posets

Theorem

Let P = ([n] leP) and Q = ([m] leQ) be posets C1 oplus C2 sube Fnq oplus Fm

q be acode where C1 is a P-perfect code RPoplusRQ(C1 oplus C2) = RP (C1) and|BP(0RP(C1))| = |BPoplusRQ(0RP(C1))| The following items areequivalent

(i) C2 ≃ Fmq

(ii) C1 oplus C2 is P oplusR Q-perfect and for each minimal element j isin Q thevector x (j) = ej +

983123iisin[n]iRj ei has packing radius

RPoplusRQ (x (j)) ge RP (C1)

Corollary

If C1 is P-perfect then C1 oplus C2 is P oplus Q-perfect withRPoplusQ(C1 oplus C2) = RP (C1) for every poset Q = ([m] leQ) if and only ifC2 = Fm

q

Luciano Panek (UNIOESTE) LAWCI 2018 18 19

References

J Ahn H K Kim J S Kim and M Kim Classification of perfectlinear codes with crown poset structure Discrete Mathematics 268(2003) 21-30

R Brualdi J S Graves and M Lawrence Codes with a poset metric Discrete Mathematics 147 (1995) 57-72

J Y Hyun and H K Kim The poset structures admitting theextended binary Hamming code to be a perfect code DiscreteMathematics 288 (2004) 37-47

J G Lee Perfect codes on some ordered sets Bulletin of the KoreanMathematical Society 43(2) (2006) 293-297

R G L DrsquoOliveira and M Firer The packing radius of a code andpartitioning problems the case for poset metrics on finite vectorspaces Discrete Mathematics 338 (2015) 2143-2167

Luciano Panek (UNIOESTE) LAWCI 2018 19 19

Generalized Ordinal Sum of Posets

bull Given A sube [n] and B sube [m] let

R sube Atimes B

be a relation such that Im(R) = B

bull The R-sum of posets P = ([n] leP) and Q = ([m] leQ) is the posetP oplusR Q over [n +m] determined as follows i lePoplusRQ j if and only if

i j le n and i leP j

orn lt i j and (i minus n) leQ (j minus n)

ori le n lt j and iR (j minus n)

Luciano Panek (UNIOESTE) LAWCI 2018 11 19

Generalized Ordinal Sum of Posets

bull Given A sube [n] and B sube [m] let

R sube Atimes B

be a relation such that Im(R) = B

bull The R-sum of posets P = ([n] leP) and Q = ([m] leQ) is the posetP oplusR Q over [n +m] determined as follows i lePoplusRQ j if and only if

i j le n and i leP j

orn lt i j and (i minus n) leQ (j minus n)

ori le n lt j and iR (j minus n)

Luciano Panek (UNIOESTE) LAWCI 2018 11 19

Generalized Ordinal Sum of Posets

bull Given A sube [n] and B sube [m] let

R sube Atimes B

be a relation such that Im(R) = B

bull The R-sum of posets P = ([n] leP) and Q = ([m] leQ) is the posetP oplusR Q over [n +m] determined as follows

i lePoplusRQ j if and only if

i j le n and i leP j

orn lt i j and (i minus n) leQ (j minus n)

ori le n lt j and iR (j minus n)

Luciano Panek (UNIOESTE) LAWCI 2018 11 19

Generalized Ordinal Sum of Posets

bull Given A sube [n] and B sube [m] let

R sube Atimes B

be a relation such that Im(R) = B

bull The R-sum of posets P = ([n] leP) and Q = ([m] leQ) is the posetP oplusR Q over [n +m] determined as follows i lePoplusRQ j if and only if

i j le n and i leP j

orn lt i j and (i minus n) leQ (j minus n)

ori le n lt j and iR (j minus n)

Luciano Panek (UNIOESTE) LAWCI 2018 11 19

Generalized Ordinal Sum of Posets

Example

If P = ([3]leP) is the usual chain order

1 ltP 2 ltP 3

and Q = ([2]leQ) is the antichain order

1

2

3

21

Luciano Panek (UNIOESTE) LAWCI 2018 12 19

Generalized Ordinal Sum of Posets

Example

If P = ([3]leP) is the usual chain order

1 ltP 2 ltP 3

and Q = ([2]leQ) is the antichain order If R = [3]times [2]

1

2

3

21

Luciano Panek (UNIOESTE) LAWCI 2018 13 19

Generalized Ordinal Sum of Posets

Example

Let P = ([3]leP) be the usual chain order

1 ltP 2 ltP 3

and Q = ([2]leQ) be the antichain order If R = [3]times [2] then theR-sum is the Y order

1

2

3

5 (5-3)(4-3) 4

Luciano Panek (UNIOESTE) LAWCI 2018 14 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111

RdPoplusRQ(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Considering the binary codes C1 = 000 111 C2 = 00 10 andC3 = 00 01 10 11 = F2

2 we have that

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus F22 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 16 19

Generalized Ordinal Sum of Posets

Example - to be continued

Considering the binary codes C1 = 000 111 C2 = 00 10 andC3 = 00 01 10 11 = F2

2 we have that

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus F22 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 17 19

Generalized Ordinal Sum of Posets

Theorem

Let P = ([n] leP) and Q = ([m] leQ) be posets C1 oplus C2 sube Fnq oplus Fm

q be acode where C1 is a P-perfect code RPoplusRQ(C1 oplus C2) = RP (C1) and|BP(0RP(C1))| = |BPoplusRQ(0RP(C1))| The following items areequivalent

(i) C2 ≃ Fmq

(ii) C1 oplus C2 is P oplusR Q-perfect and for each minimal element j isin Q thevector x (j) = ej +

983123iisin[n]iRj ei has packing radius

RPoplusRQ (x (j)) ge RP (C1)

Corollary

If C1 is P-perfect then C1 oplus C2 is P oplus Q-perfect withRPoplusQ(C1 oplus C2) = RP (C1) for every poset Q = ([m] leQ) if and only ifC2 = Fm

q

Luciano Panek (UNIOESTE) LAWCI 2018 18 19

Generalized Ordinal Sum of Posets

Theorem

Let P = ([n] leP) and Q = ([m] leQ) be posets C1 oplus C2 sube Fnq oplus Fm

q be acode where C1 is a P-perfect code RPoplusRQ(C1 oplus C2) = RP (C1) and|BP(0RP(C1))| = |BPoplusRQ(0RP(C1))| The following items areequivalent

(i) C2 ≃ Fmq

(ii) C1 oplus C2 is P oplusR Q-perfect and for each minimal element j isin Q thevector x (j) = ej +

983123iisin[n]iRj ei has packing radius

RPoplusRQ (x (j)) ge RP (C1)

Corollary

If C1 is P-perfect then C1 oplus C2 is P oplus Q-perfect withRPoplusQ(C1 oplus C2) = RP (C1) for every poset Q = ([m] leQ) if and only ifC2 = Fm

q

Luciano Panek (UNIOESTE) LAWCI 2018 18 19

References

J Ahn H K Kim J S Kim and M Kim Classification of perfectlinear codes with crown poset structure Discrete Mathematics 268(2003) 21-30

R Brualdi J S Graves and M Lawrence Codes with a poset metric Discrete Mathematics 147 (1995) 57-72

J Y Hyun and H K Kim The poset structures admitting theextended binary Hamming code to be a perfect code DiscreteMathematics 288 (2004) 37-47

J G Lee Perfect codes on some ordered sets Bulletin of the KoreanMathematical Society 43(2) (2006) 293-297

R G L DrsquoOliveira and M Firer The packing radius of a code andpartitioning problems the case for poset metrics on finite vectorspaces Discrete Mathematics 338 (2015) 2143-2167

Luciano Panek (UNIOESTE) LAWCI 2018 19 19

Generalized Ordinal Sum of Posets

bull Given A sube [n] and B sube [m] let

R sube Atimes B

be a relation such that Im(R) = B

bull The R-sum of posets P = ([n] leP) and Q = ([m] leQ) is the posetP oplusR Q over [n +m] determined as follows i lePoplusRQ j if and only if

i j le n and i leP j

orn lt i j and (i minus n) leQ (j minus n)

ori le n lt j and iR (j minus n)

Luciano Panek (UNIOESTE) LAWCI 2018 11 19

Generalized Ordinal Sum of Posets

bull Given A sube [n] and B sube [m] let

R sube Atimes B

be a relation such that Im(R) = B

bull The R-sum of posets P = ([n] leP) and Q = ([m] leQ) is the posetP oplusR Q over [n +m] determined as follows

i lePoplusRQ j if and only if

i j le n and i leP j

orn lt i j and (i minus n) leQ (j minus n)

ori le n lt j and iR (j minus n)

