patran contact

Upload: shashi1810

Post on 06-Jul-2018

368 views

Category:

Documents


13 download

TRANSCRIPT

  • 8/17/2019 Patran Contact

    1/43

    MSC Nastran 비선형 해석 활용 2014 Korea Users Conference

    Presented By: DK Oh ( Ahtti )

    June 2, 2014

    1

  • 8/17/2019 Patran Contact

    2/43

    Contents

    1. Bolt결합 유형 모델링 기법 

    2. Glue Contact조건의 고유진동수 해석 

    3. SOL 400을 이용한 Forming Simulation4. SOL 400을 이용한 Rubber Seal접촉해석 

    5. SOL 400을 이용한 Springback해석 

    6. SOL 400을 이용한 Circuit Board열응력 해석 

    2

  • 8/17/2019 Patran Contact

    3/43

    1.Bolted Plate Analysis

    3

  • 8/17/2019 Patran Contact

    4/43

    Ch.1 Bolt 합 유형 모델링 기법 

    1. RBE2 Bolt Model 1-1. Type 1 - Full Connection

     1-2. Type 2 - Half-Half Connection

     1-3. Type 3 - Head Surface Connection 

    2. 3D Solid Bolt Model 3-1. Type 1 - Only Contact

     3-2. Type 2 - Contact and Bolt Preload

    Bolt합

     유형

     모델링

     기법

     

    4

    Object:

    i) Patran에서 지원되 Bolt Modeling 방법 소

    ii) Nastran Sol400으로 Bolted Plate비선형 해석 소

  • 8/17/2019 Patran Contact

    5/43

    5

    Ch.1 Bolt 합 유형 모델링 기법 

    - Overview of F.E Model

    Top plateBolt

    Nut

    Bottom plate

    1. Specification Units: mm

     Top plate 55x20x6

     Bottom plate 55x20x6 Bolt hole radius = 5

     Bolt shaft radius = 4

     Bolt head radius = 6

     Bolt head thick = 2

     Nut thickness = 2

     Nut outer radius = 6

    2. Material Properties Eplate = 210 kN/mm

    2

     Ebolt = Enut = 210 kN/mm2

     Vplate = Vbolt,nut = 0.3

    3. Boundary Conditions Top plate_Bottom plate – Touch 

     T,B plate_Bolt – Touch

     Bottom plate_Nut – Touch Bottom Plate End - Fixed

  • 8/17/2019 Patran Contact

    6/43

    1-1. RBE2Type 1 : Full Connection

    1-2. RBE2

    Type2 : Half-Half  Connection

    1-3. RBE2

    Type3 : Head Surface 

    Connection 

    6

    Ch.1 Bolt 합 유형 모델링 기법 

    2-1. 3D Solid

    Type 1 : Only Contact

    2-2. 3D SolidType 2 : Pre-Load

  • 8/17/2019 Patran Contact

    7/437

    Ch.1 Bolt 합 유형 모델링 기법 

    ( RBE2 )

    1. RBE2 Bolt Model 1-1. Type 1 - Full Connection

    DOF Check

    Auto Create Center Node

    Node List

    -MPC Modeling-

    Utilities >> FEM-General >> RBE2/RBE3 Spider

     Load Type1 : Tension

     Load Type2 : Bending Load Type3 : Torque

    -Load Case-

    RBE2 Usage : 1 EA

    RBE2-1

  • 8/17/2019 Patran Contact

    8/43

    8

    Ch.1 Bolt 합 유형 모델링 기법 

    ( RBE2 ,Result )

    1. RBE2 Bolt Model 1-1. Type 1 - Full Connection

     Load Type2 : Bending Load Type1 : Tension  Load Type3 : Torque

    Stress Max. = 47 MPa Stress Max. = 173 MPa Stress Max. = 103 MPa

    Disp. Max. = 0.09 mm Disp. Max. = 0.58 mm Disp. Max. = 0.08 mm

    Stress Max. Stress Max.

    Stress Max.

