[email protected] wave-equation migration velocity analysis paul sava* stanford university...

40
[email protected]. edu Wave-equation migration velocity analysis Paul Sava* Stanford University Biondo Biondi Stanford University

Post on 22-Dec-2015

216 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Paul@sep.stanford.edu Wave-equation migration velocity analysis Paul Sava* Stanford University Biondo Biondi Stanford University

[email protected]

Wave-equation migration velocity analysis

Paul Sava* Stanford University

Biondo Biondi Stanford University

Page 2: Paul@sep.stanford.edu Wave-equation migration velocity analysis Paul Sava* Stanford University Biondo Biondi Stanford University

[email protected]

Imaging=MVA+Migration

• Migration• wavefield based

• Migration velocity analysis (MVA)• traveltime based

• Compatible migration and MVA methods

Page 3: Paul@sep.stanford.edu Wave-equation migration velocity analysis Paul Sava* Stanford University Biondo Biondi Stanford University

[email protected]

Imaging: the “big picture”

• Kirchhoff migration

• traveltime tomography

wavefronts

• wave-equation migration

• wave-equation MVA (WEMVA)

wavefields

Page 4: Paul@sep.stanford.edu Wave-equation migration velocity analysis Paul Sava* Stanford University Biondo Biondi Stanford University

[email protected]

Agenda

Theoretical background

WEMVA methodology

Scattering

Imaging

Image perturbations

Wavefield extrapolation

Born linearization

WEMVA applications

Page 5: Paul@sep.stanford.edu Wave-equation migration velocity analysis Paul Sava* Stanford University Biondo Biondi Stanford University

[email protected]

Wavefield scattering

Page 6: Paul@sep.stanford.edu Wave-equation migration velocity analysis Paul Sava* Stanford University Biondo Biondi Stanford University

[email protected]

Wavefield scattering

Page 7: Paul@sep.stanford.edu Wave-equation migration velocity analysis Paul Sava* Stanford University Biondo Biondi Stanford University

[email protected]

Scattered wavefield

Medium perturbation

Wavefield perturbation

Page 8: Paul@sep.stanford.edu Wave-equation migration velocity analysis Paul Sava* Stanford University Biondo Biondi Stanford University

[email protected]

Agenda

Theoretical background

WEMVA methodology

Scattering

Imaging

Image perturbations

Wavefield extrapolation

Born linearization

WEMVA applications

Page 9: Paul@sep.stanford.edu Wave-equation migration velocity analysis Paul Sava* Stanford University Biondo Biondi Stanford University

[email protected]

Imaging: Correct velocity

Background velocity

Migrated image

Reflectivity model

What the data tell us...What migration does...

location

depth

location

depth

depthdepth

depth

Page 10: Paul@sep.stanford.edu Wave-equation migration velocity analysis Paul Sava* Stanford University Biondo Biondi Stanford University

[email protected]

Imaging: Incorrect velocity

Perturbed velocity

Migrated image

Reflectivity model

What the data tell us...What migration does...

location

depth

location

depth

depthdepth

depth

Page 11: Paul@sep.stanford.edu Wave-equation migration velocity analysis Paul Sava* Stanford University Biondo Biondi Stanford University

[email protected]

Wave-equation MVA: Objective

Velocity perturbation

Image perturbation

slownessperturbation(unknown)

WEMVAoperator

imageperturbation

(known)

sLΔRminΔs

location

depth

location

depth

Page 12: Paul@sep.stanford.edu Wave-equation migration velocity analysis Paul Sava* Stanford University Biondo Biondi Stanford University

[email protected]

– migrated images

– moveout and focusing

– amplitudes

– parabolic wave equation

– multipathing

– slow

– picked traveltimes

– moveout

– eikonal equation

– fast

Comparison: WEMVA vs TT

Wave-equation MVA Traveltime tomography

Page 13: Paul@sep.stanford.edu Wave-equation migration velocity analysis Paul Sava* Stanford University Biondo Biondi Stanford University

[email protected]