Luciano Panek (UNIOESTE) LAWCI 2018 11 19

Generalized Ordinal Sum of Posets

bull Given A sube [n] and B sube [m] let

R sube Atimes B

be a relation such that Im(R) = B

bull The R-sum of posets P = ([n] leP) and Q = ([m] leQ) is the posetP oplusR Q over [n +m] determined as follows i lePoplusRQ j if and only if

i j le n and i leP j

orn lt i j and (i minus n) leQ (j minus n)

ori le n lt j and iR (j minus n)

Luciano Panek (UNIOESTE) LAWCI 2018 11 19

Generalized Ordinal Sum of Posets

Example

If P = ([3]leP) is the usual chain order

1 ltP 2 ltP 3

and Q = ([2]leQ) is the antichain order

1

2

3

21

Luciano Panek (UNIOESTE) LAWCI 2018 12 19

Generalized Ordinal Sum of Posets

Example

If P = ([3]leP) is the usual chain order

1 ltP 2 ltP 3

and Q = ([2]leQ) is the antichain order If R = [3]times [2]

1

2

3

21

Luciano Panek (UNIOESTE) LAWCI 2018 13 19

Generalized Ordinal Sum of Posets

Example

Let P = ([3]leP) be the usual chain order

1 ltP 2 ltP 3

and Q = ([2]leQ) be the antichain order If R = [3]times [2] then theR-sum is the Y order

1

2

3

5 (5-3)(4-3) 4

Luciano Panek (UNIOESTE) LAWCI 2018 14 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111

RdPoplusRQ(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Considering the binary codes C1 = 000 111 C2 = 00 10 andC3 = 00 01 10 11 = F2

2 we have that

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus F22 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 16 19

Generalized Ordinal Sum of Posets

Example - to be continued

Considering the binary codes C1 = 000 111 C2 = 00 10 andC3 = 00 01 10 11 = F2

2 we have that

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus F22 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 17 19

Generalized Ordinal Sum of Posets

Theorem

Let P = ([n] leP) and Q = ([m] leQ) be posets C1 oplus C2 sube Fnq oplus Fm

q be acode where C1 is a P-perfect code RPoplusRQ(C1 oplus C2) = RP (C1) and|BP(0RP(C1))| = |BPoplusRQ(0RP(C1))| The following items areequivalent

(i) C2 ≃ Fmq

(ii) C1 oplus C2 is P oplusR Q-perfect and for each minimal element j isin Q thevector x (j) = ej +

983123iisin[n]iRj ei has packing radius

RPoplusRQ (x (j)) ge RP (C1)

Corollary

If C1 is P-perfect then C1 oplus C2 is P oplus Q-perfect withRPoplusQ(C1 oplus C2) = RP (C1) for every poset Q = ([m] leQ) if and only ifC2 = Fm

q

Luciano Panek (UNIOESTE) LAWCI 2018 18 19

Generalized Ordinal Sum of Posets

Theorem

Let P = ([n] leP) and Q = ([m] leQ) be posets C1 oplus C2 sube Fnq oplus Fm

q be acode where C1 is a P-perfect code RPoplusRQ(C1 oplus C2) = RP (C1) and|BP(0RP(C1))| = |BPoplusRQ(0RP(C1))| The following items areequivalent

(i) C2 ≃ Fmq

(ii) C1 oplus C2 is P oplusR Q-perfect and for each minimal element j isin Q thevector x (j) = ej +

983123iisin[n]iRj ei has packing radius

RPoplusRQ (x (j)) ge RP (C1)

Corollary

If C1 is P-perfect then C1 oplus C2 is P oplus Q-perfect withRPoplusQ(C1 oplus C2) = RP (C1) for every poset Q = ([m] leQ) if and only ifC2 = Fm

q

Luciano Panek (UNIOESTE) LAWCI 2018 18 19

References

J Ahn H K Kim J S Kim and M Kim Classification of perfectlinear codes with crown poset structure Discrete Mathematics 268(2003) 21-30

R Brualdi J S Graves and M Lawrence Codes with a poset metric Discrete Mathematics 147 (1995) 57-72

J Y Hyun and H K Kim The poset structures admitting theextended binary Hamming code to be a perfect code DiscreteMathematics 288 (2004) 37-47

J G Lee Perfect codes on some ordered sets Bulletin of the KoreanMathematical Society 43(2) (2006) 293-297

R G L DrsquoOliveira and M Firer The packing radius of a code andpartitioning problems the case for poset metrics on finite vectorspaces Discrete Mathematics 338 (2015) 2143-2167

Luciano Panek (UNIOESTE) LAWCI 2018 19 19

Generalized Ordinal Sum of Posets

bull Given A sube [n] and B sube [m] let

R sube Atimes B

be a relation such that Im(R) = B

bull The R-sum of posets P = ([n] leP) and Q = ([m] leQ) is the posetP oplusR Q over [n +m] determined as follows

i lePoplusRQ j if and only if

i j le n and i leP j

orn lt i j and (i minus n) leQ (j minus n)

ori le n lt j and iR (j minus n)

Luciano Panek (UNIOESTE) LAWCI 2018 11 19

Generalized Ordinal Sum of Posets

bull Given A sube [n] and B sube [m] let

R sube Atimes B

be a relation such that Im(R) = B

bull The R-sum of posets P = ([n] leP) and Q = ([m] leQ) is the posetP oplusR Q over [n +m] determined as follows i lePoplusRQ j if and only if

i j le n and i leP j

orn lt i j and (i minus n) leQ (j minus n)

ori le n lt j and iR (j minus n)

Luciano Panek (UNIOESTE) LAWCI 2018 11 19

Generalized Ordinal Sum of Posets

Example

If P = ([3]leP) is the usual chain order

1 ltP 2 ltP 3

and Q = ([2]leQ) is the antichain order

1

2

3

21

Luciano Panek (UNIOESTE) LAWCI 2018 12 19

Generalized Ordinal Sum of Posets

Example

If P = ([3]leP) is the usual chain order

1 ltP 2 ltP 3

and Q = ([2]leQ) is the antichain order If R = [3]times [2]

1

2

3

21

Luciano Panek (UNIOESTE) LAWCI 2018 13 19

Generalized Ordinal Sum of Posets

Example

Let P = ([3]leP) be the usual chain order

1 ltP 2 ltP 3

and Q = ([2]leQ) be the antichain order If R = [3]times [2] then theR-sum is the Y order

1

2

3

5 (5-3)(4-3) 4

Luciano Panek (UNIOESTE) LAWCI 2018 14 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111

RdPoplusRQ(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Considering the binary codes C1 = 000 111 C2 = 00 10 andC3 = 00 01 10 11 = F2

2 we have that

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus F22 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 16 19

Generalized Ordinal Sum of Posets

Example - to be continued

Considering the binary codes C1 = 000 111 C2 = 00 10 andC3 = 00 01 10 11 = F2

2 we have that

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus F22 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 17 19

Generalized Ordinal Sum of Posets

Theorem

Let P = ([n] leP) and Q = ([m] leQ) be posets C1 oplus C2 sube Fnq oplus Fm

q be acode where C1 is a P-perfect code RPoplusRQ(C1 oplus C2) = RP (C1) and|BP(0RP(C1))| = |BPoplusRQ(0RP(C1))| The following items areequivalent

(i) C2 ≃ Fmq

(ii) C1 oplus C2 is P oplusR Q-perfect and for each minimal element j isin Q thevector x (j) = ej +

983123iisin[n]iRj ei has packing radius

RPoplusRQ (x (j)) ge RP (C1)

Corollary

If C1 is P-perfect then C1 oplus C2 is P oplus Q-perfect withRPoplusQ(C1 oplus C2) = RP (C1) for every poset Q = ([m] leQ) if and only ifC2 = Fm

q

Luciano Panek (UNIOESTE) LAWCI 2018 18 19

Generalized Ordinal Sum of Posets

Theorem

Let P = ([n] leP) and Q = ([m] leQ) be posets C1 oplus C2 sube Fnq oplus Fm

q be acode where C1 is a P-perfect code RPoplusRQ(C1 oplus C2) = RP (C1) and|BP(0RP(C1))| = |BPoplusRQ(0RP(C1))| The following items areequivalent

(i) C2 ≃ Fmq

(ii) C1 oplus C2 is P oplusR Q-perfect and for each minimal element j isin Q thevector x (j) = ej +

983123iisin[n]iRj ei has packing radius

RPoplusRQ (x (j)) ge RP (C1)

Corollary

If C1 is P-perfect then C1 oplus C2 is P oplus Q-perfect withRPoplusQ(C1 oplus C2) = RP (C1) for every poset Q = ([m] leQ) if and only ifC2 = Fm

q

Luciano Panek (UNIOESTE) LAWCI 2018 18 19

References

J Ahn H K Kim J S Kim and M Kim Classification of perfectlinear codes with crown poset structure Discrete Mathematics 268(2003) 21-30