  • 8/17/2019 Patran Contact

    9/43

    9

    Ch.1 Bolt 합 유형 모델링 기법 

    ( RBE2 )

    1. RBE2 Bolt Model 1-2. Type 2 - Half-Half Connection

    DOF Check

    Auto Create Center Node

    Node List

    -MPC Modeling-

    Utilities >> FEM-General >> RBE2/RBE3 Spider

     Load Type1 : Tension

     Load Type2 : Bending Load Type3 : Torque

    -Load Case-

    RBE2 Usage : 3 EA

    Beam Element : 1EA

    RBE2

    RBE2

    RBE2 and Beam

  • 8/17/2019 Patran Contact

    10/43

    10

    Ch.1 Bolt 합 유형 모델링 기법 

    ( RBE2 ,Result )

    1. RBE2 Bolt Model 1-2. Type 2 - Half-Half Connection-RBE2

     Load Type2 : Bending Load Type1 : Tension  Load Type3 : Torque

    Stress Max. = 47 MPa Stress Max. = 173 MPa Stress Max. = 103 MPa

    Disp. Max. = 0.09 mm Disp. Max. = 0.58 mm Disp. Max. = 0.08 mm

    Stress Max. Stress Max.

    Stress Max.

  • 8/17/2019 Patran Contact

    11/43

    11

    Ch.1 Bolt 합 유형 모델링 기법 

    ( RBE2 ,Beam, Result )

    1. RBE2 Bolt Model 1-2. Type 2 - Half-Half Connection-Beam Element

     Load Type2 : Bending Load Type1 : Tension  Load Type3 : Torque

    Stress Max. = 47 MPa Stress Max. = 173 MPa Stress Max. = 103 MPa

    Disp. Max. = 0.1 mm Disp. Max. = 0.6 mm Disp. Max. = 0.1 mm

    Stress Max. Stress Max.

    Stress Max.

  • 8/17/2019 Patran Contact

    12/43

    12

    Ch.1 Bolt 합 유형 모델링 기법 

    ( RBE2 )

    1. RBE2 Bolt Model 1-3. Type 3 - Head Surface Connection

    DOF Check

    Auto Create Center Node

    Node List

    -MPC Modeling-

    Utilities >> FEM-General >> RBE2/RBE3 Spider

     Load Type1 : Tension

     Load Type2 : Bending Load Type3 : Torque

    -Load Case-

    RBE2

    RBE2

    RBE2 and Beam

    RBE2 Usage : 3 EA

    Beam Element : 1EA

  • 8/17/2019 Patran Contact

    13/43

    13

    Ch.1 Bolt 합 유형 모델링 기법 

    ( RBE2 ,Result )

    1. RBE2 Bolt Model 1-3. Type 3 - Head Surface Connection-RBE2 

     Load Type2 : Bending Load Type1 : Tension  Load Type3 : Torque

    Stress Max. = 38 MPa Stress Max. = 191 MPa Stress Max. = 93 MPa

    Disp. Max. = 0.09 mm Disp. Max. = 0.6 mm Disp. Max. = 0.08 mm

    Stress Max. Stress Max.Stress Max.

  • 8/17/2019 Patran Contact

    14/43

    14

    Ch.1 Bolt 합 유형 모델링 기법 

    ( RBE2 ,Beam, Result )

    1. RBE2 Bolt Model 1-3. Type 3 - Head Surface Connection-Beam Element 

     Load Type2 : Bending Load Type1 : Tension  Load Type3 : Torque

    Stress Max. = 38 MPa Stress Max. = 207 MPa Stress Max. = 93 MPa

    Disp. Max. = 0.1 mm Disp. Max. = 0.8 mm Disp. Max. = 0.1 mm

    Stress Max. Stress Max.Stress Max.

  • 8/17/2019 Patran Contact

    15/43

    15

    Ch.1 Bolt 합 유형 모델링 기법 

    ( 3D-Solid Bolt Model, SOL 400 )2. 3D-Solid Bolt Model

     2-1. Type 1 –  Contact, No Pre_Load

    -3D-Solid Modeling- -Load Case-

    2-2.Bottom_Plate_Body

    5-4.Nut_Body

     Load Type1 : Tension

     Load Type2 : Bending Load Type3 : Torque

    1-1.Top_Plate_Body

    3-3.Bolt_Body

    T

    TT

    T

    Top_Plate Bottom_Plate ->T

    • G : Glue

    •  T : Touch

    Top_Plate Bolt ->T Bottom_Plate Bolt ->T

    Nut Bottom_PLate ->T

    4-3.Bolt_Head

    T

    Bolt_Head Top_PLate ->T

  • 8/17/2019 Patran Contact

    16/43

    16

    Ch.1 Bolt 합 유형 모델링 기법 

    ( 3D-Solid Bolt Model, SOL 400, Result )

    )

     Load Type2 : Bending Load Type1 : Tension  Load Type3 : Torque

    2. 3D-Solid Bolt Model

     2-1. Type 1 – Contact, No Pre_Load 

    Stress Max. = 80 MPa Stress Max. = 185 MPa Stress Max. = 139 MPa

    Disp. Max. = 0.1 mm Disp. Max. = 0.6 mm Disp. Max. = 0.1 mm

    Stress Max. Stress Max.Stress Max.

