peptide folding

34
Peptide Folding Movie Time Protein Physics Structural Change Petascale Future

Upload: kishi

Post on 01-Feb-2016

57 views

Category:

Documents


1 download

DESCRIPTION

Protein Physics. Structural Change. Peptide Folding. Petascale Future. Movie Time. Molecular Mechanical. Quantum Mechanical. Computer Simulation - Basic Principles. Model System. or QM/MM Potential. Molecular Mechanics Potential. Simulation - exploring the energy landscape. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Peptide Folding

Peptide Folding

Movie Time

Protein Physics Structural Change

Petascale Future

Page 2: Peptide Folding

Computer Simulation - Basic Principles

Molecular Mechanics Potential

ji ij

ji

ji ij

ij

ij

ijij

impropersdihedrals

N

n

n

anglesbondsb

Dr

qq

rr

KnK

kbbkV

,,

612

20

1

20

20

4

cos1

Model System

QuantumMechanical

MolecularMechanical

or QM/MM Potential

Simulation - exploring the energy landscape

Page 3: Peptide Folding

Reactant

Product

Energy Landscape

Page 4: Peptide Folding

Halorhodopsin - Chloride Pumping at Atomic Resolution

ANDREEA GRUIA

Page 5: Peptide Folding

Not Enough Room

Page 6: Peptide Folding

Structure 13 617 (2005).

Page 7: Peptide Folding

Spring-loaded throttle valve helps prevent chloride leakage

.

Barrier without valve= EII = 13 kcal/mol.

Sum = 25 kcal/mol = no backflow.

Valve Energy= EI = 12 kcal/mol

Page 8: Peptide Folding

Muscle Contraction

Thick filamentThin filament

Page 9: Peptide Folding

ATP Hydrolysis by Myosin

SONJA SCHWARZL

Biochemistry 45 5830 (2006)

Page 10: Peptide Folding

04/22/23 MSBIO - Universität Heidelberg 10

Dynamics of Muscle Contraction.

BJORN WINDSHUEGEL

PNAS 102 6873 (2005)

Page 11: Peptide Folding
Page 12: Peptide Folding

ns range

s range

reactant product

FRANK NOE

Large-Scale Functional Conformational Transitions

Page 13: Peptide Folding

GTP-Bound Form (ON)

GDP-Bound Form (OFF)

Ras p21

Page 14: Peptide Folding

GTP-Bound Form (ON)

Ras p21

Page 15: Peptide Folding

Ras p21 trajectoryFRANK NOE

Page 16: Peptide Folding

reactant product6

25

1

76

28

13 811

57

9

3

18

FRANK NOE

J. Chem. Phys. 126 155102 (2007)

Page 17: Peptide Folding

Sampling: Uniform Distribution

Page 18: Peptide Folding

Sampling:Exclusion of „Bad Structures“

Page 19: Peptide Folding

Sampling:Fail-Fast Minimization

Page 20: Peptide Folding

Sampling:Increase Density of Low-Energy Points

Page 21: Peptide Folding

Transition Network:Edges between Neighbours

Page 22: Peptide Folding

Connectivity of Network of Best Paths

Tem

pera

ture

Page 23: Peptide Folding

Ras Molecular SwitchON - state OFF - state

Page 24: Peptide Folding

Cray XT4

SpallationNeutronSource

ExpensiveToys

Page 25: Peptide Folding

Cray XT4

One Million Atoms – Molecular Dynamics

Page 26: Peptide Folding

Lars Meinhold

Zoe Cournia

Page 27: Peptide Folding

Lignocellulosic Biomass Exhibits Lignocellulosic Biomass Exhibits

Structural ComplexityStructural ComplexityO

O

O OAc

O

O

HO

OAcO

HO

O

O

O

AcO

OH

O-XylanO

O

HOOAc

O

O

AcO

OAcO

O

HO

HO

OHO

OHO

HO OH

HO

O

O

HO

OH

O

O

O

H3CO

OH

OH

OH

OH

OH

OCH3

HO

OCH3

O

HO

HO

H3CO

OHO

HO OCH3

O

HO

OCH3

O

HO OH

O

OH3CO

HO

HO

O

OH

OH

OCH3

OCH3

OH

OH

O

OCH3

OO

OCH3

O

OCH3

HO

HO

OCH3

O

O

OCH3

HO

O

HO

HO

OCH3

Hemicellulose

Lignin

Cellulose

Page 28: Peptide Folding

Cray XT4

SpallationNeutronSource

Page 29: Peptide Folding

Molecular Simulation Molecular Simulation ProjectsProjects

Cellulose.

Lignin.

Lignocellulosic Biomass.

Cellulase Reaction Mechanism.

Cellulosomes (subsequent talk).

Page 30: Peptide Folding

Flopsideal

• Gromacs with Reaction-Field• 5.4 million atoms, 175 atoms/core

10 1,000 100,0000.1

1

10

100

Strong Scaling

cores

TF

lops

Now

5 years ago

Computer Power Improvement for Computer Power Improvement for Biological Molecular Dynamics Biological Molecular Dynamics SimulationSimulation

Page 31: Peptide Folding

Cellulose I + 26 lignins

Probe for factors that might influence recalcitrance cellulose accessible surface area radii of gyration of lignins

Softwood Lignin & CelluloseSoftwood Lignin & Cellulose

Large-Scale Molecular Dynamics Simulation (1-3M atoms) using 2008 DOE INCITE award on ORNL Cray XT4.

Page 32: Peptide Folding

Cellulose: Cellulose: Benjamin LindnerBenjamin Lindner

Preliminary Findings

Page 33: Peptide Folding

7 ns

Crystalline

1 ns

Crystalline/Amorphous

Page 34: Peptide Folding

Collaborators

UT/ORNL Center for Molecular Biophysics

• Maramuthu Krishnan (CMB, ORNL)• Loukas Petridis (CMB, ORNL)• Jiancong Xu (CMB, ORNL)• Roland Schulz (CMB, ORNL)• Benjamin Lindner (CMB, ORNL)

External

• Nicoleta Bondar (U. Cal Irvine)• Lars Meinhold, Ahmed Zewail (Caltech)• Kei Moritsugu (RIKEN)• Akio Kitao (U. Tokyo)• Stefan Fischer, Isabella Daidone (U. Heidelberg)• Torsten Becker (U. Bayreuth)• Frank Noe (Free University of Berlin).• Vandana Kurkal-Siebert (BASF, Ludwigshafen).• Franci Merzel (U. Ljubljana)• John Finney (U. London)• Roy Daniel (U. Waikato)• Andrea Amadei, Alfredo Di Nola (U. Rome “La Sapienza”)