R Brualdi J S Graves and M Lawrence Codes with a poset metric Discrete Mathematics 147 (1995) 57-72

J Y Hyun and H K Kim The poset structures admitting theextended binary Hamming code to be a perfect code DiscreteMathematics 288 (2004) 37-47

J G Lee Perfect codes on some ordered sets Bulletin of the KoreanMathematical Society 43(2) (2006) 293-297

R G L DrsquoOliveira and M Firer The packing radius of a code andpartitioning problems the case for poset metrics on finite vectorspaces Discrete Mathematics 338 (2015) 2143-2167

Luciano Panek (UNIOESTE) LAWCI 2018 19 19

Generalized Ordinal Sum of Posets

bull Given A sube [n] and B sube [m] let

R sube Atimes B

be a relation such that Im(R) = B

bull The R-sum of posets P = ([n] leP) and Q = ([m] leQ) is the posetP oplusR Q over [n +m] determined as follows i lePoplusRQ j if and only if

i j le n and i leP j

orn lt i j and (i minus n) leQ (j minus n)

ori le n lt j and iR (j minus n)

Luciano Panek (UNIOESTE) LAWCI 2018 11 19

Generalized Ordinal Sum of Posets

Example

If P = ([3]leP) is the usual chain order

1 ltP 2 ltP 3

and Q = ([2]leQ) is the antichain order

1

2

3

21

Luciano Panek (UNIOESTE) LAWCI 2018 12 19

Generalized Ordinal Sum of Posets

Example

If P = ([3]leP) is the usual chain order

1 ltP 2 ltP 3

and Q = ([2]leQ) is the antichain order If R = [3]times [2]

1

2

3

21

Luciano Panek (UNIOESTE) LAWCI 2018 13 19

Generalized Ordinal Sum of Posets

Example

Let P = ([3]leP) be the usual chain order

1 ltP 2 ltP 3

and Q = ([2]leQ) be the antichain order If R = [3]times [2] then theR-sum is the Y order

1

2

3

5 (5-3)(4-3) 4

Luciano Panek (UNIOESTE) LAWCI 2018 14 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111

RdPoplusRQ(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Considering the binary codes C1 = 000 111 C2 = 00 10 andC3 = 00 01 10 11 = F2

2 we have that

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus F22 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 16 19

Generalized Ordinal Sum of Posets

Example - to be continued

Considering the binary codes C1 = 000 111 C2 = 00 10 andC3 = 00 01 10 11 = F2

2 we have that

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus F22 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 17 19

Generalized Ordinal Sum of Posets

Theorem

Let P = ([n] leP) and Q = ([m] leQ) be posets C1 oplus C2 sube Fnq oplus Fm

q be acode where C1 is a P-perfect code RPoplusRQ(C1 oplus C2) = RP (C1) and|BP(0RP(C1))| = |BPoplusRQ(0RP(C1))| The following items areequivalent

(i) C2 ≃ Fmq

(ii) C1 oplus C2 is P oplusR Q-perfect and for each minimal element j isin Q thevector x (j) = ej +

983123iisin[n]iRj ei has packing radius

RPoplusRQ (x (j)) ge RP (C1)

Corollary

If C1 is P-perfect then C1 oplus C2 is P oplus Q-perfect withRPoplusQ(C1 oplus C2) = RP (C1) for every poset Q = ([m] leQ) if and only ifC2 = Fm

q

Luciano Panek (UNIOESTE) LAWCI 2018 18 19

Generalized Ordinal Sum of Posets

Theorem

Let P = ([n] leP) and Q = ([m] leQ) be posets C1 oplus C2 sube Fnq oplus Fm

q be acode where C1 is a P-perfect code RPoplusRQ(C1 oplus C2) = RP (C1) and|BP(0RP(C1))| = |BPoplusRQ(0RP(C1))| The following items areequivalent

(i) C2 ≃ Fmq

(ii) C1 oplus C2 is P oplusR Q-perfect and for each minimal element j isin Q thevector x (j) = ej +

983123iisin[n]iRj ei has packing radius

RPoplusRQ (x (j)) ge RP (C1)

Corollary

If C1 is P-perfect then C1 oplus C2 is P oplus Q-perfect withRPoplusQ(C1 oplus C2) = RP (C1) for every poset Q = ([m] leQ) if and only ifC2 = Fm

q

Luciano Panek (UNIOESTE) LAWCI 2018 18 19

References

J Ahn H K Kim J S Kim and M Kim Classification of perfectlinear codes with crown poset structure Discrete Mathematics 268(2003) 21-30

R Brualdi J S Graves and M Lawrence Codes with a poset metric Discrete Mathematics 147 (1995) 57-72

J Y Hyun and H K Kim The poset structures admitting theextended binary Hamming code to be a perfect code DiscreteMathematics 288 (2004) 37-47

J G Lee Perfect codes on some ordered sets Bulletin of the KoreanMathematical Society 43(2) (2006) 293-297

R G L DrsquoOliveira and M Firer The packing radius of a code andpartitioning problems the case for poset metrics on finite vectorspaces Discrete Mathematics 338 (2015) 2143-2167

Luciano Panek (UNIOESTE) LAWCI 2018 19 19

Generalized Ordinal Sum of Posets

Example

If P = ([3]leP) is the usual chain order

1 ltP 2 ltP 3

and Q = ([2]leQ) is the antichain order

1

2

3

21

Luciano Panek (UNIOESTE) LAWCI 2018 12 19

Generalized Ordinal Sum of Posets

Example

If P = ([3]leP) is the usual chain order

1 ltP 2 ltP 3

and Q = ([2]leQ) is the antichain order If R = [3]times [2]

1

2

3

21

Luciano Panek (UNIOESTE) LAWCI 2018 13 19

Generalized Ordinal Sum of Posets

Example

Let P = ([3]leP) be the usual chain order

1 ltP 2 ltP 3

and Q = ([2]leQ) be the antichain order If R = [3]times [2] then theR-sum is the Y order

1

2

3

5 (5-3)(4-3) 4

Luciano Panek (UNIOESTE) LAWCI 2018 14 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111

RdPoplusRQ(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Considering the binary codes C1 = 000 111 C2 = 00 10 andC3 = 00 01 10 11 = F2

2 we have that

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus F22 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 16 19

Generalized Ordinal Sum of Posets

Example - to be continued

Considering the binary codes C1 = 000 111 C2 = 00 10 andC3 = 00 01 10 11 = F2

2 we have that

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus F22 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 17 19

Generalized Ordinal Sum of Posets

Theorem

Let P = ([n] leP) and Q = ([m] leQ) be posets C1 oplus C2 sube Fnq oplus Fm

q be acode where C1 is a P-perfect code RPoplusRQ(C1 oplus C2) = RP (C1) and|BP(0RP(C1))| = |BPoplusRQ(0RP(C1))| The following items areequivalent

(i) C2 ≃ Fmq

(ii) C1 oplus C2 is P oplusR Q-perfect and for each minimal element j isin Q thevector x (j) = ej +

983123iisin[n]iRj ei has packing radius

RPoplusRQ (x (j)) ge RP (C1)

Corollary

If C1 is P-perfect then C1 oplus C2 is P oplus Q-perfect withRPoplusQ(C1 oplus C2) = RP (C1) for every poset Q = ([m] leQ) if and only ifC2 = Fm

q

Luciano Panek (UNIOESTE) LAWCI 2018 18 19

Generalized Ordinal Sum of Posets

Theorem

Let P = ([n] leP) and Q = ([m] leQ) be posets C1 oplus C2 sube Fnq oplus Fm

q be acode where C1 is a P-perfect code RPoplusRQ(C1 oplus C2) = RP (C1) and|BP(0RP(C1))| = |BPoplusRQ(0RP(C1))| The following items areequivalent

(i) C2 ≃ Fmq

(ii) C1 oplus C2 is P oplusR Q-perfect and for each minimal element j isin Q thevector x (j) = ej +

983123iisin[n]iRj ei has packing radius

RPoplusRQ (x (j)) ge RP (C1)

Corollary

If C1 is P-perfect then C1 oplus C2 is P oplus Q-perfect withRPoplusQ(C1 oplus C2) = RP (C1) for every poset Q = ([m] leQ) if and only ifC2 = Fm

q

Luciano Panek (UNIOESTE) LAWCI 2018 18 19

References

J Ahn H K Kim J S Kim and M Kim Classification of perfectlinear codes with crown poset structure Discrete Mathematics 268(2003) 21-30

R Brualdi J S Graves and M Lawrence Codes with a poset metric Discrete Mathematics 147 (1995) 57-72

J Y Hyun and H K Kim The poset structures admitting theextended binary Hamming code to be a perfect code DiscreteMathematics 288 (2004) 37-47