  • 8/17/2019 Patran Contact

    17/43

    17

    Ch.1 Bolt 합 유형 모델링 기법 

    ( 3D-Solid Bolt Model, SOL 400 )

    -3D-Solid Modeling-

    2-2.Bottom_Plate_Body

    2. 3D-Solid Bolt Model

     2-2. Type 2 – Contact, Pre-Load 

    Pre-Load Type

    MPC Location :

    Split the element mesh

    - Geometric : Automatic

    - Vectorial : Crood 기준 

    - Elemental : User Selection

    (recommend)

    Control Node Offset Vector

    Offset Value

    Bolt Pre-Load Value

    Bolt Element List

    (Split List)

    - Bolt Modeling Tools -

    MPC Type

    - Overclosure :

    Nastran Bolt Card (Marc base)

    - Explicit : Nastran MPC Card

    Top_Plate Bottom_Plate ->T

    • G : Glue

    •  T : Touch

    Top_Plate Bolt ->T Bottom_Plate Bolt ->T

    Nut Bottom_PLate ->T

    Bolt_Preload

    5-4.Nut_Body

    1-1.Top_Plate_Body

    3-3.Bolt_Body

    T

    TT

    T

    4-3.Bolt_Head

    T

    Bolt_Head Top_PLate ->T

  • 8/17/2019 Patran Contact

    18/43

    18

    Ch.1 Bolt 합 유형 모델링 기법 

    ( 3D-Solid Bolt Model, SOL 400 )2. 3D-Solid Bolt Model

     2-2. Type 2 – Contact , Pre-Load 

    - Manual input-

    BOLT 2 5001

    TOP 4661 4662 4663 4664 4665 4666 4667

    4668 4669 4670 4671 4672 4673 4674

    생략 

    BOTTOM 5002 5003 5004 5005 5006 5007 5008

    5009 5010 5011 5012 5013 5014 5015

    생략 

    .

    MPCADD 43 2 3 4 5 6 7 8

    MPC 2 5002 1 -1. 4661 1 1.

    5001 1 1.

    MPC 2 5002 2 -1. 4661 2 1.

    5001 2 1.

    MPC 2 5002 3 -1. 4661 3 1.

    5001 3 1.

    생략 

    - Displacement

    FORCE 1 5001 0. .57735 .57735 .57735

    SPCD 1 5001 2 10.

    - Force

    FORCE 1 5001 0 250. 0. 0. 1.

    - Nastran Input-

     Overclosure

     Explicit

     Bolt Preload Case

  • 8/17/2019 Patran Contact

    19/43

    19

    Ch.1 Bolt 합 유형 모델링 기법 

    ( 3D-Solid Bolt Model, SOL 400, Load Step ) 

    2. 3D-Solid Bolt Model

     2-2. Type 2 – Contact , Pre-Load 

     Step 1 : Bolt Preload  Step 2 : External Load

  • 8/17/2019 Patran Contact

    20/43

    20

    Ch.1 Bolt 합 유형 모델링 기법 

    ( 3D-Solid Bolt Model, SOL 400, Result )2. 3D-Solid Bolt Model

     2-2. Type 2 – Contact , Pre-Load 

     Load Type2 : Bending Load Type1 : Tension  Load Type3 : Torque

    Stress Max. = 57 MPa Stress Max. = 188 MPa Stress Max. = 136 MPa

    Disp. Max. = 0.1 mm Disp. Max. = 0.6 mm Disp. Max. = 0.1 mm

    Stress Max.Stress Max.

    Stress Max.