– migrated images

– interpretive control

– parabolic wave equation

– slow

– recorded data

– two-way wave equation

– slow

Comparison: WEMVA vs WET

Wave-equation MVA Wave-equation tomography

Page 14: Paul@sep.stanford.edu Wave-equation migration velocity analysis Paul Sava* Stanford University Biondo Biondi Stanford University

[email protected]

Agenda

Theoretical background

WEMVA methodology

Scattering

Imaging

Image perturbations

Wavefield extrapolation

Born linearization

WEMVA applications

Page 15: Paul@sep.stanford.edu Wave-equation migration velocity analysis Paul Sava* Stanford University Biondo Biondi Stanford University

[email protected]

Image perturbations

Focusing Flatness Residual process:• moveout• migration• focusing

slownessperturbation(unknown)

WEMVAoperator

imageperturbation

(known)

sLΔRminΔs

location

depth

angle

Page 16: Paul@sep.stanford.edu Wave-equation migration velocity analysis Paul Sava* Stanford University Biondo Biondi Stanford University

[email protected]

Image perturbations

11 1

Page 17: Paul@sep.stanford.edu Wave-equation migration velocity analysis Paul Sava* Stanford University Biondo Biondi Stanford University

[email protected]

Agenda

Theoretical background

WEMVA methodology

Scattering

Imaging

Image perturbations

Wavefield extrapolation

Born linearization

WEMVA applications

Page 18: Paul@sep.stanford.edu Wave-equation migration velocity analysis Paul Sava* Stanford University Biondo Biondi Stanford University

[email protected]

Double Square-Root Equation

Wikdz

dWz

Δsds

dkkk

0

0

ss

zzz

Fourier Finite DifferenceGeneralized Screen Propagator

Δzikz

Δzzze

W

W

Wavefield extrapolation

βΔsΔzz

0

Δzz

eW

W

βΔsΔzikΔzik0zz

Page 19: Paul@sep.stanford.edu Wave-equation migration velocity analysis Paul Sava* Stanford University Biondo Biondi Stanford University

[email protected]

“Wave-equation” migration

z

Δzz0s

Δzz0W

Page 20: Paul@sep.stanford.edu Wave-equation migration velocity analysis Paul Sava* Stanford University Biondo Biondi Stanford University

[email protected]

Slowness perturbation

0s Δss0

Δzz0W

z

Δzz

βΔsΔzz0 eW

Page 21: Paul@sep.stanford.edu Wave-equation migration velocity analysis Paul Sava* Stanford University Biondo Biondi Stanford University

[email protected]

1eWΔW βΔs0

slownessperturbation

backgroundwavefield

wavefieldperturbation

ΔW

Δs

Wavefield perturbation

z

Δzz0s Δss0

Page 22: Paul@sep.stanford.edu Wave-equation migration velocity analysis Paul Sava* Stanford University Biondo Biondi Stanford University

[email protected]

Agenda

Theoretical background

WEMVA methodology

Scattering

Imaging

Image perturbations

Wavefield extrapolation

Born linearization

WEMVA applications

Page 23: Paul@sep.stanford.edu Wave-equation migration velocity analysis Paul Sava* Stanford University Biondo Biondi Stanford University

[email protected]

Born approximation

iei 1

ie

Small perturbations!

Born linearization

Non-linear WEMVA

1eWΔW βΔs0

βΔsWΔW 0slowness

perturbation(unknown)

WEMVAoperator

imageperturbation

(known)

sLΔRminΔs

Unit circle

Page 24: Paul@sep.stanford.edu Wave-equation migration velocity analysis Paul Sava* Stanford University Biondo Biondi Stanford University

[email protected]

Agenda

Theoretical background

WEMVA methodology

Scattering

Imaging

Image perturbations

Wavefield extrapolation

Born linearization

WEMVA applications

Page 25: Paul@sep.stanford.edu Wave-equation migration velocity analysis Paul Sava* Stanford University Biondo Biondi Stanford University

[email protected]

Applications

• “Image perturbation”• image difference• image “differential”

• Examples– Structural imaging– Overpressure prediction– 4-D seismic monitoring– Diffraction focusing MVA

Page 26: Paul@sep.stanford.edu Wave-equation migration velocity analysis Paul Sava* Stanford University Biondo Biondi Stanford University

[email protected]