J G Lee Perfect codes on some ordered sets Bulletin of the KoreanMathematical Society 43(2) (2006) 293-297

R G L DrsquoOliveira and M Firer The packing radius of a code andpartitioning problems the case for poset metrics on finite vectorspaces Discrete Mathematics 338 (2015) 2143-2167

Luciano Panek (UNIOESTE) LAWCI 2018 19 19

Generalized Ordinal Sum of Posets

Example

If P = ([3]leP) is the usual chain order

1 ltP 2 ltP 3

and Q = ([2]leQ) is the antichain order If R = [3]times [2]

1

2

3

21

Luciano Panek (UNIOESTE) LAWCI 2018 13 19

Generalized Ordinal Sum of Posets

Example

Let P = ([3]leP) be the usual chain order

1 ltP 2 ltP 3

and Q = ([2]leQ) be the antichain order If R = [3]times [2] then theR-sum is the Y order

1

2

3

5 (5-3)(4-3) 4

Luciano Panek (UNIOESTE) LAWCI 2018 14 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111

RdPoplusRQ(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Considering the binary codes C1 = 000 111 C2 = 00 10 andC3 = 00 01 10 11 = F2

2 we have that

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus F22 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 16 19

Generalized Ordinal Sum of Posets

Example - to be continued

Considering the binary codes C1 = 000 111 C2 = 00 10 andC3 = 00 01 10 11 = F2

2 we have that

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus F22 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 17 19

Generalized Ordinal Sum of Posets

Theorem

Let P = ([n] leP) and Q = ([m] leQ) be posets C1 oplus C2 sube Fnq oplus Fm

q be acode where C1 is a P-perfect code RPoplusRQ(C1 oplus C2) = RP (C1) and|BP(0RP(C1))| = |BPoplusRQ(0RP(C1))| The following items areequivalent

(i) C2 ≃ Fmq

(ii) C1 oplus C2 is P oplusR Q-perfect and for each minimal element j isin Q thevector x (j) = ej +

983123iisin[n]iRj ei has packing radius

RPoplusRQ (x (j)) ge RP (C1)

Corollary

If C1 is P-perfect then C1 oplus C2 is P oplus Q-perfect withRPoplusQ(C1 oplus C2) = RP (C1) for every poset Q = ([m] leQ) if and only ifC2 = Fm

q

Luciano Panek (UNIOESTE) LAWCI 2018 18 19

Generalized Ordinal Sum of Posets

Theorem

Let P = ([n] leP) and Q = ([m] leQ) be posets C1 oplus C2 sube Fnq oplus Fm

q be acode where C1 is a P-perfect code RPoplusRQ(C1 oplus C2) = RP (C1) and|BP(0RP(C1))| = |BPoplusRQ(0RP(C1))| The following items areequivalent

(i) C2 ≃ Fmq

(ii) C1 oplus C2 is P oplusR Q-perfect and for each minimal element j isin Q thevector x (j) = ej +

983123iisin[n]iRj ei has packing radius

RPoplusRQ (x (j)) ge RP (C1)

Corollary

If C1 is P-perfect then C1 oplus C2 is P oplus Q-perfect withRPoplusQ(C1 oplus C2) = RP (C1) for every poset Q = ([m] leQ) if and only ifC2 = Fm

q

Luciano Panek (UNIOESTE) LAWCI 2018 18 19

References

J Ahn H K Kim J S Kim and M Kim Classification of perfectlinear codes with crown poset structure Discrete Mathematics 268(2003) 21-30

R Brualdi J S Graves and M Lawrence Codes with a poset metric Discrete Mathematics 147 (1995) 57-72

J Y Hyun and H K Kim The poset structures admitting theextended binary Hamming code to be a perfect code DiscreteMathematics 288 (2004) 37-47

J G Lee Perfect codes on some ordered sets Bulletin of the KoreanMathematical Society 43(2) (2006) 293-297

R G L DrsquoOliveira and M Firer The packing radius of a code andpartitioning problems the case for poset metrics on finite vectorspaces Discrete Mathematics 338 (2015) 2143-2167

Luciano Panek (UNIOESTE) LAWCI 2018 19 19

Generalized Ordinal Sum of Posets

Example

Let P = ([3]leP) be the usual chain order

1 ltP 2 ltP 3

and Q = ([2]leQ) be the antichain order If R = [3]times [2] then theR-sum is the Y order

1

2

3

5 (5-3)(4-3) 4

Luciano Panek (UNIOESTE) LAWCI 2018 14 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111

RdPoplusRQ(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Considering the binary codes C1 = 000 111 C2 = 00 10 andC3 = 00 01 10 11 = F2

2 we have that

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus F22 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 16 19

Generalized Ordinal Sum of Posets

Example - to be continued

Considering the binary codes C1 = 000 111 C2 = 00 10 andC3 = 00 01 10 11 = F2

2 we have that

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus F22 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 17 19

Generalized Ordinal Sum of Posets

Theorem

Let P = ([n] leP) and Q = ([m] leQ) be posets C1 oplus C2 sube Fnq oplus Fm

q be acode where C1 is a P-perfect code RPoplusRQ(C1 oplus C2) = RP (C1) and|BP(0RP(C1))| = |BPoplusRQ(0RP(C1))| The following items areequivalent

(i) C2 ≃ Fmq

(ii) C1 oplus C2 is P oplusR Q-perfect and for each minimal element j isin Q thevector x (j) = ej +

983123iisin[n]iRj ei has packing radius

RPoplusRQ (x (j)) ge RP (C1)

Corollary

If C1 is P-perfect then C1 oplus C2 is P oplus Q-perfect withRPoplusQ(C1 oplus C2) = RP (C1) for every poset Q = ([m] leQ) if and only ifC2 = Fm

q

Luciano Panek (UNIOESTE) LAWCI 2018 18 19

Generalized Ordinal Sum of Posets

Theorem

Let P = ([n] leP) and Q = ([m] leQ) be posets C1 oplus C2 sube Fnq oplus Fm

q be acode where C1 is a P-perfect code RPoplusRQ(C1 oplus C2) = RP (C1) and|BP(0RP(C1))| = |BPoplusRQ(0RP(C1))| The following items areequivalent

(i) C2 ≃ Fmq

(ii) C1 oplus C2 is P oplusR Q-perfect and for each minimal element j isin Q thevector x (j) = ej +

983123iisin[n]iRj ei has packing radius

RPoplusRQ (x (j)) ge RP (C1)

Corollary

If C1 is P-perfect then C1 oplus C2 is P oplus Q-perfect withRPoplusQ(C1 oplus C2) = RP (C1) for every poset Q = ([m] leQ) if and only ifC2 = Fm

q

Luciano Panek (UNIOESTE) LAWCI 2018 18 19

References

J Ahn H K Kim J S Kim and M Kim Classification of perfectlinear codes with crown poset structure Discrete Mathematics 268(2003) 21-30

R Brualdi J S Graves and M Lawrence Codes with a poset metric Discrete Mathematics 147 (1995) 57-72

J Y Hyun and H K Kim The poset structures admitting theextended binary Hamming code to be a perfect code DiscreteMathematics 288 (2004) 37-47

J G Lee Perfect codes on some ordered sets Bulletin of the KoreanMathematical Society 43(2) (2006) 293-297

R G L DrsquoOliveira and M Firer The packing radius of a code andpartitioning problems the case for poset metrics on finite vectorspaces Discrete Mathematics 338 (2015) 2143-2167

Luciano Panek (UNIOESTE) LAWCI 2018 19 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111

RdPoplusRQ(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Considering the binary codes C1 = 000 111 C2 = 00 10 andC3 = 00 01 10 11 = F2

2 we have that

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus F22 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 16 19

Generalized Ordinal Sum of Posets

Example - to be continued

Considering the binary codes C1 = 000 111 C2 = 00 10 andC3 = 00 01 10 11 = F2

2 we have that

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus F22 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 17 19

Generalized Ordinal Sum of Posets

Theorem

Let P = ([n] leP) and Q = ([m] leQ) be posets C1 oplus C2 sube Fnq oplus Fm

q be acode where C1 is a P-perfect code RPoplusRQ(C1 oplus C2) = RP (C1) and|BP(0RP(C1))| = |BPoplusRQ(0RP(C1))| The following items areequivalent

(i) C2 ≃ Fmq

(ii) C1 oplus C2 is P oplusR Q-perfect and for each minimal element j isin Q thevector x (j) = ej +

983123iisin[n]iRj ei has packing radius

RPoplusRQ (x (j)) ge RP (C1)