  • 8/17/2019 Patran Contact

    21/43

    21

    Ch.1 Bolted Plate Model Analysis

    1. RBE2 Bolt Model-Result Summary 

    Stress (MPa)

    Tension  Bending  Torque  Type1

    - RBE2-Full 47 173 103

     Type2

    - RBE2-RBE2-RBE247 173 103

     Type3

    - RBE2-Beam-RBE2 47 173 103

     Type4

    - SRBE2-RBE2-SRBE2 38 191 93

     Type5- SRBE2-Beam-SRBE2  38 207 93

    Displacement (mm)

    Tension  Bending  Torque  Type1

    - RBE2-Full 0.09 0.58 0.08

     Type2

    - RBE2-RBE2-RBE20.09 0.58 0.08

     Type3

    - RBE2-Beam-RBE2 0.1 0.6 0.1

     Type4

    - SRBE2-RBE2-SRBE2 0.09 0.6 0.08

     Type5- SRBE2-Beam-SRBE2  0.1 0.8 0.1

    Stress (MPa)

    Tension  Bending  Torque 

     Type1-Contact

    - Plate 80 185 139

     Type2-Contact and Preload

    - Plate57 188 136

    Displacement (mm)

    Tension  Bending  Torque 

     Type1-Contact

    - Plate 0.1 0.6 0.1

     Type2-Contact and Preload

    - Plate0.1 0.6 0.1

  • 8/17/2019 Patran Contact

    22/43

    2. Glue Contact 조건의 고유 진동수 

    해석 

    22

  • 8/17/2019 Patran Contact

    23/43

    23

     Analysis type

    - SOL 103

     Material properties- E = 210×10 Pa, ν= 0.4, ρ= 1100 kg/m³

     Contact properties- Glued Contact

     Applied loads

    - None

     Element type

    - Case 1 :연속체 

    Casing – tet10 / Shroud – tet10- Case 2 : Glue contact

    Casing – hex20 / Shroud – tet10

    7

    Case 1연속체 

    Case 2Glue contact

    Ch.2 Glue Contact 조 의 고유 진동수 해석 

  • 8/17/2019 Patran Contact

    24/43

     Contact Table

    24

     Input Data

    IGLUE option

    Glue Contact option

    Case 2Glue contact

    MASTERS

    SLAVE

    Ch.2 Glue Contact 조 의 고유 진동수 해석 ( Contact 설정 )

  • 8/17/2019 Patran Contact

    25/43

    25

    Features Mode shape 7 Mode shape 8 Mode shape 9 Mode shape 10

    Case 1 (연속체)

    Runtime - 3749sec(1:02:29)

    Node - 555,450

    Element-434,768

    298.92 Hz 298.99 Hz 315.11 Hz 486.74 Hz

    Case 2 (Glue Contact)

    Runtime - 2554sec(0:42:34)

    Node - 431,101

    Element-229,358

    297.17 Hz 297.28 Hz 312.52 Hz 477.45 Hz

    Ch.2 Glue Contact 조 의 고유 진동수 해석 ( Result )

  • 8/17/2019 Patran Contact

    26/43

    3. SOL 400을 이용한 Forming

    Simulation

    26

  • 8/17/2019 Patran Contact

    27/43

    27

    Ch.3 SOL 400을 이용한 Forming Simulation

    Object :

    - SOL 400 ( Velocity-Controlled Rigid bodies적용 )

    Description :

    - Work-hardening(가공경화)의 Elasto-plastic material적용 

    - Reduced integration shell elements적용 

    - Deformable-rigid body: Friction 적용 

    Item Description

    Solution Type SOL 400

    Elements Type 4-noded reduced integration elements

    Material Properties  Aluminium alloy/E=70000 N/mm2, v=0.3, Thickness=1

    Applied load Type Velocity-Controlled Rigid bodies

    ContactRigid body: Punch, Die, Holder

    Deformable body: Blank

    Coefficient of friction = 0.05

    PUNCH: RIGID

    DIE: RIGID

    HOLDER:

    RIGID

    BLANK:

    DEFORMABLE

    Symmetry displacement constraints (1/4모델)

    XY SYMM[DOF 345 FIXED]

    YZ SYMM[DOF 156 FIXED]

    Ch3 SOL 400을 이용한 Forming Simulation

  • 8/17/2019 Patran Contact

    28/43

    28

    Ch3. SOL 400을 이용한 Forming Simulation - Solution Details

    Modeling : Contact :

    SOL 400SUBCASE 1

    SPC = 9

    SPCFORCES(SORT1,PRINT,REAL)=ALL

    BOUTPUT(SORT1,PRINT)=ALL

    DISPLACEMENT(SORT1,PRINT,REAL)=ALL

    STRESS(SORT1,PRINT,REAL,VONMISES,CORNER)=ALL

    BCONTACT = 1

    ANALYSIS = NLSTAT

    NLSTEP = 1

    BEGIN BULK

    PARAM LGDISP 1

    NLMOPTS ASSM ASSUMED

    BCPARA 0NLGLUE 1BIAS 0.95FNTOL 50.