Application 1: Structural imaging

• Velocity analysis in complex areas• multipathing• high velocity contrast

• Full images vs. picked events

• Spatial focusing + offset focusing

• Traveltimes & amplitudes

Page 27: Paul@sep.stanford.edu Wave-equation migration velocity analysis Paul Sava* Stanford University Biondo Biondi Stanford University

[email protected]

Structural imaging: methodology

Data

0R

1R

DV

ImageVelocity

R

Image

perturbationsLΔRminΔs

Page 28: Paul@sep.stanford.edu Wave-equation migration velocity analysis Paul Sava* Stanford University Biondo Biondi Stanford University

[email protected]

Location [km]

Depth [km

]

Location [km]

Depth [km

]

Location [km]

Depth [km

]

Location [km]

Depth [km

]

Structural imaging: example

Page 29: Paul@sep.stanford.edu Wave-equation migration velocity analysis Paul Sava* Stanford University Biondo Biondi Stanford University

[email protected]

Application 2: Overpressure

Overpressure zone

Complicated salt

Complicated propagation

Page 30: Paul@sep.stanford.edu Wave-equation migration velocity analysis Paul Sava* Stanford University Biondo Biondi Stanford University

[email protected]

Overpressure: motivation

• Pressure creates time/moveout changes• cannot be picked with enough accuracy

• Complicated overburden • ray-based methods fail

Page 31: Paul@sep.stanford.edu Wave-equation migration velocity analysis Paul Sava* Stanford University Biondo Biondi Stanford University

[email protected]

Overpressure: methodology

Data

0R

1R

DV

ImageVelocity

R

Image

perturbationsLΔRminΔs

Page 32: Paul@sep.stanford.edu Wave-equation migration velocity analysis Paul Sava* Stanford University Biondo Biondi Stanford University

[email protected]

Overpressure: proof of concept

Page 33: Paul@sep.stanford.edu Wave-equation migration velocity analysis Paul Sava* Stanford University Biondo Biondi Stanford University

[email protected]

Application 3: 4D monitoring

• Small traveltime changes• cannot be picked with enough accuracy

• Amplitude variations• ignored by traveltime methods

• Cumulative phase and amplitude effects• mask deeper effects

Page 34: Paul@sep.stanford.edu Wave-equation migration velocity analysis Paul Sava* Stanford University Biondo Biondi Stanford University

[email protected]

4D monitoring: methodology

Data

0R

1R

0D

1DV

ImageVelocity

R

4D difference datasLΔRmin

Δs

Page 35: Paul@sep.stanford.edu Wave-equation migration velocity analysis Paul Sava* Stanford University Biondo Biondi Stanford University

[email protected]

4D monitoring: proof of concept

Page 36: Paul@sep.stanford.edu Wave-equation migration velocity analysis Paul Sava* Stanford University Biondo Biondi Stanford University

[email protected]

Application 4: Focusing MVA

• Moveout information• missing or• hard to use

• Focusing information• ignored by moveout / traveltime based methods

focusing moveout

Page 37: Paul@sep.stanford.edu Wave-equation migration velocity analysis Paul Sava* Stanford University Biondo Biondi Stanford University

[email protected]

Focusing MVA: methodology

Data

0R

1R

DV

ImageVelocity

R

Image

perturbationsLΔRminΔs

Page 38: Paul@sep.stanford.edu Wave-equation migration velocity analysis Paul Sava* Stanford University Biondo Biondi Stanford University

[email protected]

Focusing MVA: proof of concept

Page 39: Paul@sep.stanford.edu Wave-equation migration velocity analysis Paul Sava* Stanford University Biondo Biondi Stanford University

[email protected]

Agenda

Theoretical background

WEMVA methodology

Scattering

Imaging

Image perturbations

Wavefield extrapolation

Born linearization

WEMVA applications

Page 40: Paul@sep.stanford.edu Wave-equation migration velocity analysis Paul Sava* Stanford University Biondo Biondi Stanford University

[email protected]

WEMVA summary

• Methodology– “wave-equation”– image optimization

• focusing and moveouts

– interpretive control

• Applications – any image perturbation

• repeated images over time• optimized and reference images