Corollary

If C1 is P-perfect then C1 oplus C2 is P oplus Q-perfect withRPoplusQ(C1 oplus C2) = RP (C1) for every poset Q = ([m] leQ) if and only ifC2 = Fm

q

Luciano Panek (UNIOESTE) LAWCI 2018 18 19

Generalized Ordinal Sum of Posets

Theorem

Let P = ([n] leP) and Q = ([m] leQ) be posets C1 oplus C2 sube Fnq oplus Fm

q be acode where C1 is a P-perfect code RPoplusRQ(C1 oplus C2) = RP (C1) and|BP(0RP(C1))| = |BPoplusRQ(0RP(C1))| The following items areequivalent

(i) C2 ≃ Fmq

(ii) C1 oplus C2 is P oplusR Q-perfect and for each minimal element j isin Q thevector x (j) = ej +

983123iisin[n]iRj ei has packing radius

RPoplusRQ (x (j)) ge RP (C1)

Corollary

If C1 is P-perfect then C1 oplus C2 is P oplus Q-perfect withRPoplusQ(C1 oplus C2) = RP (C1) for every poset Q = ([m] leQ) if and only ifC2 = Fm

q

Luciano Panek (UNIOESTE) LAWCI 2018 18 19

References

J Ahn H K Kim J S Kim and M Kim Classification of perfectlinear codes with crown poset structure Discrete Mathematics 268(2003) 21-30

R Brualdi J S Graves and M Lawrence Codes with a poset metric Discrete Mathematics 147 (1995) 57-72

J Y Hyun and H K Kim The poset structures admitting theextended binary Hamming code to be a perfect code DiscreteMathematics 288 (2004) 37-47

J G Lee Perfect codes on some ordered sets Bulletin of the KoreanMathematical Society 43(2) (2006) 293-297

R G L DrsquoOliveira and M Firer The packing radius of a code andpartitioning problems the case for poset metrics on finite vectorspaces Discrete Mathematics 338 (2015) 2143-2167

Luciano Panek (UNIOESTE) LAWCI 2018 19 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111

RdPoplusRQ(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Considering the binary codes C1 = 000 111 C2 = 00 10 andC3 = 00 01 10 11 = F2

2 we have that

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus F22 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 16 19

Generalized Ordinal Sum of Posets

Example - to be continued

Considering the binary codes C1 = 000 111 C2 = 00 10 andC3 = 00 01 10 11 = F2

2 we have that

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus F22 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 17 19

Generalized Ordinal Sum of Posets

Theorem

Let P = ([n] leP) and Q = ([m] leQ) be posets C1 oplus C2 sube Fnq oplus Fm

q be acode where C1 is a P-perfect code RPoplusRQ(C1 oplus C2) = RP (C1) and|BP(0RP(C1))| = |BPoplusRQ(0RP(C1))| The following items areequivalent

(i) C2 ≃ Fmq

(ii) C1 oplus C2 is P oplusR Q-perfect and for each minimal element j isin Q thevector x (j) = ej +

983123iisin[n]iRj ei has packing radius

RPoplusRQ (x (j)) ge RP (C1)

Corollary

If C1 is P-perfect then C1 oplus C2 is P oplus Q-perfect withRPoplusQ(C1 oplus C2) = RP (C1) for every poset Q = ([m] leQ) if and only ifC2 = Fm

q

Luciano Panek (UNIOESTE) LAWCI 2018 18 19

Generalized Ordinal Sum of Posets

Theorem

Let P = ([n] leP) and Q = ([m] leQ) be posets C1 oplus C2 sube Fnq oplus Fm

q be acode where C1 is a P-perfect code RPoplusRQ(C1 oplus C2) = RP (C1) and|BP(0RP(C1))| = |BPoplusRQ(0RP(C1))| The following items areequivalent

(i) C2 ≃ Fmq

(ii) C1 oplus C2 is P oplusR Q-perfect and for each minimal element j isin Q thevector x (j) = ej +

983123iisin[n]iRj ei has packing radius

RPoplusRQ (x (j)) ge RP (C1)

Corollary

If C1 is P-perfect then C1 oplus C2 is P oplus Q-perfect withRPoplusQ(C1 oplus C2) = RP (C1) for every poset Q = ([m] leQ) if and only ifC2 = Fm

q

Luciano Panek (UNIOESTE) LAWCI 2018 18 19

References

J Ahn H K Kim J S Kim and M Kim Classification of perfectlinear codes with crown poset structure Discrete Mathematics 268(2003) 21-30

R Brualdi J S Graves and M Lawrence Codes with a poset metric Discrete Mathematics 147 (1995) 57-72

J Y Hyun and H K Kim The poset structures admitting theextended binary Hamming code to be a perfect code DiscreteMathematics 288 (2004) 37-47

J G Lee Perfect codes on some ordered sets Bulletin of the KoreanMathematical Society 43(2) (2006) 293-297

R G L DrsquoOliveira and M Firer The packing radius of a code andpartitioning problems the case for poset metrics on finite vectorspaces Discrete Mathematics 338 (2015) 2143-2167

Luciano Panek (UNIOESTE) LAWCI 2018 19 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111

RdPoplusRQ(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Considering the binary codes C1 = 000 111 C2 = 00 10 andC3 = 00 01 10 11 = F2

2 we have that

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus F22 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 16 19

Generalized Ordinal Sum of Posets

Example - to be continued

Considering the binary codes C1 = 000 111 C2 = 00 10 andC3 = 00 01 10 11 = F2

2 we have that

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus F22 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 17 19

Generalized Ordinal Sum of Posets

Theorem

Let P = ([n] leP) and Q = ([m] leQ) be posets C1 oplus C2 sube Fnq oplus Fm

q be acode where C1 is a P-perfect code RPoplusRQ(C1 oplus C2) = RP (C1) and|BP(0RP(C1))| = |BPoplusRQ(0RP(C1))| The following items areequivalent

(i) C2 ≃ Fmq

(ii) C1 oplus C2 is P oplusR Q-perfect and for each minimal element j isin Q thevector x (j) = ej +

983123iisin[n]iRj ei has packing radius

RPoplusRQ (x (j)) ge RP (C1)

Corollary

If C1 is P-perfect then C1 oplus C2 is P oplus Q-perfect withRPoplusQ(C1 oplus C2) = RP (C1) for every poset Q = ([m] leQ) if and only ifC2 = Fm

q

Luciano Panek (UNIOESTE) LAWCI 2018 18 19

Generalized Ordinal Sum of Posets

Theorem

Let P = ([n] leP) and Q = ([m] leQ) be posets C1 oplus C2 sube Fnq oplus Fm

q be acode where C1 is a P-perfect code RPoplusRQ(C1 oplus C2) = RP (C1) and|BP(0RP(C1))| = |BPoplusRQ(0RP(C1))| The following items areequivalent

(i) C2 ≃ Fmq

(ii) C1 oplus C2 is P oplusR Q-perfect and for each minimal element j isin Q thevector x (j) = ej +

983123iisin[n]iRj ei has packing radius

RPoplusRQ (x (j)) ge RP (C1)

Corollary

If C1 is P-perfect then C1 oplus C2 is P oplus Q-perfect withRPoplusQ(C1 oplus C2) = RP (C1) for every poset Q = ([m] leQ) if and only ifC2 = Fm

q

Luciano Panek (UNIOESTE) LAWCI 2018 18 19

References

J Ahn H K Kim J S Kim and M Kim Classification of perfectlinear codes with crown poset structure Discrete Mathematics 268(2003) 21-30

R Brualdi J S Graves and M Lawrence Codes with a poset metric Discrete Mathematics 147 (1995) 57-72

J Y Hyun and H K Kim The poset structures admitting theextended binary Hamming code to be a perfect code DiscreteMathematics 288 (2004) 37-47

J G Lee Perfect codes on some ordered sets Bulletin of the KoreanMathematical Society 43(2) (2006) 293-297

R G L DrsquoOliveira and M Firer The packing radius of a code andpartitioning problems the case for poset metrics on finite vectorspaces Discrete Mathematics 338 (2015) 2143-2167

Luciano Panek (UNIOESTE) LAWCI 2018 19 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111

RdPoplusRQ(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Considering the binary codes C1 = 000 111 C2 = 00 10 andC3 = 00 01 10 11 = F2

2 we have that

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus F22 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 16 19

Generalized Ordinal Sum of Posets

Example - to be continued

Considering the binary codes C1 = 000 111 C2 = 00 10 andC3 = 00 01 10 11 = F2

2 we have that

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus F22 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 17 19

Generalized Ordinal Sum of Posets

Theorem

Let P = ([n] leP) and Q = ([m] leQ) be posets C1 oplus C2 sube Fnq oplus Fm

q be acode where C1 is a P-perfect code RPoplusRQ(C1 oplus C2) = RP (C1) and|BP(0RP(C1))| = |BPoplusRQ(0RP(C1))| The following items areequivalent

(i) C2 ≃ Fmq

(ii) C1 oplus C2 is P oplusR Q-perfect and for each minimal element j isin Q thevector x (j) = ej +

983123iisin[n]iRj ei has packing radius

RPoplusRQ (x (j)) ge RP (C1)

Corollary

If C1 is P-perfect then C1 oplus C2 is P oplus Q-perfect withRPoplusQ(C1 oplus C2) = RP (C1) for every poset Q = ([m] leQ) if and only ifC2 = Fm

q

Luciano Panek (UNIOESTE) LAWCI 2018 18 19

Generalized Ordinal Sum of Posets

Theorem

Let P = ([n] leP) and Q = ([m] leQ) be posets C1 oplus C2 sube Fnq oplus Fm

q be acode where C1 is a P-perfect code RPoplusRQ(C1 oplus C2) = RP (C1) and|BP(0RP(C1))| = |BPoplusRQ(0RP(C1))| The following items areequivalent

(i) C2 ≃ Fmq

(ii) C1 oplus C2 is P oplusR Q-perfect and for each minimal element j isin Q thevector x (j) = ej +

983123iisin[n]iRj ei has packing radius

RPoplusRQ (x (j)) ge RP (C1)

Corollary

If C1 is P-perfect then C1 oplus C2 is P oplus Q-perfect withRPoplusQ(C1 oplus C2) = RP (C1) for every poset Q = ([m] leQ) if and only ifC2 = Fm

q

Luciano Panek (UNIOESTE) LAWCI 2018 18 19

References

J Ahn H K Kim J S Kim and M Kim Classification of perfectlinear codes with crown poset structure Discrete Mathematics 268(2003) 21-30

R Brualdi J S Graves and M Lawrence Codes with a poset metric Discrete Mathematics 147 (1995) 57-72

J Y Hyun and H K Kim The poset structures admitting theextended binary Hamming code to be a perfect code DiscreteMathematics 288 (2004) 37-47

J G Lee Perfect codes on some ordered sets Bulletin of the KoreanMathematical Society 43(2) (2006) 293-297

R G L DrsquoOliveira and M Firer The packing radius of a code andpartitioning problems the case for poset metrics on finite vectorspaces Discrete Mathematics 338 (2015) 2143-2167

Luciano Panek (UNIOESTE) LAWCI 2018 19 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111

RdPoplusRQ(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Considering the binary codes C1 = 000 111 C2 = 00 10 andC3 = 00 01 10 11 = F2

2 we have that

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus F22 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 16 19

Generalized Ordinal Sum of Posets

Example - to be continued

Considering the binary codes C1 = 000 111 C2 = 00 10 andC3 = 00 01 10 11 = F2

2 we have that

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus F22 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 17 19

Generalized Ordinal Sum of Posets

Theorem

Let P = ([n] leP) and Q = ([m] leQ) be posets C1 oplus C2 sube Fnq oplus Fm

q be acode where C1 is a P-perfect code RPoplusRQ(C1 oplus C2) = RP (C1) and|BP(0RP(C1))| = |BPoplusRQ(0RP(C1))| The following items areequivalent

(i) C2 ≃ Fmq

(ii) C1 oplus C2 is P oplusR Q-perfect and for each minimal element j isin Q thevector x (j) = ej +

983123iisin[n]iRj ei has packing radius

RPoplusRQ (x (j)) ge RP (C1)

Corollary

If C1 is P-perfect then C1 oplus C2 is P oplus Q-perfect withRPoplusQ(C1 oplus C2) = RP (C1) for every poset Q = ([m] leQ) if and only ifC2 = Fm

q

Luciano Panek (UNIOESTE) LAWCI 2018 18 19

Generalized Ordinal Sum of Posets

Theorem

Let P = ([n] leP) and Q = ([m] leQ) be posets C1 oplus C2 sube Fnq oplus Fm

q be acode where C1 is a P-perfect code RPoplusRQ(C1 oplus C2) = RP (C1) and|BP(0RP(C1))| = |BPoplusRQ(0RP(C1))| The following items areequivalent

(i) C2 ≃ Fmq

(ii) C1 oplus C2 is P oplusR Q-perfect and for each minimal element j isin Q thevector x (j) = ej +

983123iisin[n]iRj ei has packing radius

RPoplusRQ (x (j)) ge RP (C1)

Corollary

If C1 is P-perfect then C1 oplus C2 is P oplus Q-perfect withRPoplusQ(C1 oplus C2) = RP (C1) for every poset Q = ([m] leQ) if and only ifC2 = Fm

q

Luciano Panek (UNIOESTE) LAWCI 2018 18 19

References

J Ahn H K Kim J S Kim and M Kim Classification of perfectlinear codes with crown poset structure Discrete Mathematics 268(2003) 21-30

R Brualdi J S Graves and M Lawrence Codes with a poset metric Discrete Mathematics 147 (1995) 57-72

J Y Hyun and H K Kim The poset structures admitting theextended binary Hamming code to be a perfect code DiscreteMathematics 288 (2004) 37-47

J G Lee Perfect codes on some ordered sets Bulletin of the KoreanMathematical Society 43(2) (2006) 293-297

R G L DrsquoOliveira and M Firer The packing radius of a code andpartitioning problems the case for poset metrics on finite vectorspaces Discrete Mathematics 338 (2015) 2143-2167

Luciano Panek (UNIOESTE) LAWCI 2018 19 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111

RdPoplusRQ(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Considering the binary codes C1 = 000 111 C2 = 00 10 andC3 = 00 01 10 11 = F2

2 we have that

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus F22 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 16 19

Generalized Ordinal Sum of Posets

Example - to be continued

Considering the binary codes C1 = 000 111 C2 = 00 10 andC3 = 00 01 10 11 = F2

2 we have that

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus F22 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 17 19

Generalized Ordinal Sum of Posets

Theorem

Let P = ([n] leP) and Q = ([m] leQ) be posets C1 oplus C2 sube Fnq oplus Fm

q be acode where C1 is a P-perfect code RPoplusRQ(C1 oplus C2) = RP (C1) and|BP(0RP(C1))| = |BPoplusRQ(0RP(C1))| The following items areequivalent

(i) C2 ≃ Fmq

(ii) C1 oplus C2 is P oplusR Q-perfect and for each minimal element j isin Q thevector x (j) = ej +

983123iisin[n]iRj ei has packing radius

RPoplusRQ (x (j)) ge RP (C1)

Corollary

If C1 is P-perfect then C1 oplus C2 is P oplus Q-perfect withRPoplusQ(C1 oplus C2) = RP (C1) for every poset Q = ([m] leQ) if and only ifC2 = Fm

q

Luciano Panek (UNIOESTE) LAWCI 2018 18 19

Generalized Ordinal Sum of Posets

Theorem

Let P = ([n] leP) and Q = ([m] leQ) be posets C1 oplus C2 sube Fnq oplus Fm

q be acode where C1 is a P-perfect code RPoplusRQ(C1 oplus C2) = RP (C1) and|BP(0RP(C1))| = |BPoplusRQ(0RP(C1))| The following items areequivalent

(i) C2 ≃ Fmq

(ii) C1 oplus C2 is P oplusR Q-perfect and for each minimal element j isin Q thevector x (j) = ej +

983123iisin[n]iRj ei has packing radius

RPoplusRQ (x (j)) ge RP (C1)

Corollary

If C1 is P-perfect then C1 oplus C2 is P oplus Q-perfect withRPoplusQ(C1 oplus C2) = RP (C1) for every poset Q = ([m] leQ) if and only ifC2 = Fm

q

Luciano Panek (UNIOESTE) LAWCI 2018 18 19

References

J Ahn H K Kim J S Kim and M Kim Classification of perfectlinear codes with crown poset structure Discrete Mathematics 268(2003) 21-30

R Brualdi J S Graves and M Lawrence Codes with a poset metric Discrete Mathematics 147 (1995) 57-72

J Y Hyun and H K Kim The poset structures admitting theextended binary Hamming code to be a perfect code DiscreteMathematics 288 (2004) 37-47

J G Lee Perfect codes on some ordered sets Bulletin of the KoreanMathematical Society 43(2) (2006) 293-297

R G L DrsquoOliveira and M Firer The packing radius of a code andpartitioning problems the case for poset metrics on finite vectorspaces Discrete Mathematics 338 (2015) 2143-2167

Luciano Panek (UNIOESTE) LAWCI 2018 19 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111

RdPoplusRQ(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Considering the binary codes C1 = 000 111 C2 = 00 10 andC3 = 00 01 10 11 = F2

2 we have that

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus F22 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 16 19

Generalized Ordinal Sum of Posets

Example - to be continued

Considering the binary codes C1 = 000 111 C2 = 00 10 andC3 = 00 01 10 11 = F2

2 we have that

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus F22 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 17 19

Generalized Ordinal Sum of Posets

Theorem

Let P = ([n] leP) and Q = ([m] leQ) be posets C1 oplus C2 sube Fnq oplus Fm

q be acode where C1 is a P-perfect code RPoplusRQ(C1 oplus C2) = RP (C1) and|BP(0RP(C1))| = |BPoplusRQ(0RP(C1))| The following items areequivalent

(i) C2 ≃ Fmq

(ii) C1 oplus C2 is P oplusR Q-perfect and for each minimal element j isin Q thevector x (j) = ej +

983123iisin[n]iRj ei has packing radius

RPoplusRQ (x (j)) ge RP (C1)

Corollary

If C1 is P-perfect then C1 oplus C2 is P oplus Q-perfect withRPoplusQ(C1 oplus C2) = RP (C1) for every poset Q = ([m] leQ) if and only ifC2 = Fm

q

Luciano Panek (UNIOESTE) LAWCI 2018 18 19

Generalized Ordinal Sum of Posets

Theorem

Let P = ([n] leP) and Q = ([m] leQ) be posets C1 oplus C2 sube Fnq oplus Fm

q be acode where C1 is a P-perfect code RPoplusRQ(C1 oplus C2) = RP (C1) and|BP(0RP(C1))| = |BPoplusRQ(0RP(C1))| The following items areequivalent

(i) C2 ≃ Fmq

(ii) C1 oplus C2 is P oplusR Q-perfect and for each minimal element j isin Q thevector x (j) = ej +

983123iisin[n]iRj ei has packing radius

RPoplusRQ (x (j)) ge RP (C1)

Corollary

If C1 is P-perfect then C1 oplus C2 is P oplus Q-perfect withRPoplusQ(C1 oplus C2) = RP (C1) for every poset Q = ([m] leQ) if and only ifC2 = Fm

q

Luciano Panek (UNIOESTE) LAWCI 2018 18 19

References

J Ahn H K Kim J S Kim and M Kim Classification of perfectlinear codes with crown poset structure Discrete Mathematics 268(2003) 21-30

R Brualdi J S Graves and M Lawrence Codes with a poset metric Discrete Mathematics 147 (1995) 57-72

J Y Hyun and H K Kim The poset structures admitting theextended binary Hamming code to be a perfect code DiscreteMathematics 288 (2004) 37-47

J G Lee Perfect codes on some ordered sets Bulletin of the KoreanMathematical Society 43(2) (2006) 293-297

R G L DrsquoOliveira and M Firer The packing radius of a code andpartitioning problems the case for poset metrics on finite vectorspaces Discrete Mathematics 338 (2015) 2143-2167

Luciano Panek (UNIOESTE) LAWCI 2018 19 19

Generalized Ordinal Sum of Posets

Example - to be continued

Let C1 = 000 111 C2 = 00 10 and C3 = 00 01 10 11 = F22 be the

binary codes Then

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus C3 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 15 19

Generalized Ordinal Sum of Posets

Example - to be continued

Considering the binary codes C1 = 000 111 C2 = 00 10 andC3 = 00 01 10 11 = F2

2 we have that

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus F22 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 16 19

Generalized Ordinal Sum of Posets

Example - to be continued

Considering the binary codes C1 = 000 111 C2 = 00 10 andC3 = 00 01 10 11 = F2

2 we have that

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus F22 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 17 19

Generalized Ordinal Sum of Posets

Theorem

Let P = ([n] leP) and Q = ([m] leQ) be posets C1 oplus C2 sube Fnq oplus Fm

q be acode where C1 is a P-perfect code RPoplusRQ(C1 oplus C2) = RP (C1) and|BP(0RP(C1))| = |BPoplusRQ(0RP(C1))| The following items areequivalent

(i) C2 ≃ Fmq

(ii) C1 oplus C2 is P oplusR Q-perfect and for each minimal element j isin Q thevector x (j) = ej +

983123iisin[n]iRj ei has packing radius

RPoplusRQ (x (j)) ge RP (C1)

Corollary

If C1 is P-perfect then C1 oplus C2 is P oplus Q-perfect withRPoplusQ(C1 oplus C2) = RP (C1) for every poset Q = ([m] leQ) if and only ifC2 = Fm

q

Luciano Panek (UNIOESTE) LAWCI 2018 18 19

Generalized Ordinal Sum of Posets

Theorem

Let P = ([n] leP) and Q = ([m] leQ) be posets C1 oplus C2 sube Fnq oplus Fm

q be acode where C1 is a P-perfect code RPoplusRQ(C1 oplus C2) = RP (C1) and|BP(0RP(C1))| = |BPoplusRQ(0RP(C1))| The following items areequivalent

(i) C2 ≃ Fmq

(ii) C1 oplus C2 is P oplusR Q-perfect and for each minimal element j isin Q thevector x (j) = ej +

983123iisin[n]iRj ei has packing radius

RPoplusRQ (x (j)) ge RP (C1)

Corollary

If C1 is P-perfect then C1 oplus C2 is P oplus Q-perfect withRPoplusQ(C1 oplus C2) = RP (C1) for every poset Q = ([m] leQ) if and only ifC2 = Fm

q

Luciano Panek (UNIOESTE) LAWCI 2018 18 19

References

J Ahn H K Kim J S Kim and M Kim Classification of perfectlinear codes with crown poset structure Discrete Mathematics 268(2003) 21-30

R Brualdi J S Graves and M Lawrence Codes with a poset metric Discrete Mathematics 147 (1995) 57-72

J Y Hyun and H K Kim The poset structures admitting theextended binary Hamming code to be a perfect code DiscreteMathematics 288 (2004) 37-47

J G Lee Perfect codes on some ordered sets Bulletin of the KoreanMathematical Society 43(2) (2006) 293-297

R G L DrsquoOliveira and M Firer The packing radius of a code andpartitioning problems the case for poset metrics on finite vectorspaces Discrete Mathematics 338 (2015) 2143-2167

Luciano Panek (UNIOESTE) LAWCI 2018 19 19

Generalized Ordinal Sum of Posets

Example - to be continued

Considering the binary codes C1 = 000 111 C2 = 00 10 andC3 = 00 01 10 11 = F2

2 we have that

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus F22 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 16 19

Generalized Ordinal Sum of Posets

Example - to be continued

Considering the binary codes C1 = 000 111 C2 = 00 10 andC3 = 00 01 10 11 = F2

2 we have that

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus F22 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 17 19

Generalized Ordinal Sum of Posets

Theorem

Let P = ([n] leP) and Q = ([m] leQ) be posets C1 oplus C2 sube Fnq oplus Fm

q be acode where C1 is a P-perfect code RPoplusRQ(C1 oplus C2) = RP (C1) and|BP(0RP(C1))| = |BPoplusRQ(0RP(C1))| The following items areequivalent

(i) C2 ≃ Fmq

(ii) C1 oplus C2 is P oplusR Q-perfect and for each minimal element j isin Q thevector x (j) = ej +

983123iisin[n]iRj ei has packing radius

RPoplusRQ (x (j)) ge RP (C1)

Corollary

If C1 is P-perfect then C1 oplus C2 is P oplus Q-perfect withRPoplusQ(C1 oplus C2) = RP (C1) for every poset Q = ([m] leQ) if and only ifC2 = Fm

q

Luciano Panek (UNIOESTE) LAWCI 2018 18 19

Generalized Ordinal Sum of Posets

Theorem

Let P = ([n] leP) and Q = ([m] leQ) be posets C1 oplus C2 sube Fnq oplus Fm

q be acode where C1 is a P-perfect code RPoplusRQ(C1 oplus C2) = RP (C1) and|BP(0RP(C1))| = |BPoplusRQ(0RP(C1))| The following items areequivalent

(i) C2 ≃ Fmq

(ii) C1 oplus C2 is P oplusR Q-perfect and for each minimal element j isin Q thevector x (j) = ej +

983123iisin[n]iRj ei has packing radius

RPoplusRQ (x (j)) ge RP (C1)

Corollary

If C1 is P-perfect then C1 oplus C2 is P oplus Q-perfect withRPoplusQ(C1 oplus C2) = RP (C1) for every poset Q = ([m] leQ) if and only ifC2 = Fm

q

Luciano Panek (UNIOESTE) LAWCI 2018 18 19

References

J Ahn H K Kim J S Kim and M Kim Classification of perfectlinear codes with crown poset structure Discrete Mathematics 268(2003) 21-30

R Brualdi J S Graves and M Lawrence Codes with a poset metric Discrete Mathematics 147 (1995) 57-72

J Y Hyun and H K Kim The poset structures admitting theextended binary Hamming code to be a perfect code DiscreteMathematics 288 (2004) 37-47

J G Lee Perfect codes on some ordered sets Bulletin of the KoreanMathematical Society 43(2) (2006) 293-297

R G L DrsquoOliveira and M Firer The packing radius of a code andpartitioning problems the case for poset metrics on finite vectorspaces Discrete Mathematics 338 (2015) 2143-2167

Luciano Panek (UNIOESTE) LAWCI 2018 19 19

Generalized Ordinal Sum of Posets

Example - to be continued

Considering the binary codes C1 = 000 111 C2 = 00 10 andC3 = 00 01 10 11 = F2

2 we have that

RdP (C1) = 2 and C1 is a perfect code

|BP(000RP(C1))| = |BPoplusRQ(00000RP(C1))| = 4

BPoplusRQ(00000RPoplusRQ(C1)) = 00000 10000 01000 11000

C1 oplus C2 = 00000 00010 11100 11110

00110 isin BPoplusRQ(00010 3) cap BPoplusRQ(11110 3)

C1 oplus C3 = 00000 00010 11100 11110 00001 00011 11101 11111RdPoplusRQ

(C1 oplus C3) = RdP (C1) = 2 and C1 oplus F22 is a perfect code

Luciano Panek (UNIOESTE) LAWCI 2018 17 19

Generalized Ordinal Sum of Posets

Theorem

Let P = ([n] leP) and Q = ([m] leQ) be posets C1 oplus C2 sube Fnq oplus Fm

q be acode where C1 is a P-perfect code RPoplusRQ(C1 oplus C2) = RP (C1) and|BP(0RP(C1))| = |BPoplusRQ(0RP(C1))| The following items areequivalent

(i) C2 ≃ Fmq

(ii) C1 oplus C2 is P oplusR Q-perfect and for each minimal element j isin Q thevector x (j) = ej +

983123iisin[n]iRj ei has packing radius

RPoplusRQ (x (j)) ge RP (C1)

Corollary

If C1 is P-perfect then C1 oplus C2 is P oplus Q-perfect withRPoplusQ(C1 oplus C2) = RP (C1) for every poset Q = ([m] leQ) if and only ifC2 = Fm

q

Luciano Panek (UNIOESTE) LAWCI 2018 18 19

Generalized Ordinal Sum of Posets

Theorem

Let P = ([n] leP) and Q = ([m] leQ) be posets C1 oplus C2 sube Fnq oplus Fm

q be acode where C1 is a P-perfect code RPoplusRQ(C1 oplus C2) = RP (C1) and|BP(0RP(C1))| = |BPoplusRQ(0RP(C1))| The following items areequivalent

(i) C2 ≃ Fmq

(ii) C1 oplus C2 is P oplusR Q-perfect and for each minimal element j isin Q thevector x (j) = ej +

983123iisin[n]iRj ei has packing radius

RPoplusRQ (x (j)) ge RP (C1)

Corollary

If C1 is P-perfect then C1 oplus C2 is P oplus Q-perfect withRPoplusQ(C1 oplus C2) = RP (C1) for every poset Q = ([m] leQ) if and only ifC2 = Fm

q

Luciano Panek (UNIOESTE) LAWCI 2018 18 19

References

J Ahn H K Kim J S Kim and M Kim Classification of perfectlinear codes with crown poset structure Discrete Mathematics 268(2003) 21-30

R Brualdi J S Graves and M Lawrence Codes with a poset metric Discrete Mathematics 147 (1995) 57-72

J Y Hyun and H K Kim The poset structures admitting theextended binary Hamming code to be a perfect code DiscreteMathematics 288 (2004) 37-47

J G Lee Perfect codes on some ordered sets Bulletin of the KoreanMathematical Society 43(2) (2006) 293-297

R G L DrsquoOliveira and M Firer The packing radius of a code andpartitioning problems the case for poset metrics on finite vectorspaces Discrete Mathematics 338 (2015) 2143-2167

Luciano Panek (UNIOESTE) LAWCI 2018 19 19

Generalized Ordinal Sum of Posets

Theorem

Let P = ([n] leP) and Q = ([m] leQ) be posets C1 oplus C2 sube Fnq oplus Fm

q be acode where C1 is a P-perfect code RPoplusRQ(C1 oplus C2) = RP (C1) and|BP(0RP(C1))| = |BPoplusRQ(0RP(C1))| The following items areequivalent

(i) C2 ≃ Fmq

(ii) C1 oplus C2 is P oplusR Q-perfect and for each minimal element j isin Q thevector x (j) = ej +

983123iisin[n]iRj ei has packing radius

RPoplusRQ (x (j)) ge RP (C1)

Corollary

If C1 is P-perfect then C1 oplus C2 is P oplus Q-perfect withRPoplusQ(C1 oplus C2) = RP (C1) for every poset Q = ([m] leQ) if and only ifC2 = Fm

q

Luciano Panek (UNIOESTE) LAWCI 2018 18 19

Generalized Ordinal Sum of Posets

Theorem

Let P = ([n] leP) and Q = ([m] leQ) be posets C1 oplus C2 sube Fnq oplus Fm

q be acode where C1 is a P-perfect code RPoplusRQ(C1 oplus C2) = RP (C1) and|BP(0RP(C1))| = |BPoplusRQ(0RP(C1))| The following items areequivalent

(i) C2 ≃ Fmq

(ii) C1 oplus C2 is P oplusR Q-perfect and for each minimal element j isin Q thevector x (j) = ej +

983123iisin[n]iRj ei has packing radius

RPoplusRQ (x (j)) ge RP (C1)

Corollary

If C1 is P-perfect then C1 oplus C2 is P oplus Q-perfect withRPoplusQ(C1 oplus C2) = RP (C1) for every poset Q = ([m] leQ) if and only ifC2 = Fm

q

Luciano Panek (UNIOESTE) LAWCI 2018 18 19

References

J Ahn H K Kim J S Kim and M Kim Classification of perfectlinear codes with crown poset structure Discrete Mathematics 268(2003) 21-30

R Brualdi J S Graves and M Lawrence Codes with a poset metric Discrete Mathematics 147 (1995) 57-72

J Y Hyun and H K Kim The poset structures admitting theextended binary Hamming code to be a perfect code DiscreteMathematics 288 (2004) 37-47

J G Lee Perfect codes on some ordered sets Bulletin of the KoreanMathematical Society 43(2) (2006) 293-297

R G L DrsquoOliveira and M Firer The packing radius of a code andpartitioning problems the case for poset metrics on finite vectorspaces Discrete Mathematics 338 (2015) 2143-2167

Luciano Panek (UNIOESTE) LAWCI 2018 19 19

Generalized Ordinal Sum of Posets

Theorem

Let P = ([n] leP) and Q = ([m] leQ) be posets C1 oplus C2 sube Fnq oplus Fm

q be acode where C1 is a P-perfect code RPoplusRQ(C1 oplus C2) = RP (C1) and|BP(0RP(C1))| = |BPoplusRQ(0RP(C1))| The following items areequivalent

(i) C2 ≃ Fmq

(ii) C1 oplus C2 is P oplusR Q-perfect and for each minimal element j isin Q thevector x (j) = ej +

983123iisin[n]iRj ei has packing radius

RPoplusRQ (x (j)) ge RP (C1)

Corollary

If C1 is P-perfect then C1 oplus C2 is P oplus Q-perfect withRPoplusQ(C1 oplus C2) = RP (C1) for every poset Q = ([m] leQ) if and only ifC2 = Fm

q

Luciano Panek (UNIOESTE) LAWCI 2018 18 19

References

J Ahn H K Kim J S Kim and M Kim Classification of perfectlinear codes with crown poset structure Discrete Mathematics 268(2003) 21-30

R Brualdi J S Graves and M Lawrence Codes with a poset metric Discrete Mathematics 147 (1995) 57-72

J Y Hyun and H K Kim The poset structures admitting theextended binary Hamming code to be a perfect code DiscreteMathematics 288 (2004) 37-47

J G Lee Perfect codes on some ordered sets Bulletin of the KoreanMathematical Society 43(2) (2006) 293-297

R G L DrsquoOliveira and M Firer The packing radius of a code andpartitioning problems the case for poset metrics on finite vectorspaces Discrete Mathematics 338 (2015) 2143-2167

Luciano Panek (UNIOESTE) LAWCI 2018 19 19

References

J Ahn H K Kim J S Kim and M Kim Classification of perfectlinear codes with crown poset structure Discrete Mathematics 268(2003) 21-30

R Brualdi J S Graves and M Lawrence Codes with a poset metric Discrete Mathematics 147 (1995) 57-72

J Y Hyun and H K Kim The poset structures admitting theextended binary Hamming code to be a perfect code DiscreteMathematics 288 (2004) 37-47

J G Lee Perfect codes on some ordered sets Bulletin of the KoreanMathematical Society 43(2) (2006) 293-297

R G L DrsquoOliveira and M Firer The packing radius of a code andpartitioning problems the case for poset metrics on finite vectorspaces Discrete Mathematics 338 (2015) 2143-2167

Luciano Panek (UNIOESTE) LAWCI 2018 19 19