    FTYPE 6

    PARAM POST -1

    PARAM,CDBMSG05,5

    $! Bulk Data Model Section

    MAT1 1 70000. 0.3 1.

    MATEP 1 Table 1

    PSHELL 1 1 1. 1 1 PSHELL_1

    PSHLN1 1 ++ C4 DCT LRIH PSHELL_1

    TABLES1 1 2 +

    + 0.0 191.10.033333 249.7720.066667 293.962 -생략 

    1. 428.752 ENDT

    SPCADD 9 1 2

    NLSTEP 1 +

    + FIXED 50 +

    + MECH UPV PFNT

    $! Contact Body: BLANK

    BCBODY 1 3D DEFORM 2 0 1

    BSURF 2 1 THRU 360

    $! Contact Body: PUNCH

    BCBODY 101 3D RIGID 0 1 0+

    + 0.0 0.0 0.0 0.0 40. 0.0+

    + RIGID 3 PUNCH + -생략 

    $! Contact Body: HOLDER

    BCBODY 102 3D RIGID 0 1 0+

    + 0.0 0.0 0.0 0.0 0.0 0.0+

    + RIGID 3 HOLDER + -생략 $! Contact Body: DIE

    BCBODY 103 3D RIGID 0 1 0+

    + 0.0 0.0 0.0 0.0 0.0 0.0+

    + RIGID 3 DIE + -생략 

    $! Contact Table: BCTABLE_1

    BCTABLE 1 3 +

    $ Pair: BLANK / DIE

    + SLAVE 1 0.0 50. 0.05 0.0 +

    + FBSH 0.95 +

    + MASTERS 103 +$ Pair: BLANK / HOLDER

    + SLAVE 1 0.0 50. 0.05 0.0 +

    + FBSH 0.95 +

    + MASTERS 102 +

    $ Pair: BLANK / PUNCH

    + SLAVE 1 0.0 50. 0.05 0.0 +

    + FBSH 0.95 +

    + MASTERS 101

    Friction coefficient

    Large-strain shell elements

    Z velocity of +40 mmper unit time

    Separation force

    Separation force

    bilinear Coulomb friction

    Stress vs. plastic strain

    Doubly-curved thick Shell &

    Linear Reduced Integration

    0: Velocity control

    Ch3 SOL 400을 이용한 Forming Simulation

  • 8/17/2019 Patran Contact

    29/43

    29

    Plastic Strain [MARC]

    Von Mises Stress [MARC]

    Plastic Strain [SOL 400]

    Von Mises Stress [SOL 400]

    MAX: 4.574-001

    MAX: 4.592-001

    MAX: 4.239+002

    MAX: 4.238+002

    Ch3. SOL 400을 이용한 Forming Simulation ( Results (SOL400 , MARC ))

  • 8/17/2019 Patran Contact

    30/43

    4. SOL 400을 이용한  Rubber Seal

    접촉해석 

    30

  • 8/17/2019 Patran Contact

    31/43

    31

    Object :

    - SOL 400 ( Segment-to-Segment Contact / Small Sliding and Friction )

    Description :

    - Moving rigid body : -Y 방향 200 mm Position적용 

    - Deformable body : Bilinear Coulomb friction적용 [Coefficient of friction=0.1]

    - Node-to-segment와 segment-to-segment contact status비교 

    Item Description

    Solution Type SOL 400

    Elements Type TET4 (CTETRA : 5387 EA)

    Material Properties Neo-Hookean Material/Mooney : C10 = 100

    Applied load Type Position-Controlled Rigid bodies

    ContactMoving rigid body: Touching

    Deformable body : Self touching

    Fixed rigid body : Glued

    Moving body :

    Touching

    Deformable body:

    Self Touching

    Fixed body :

    Glued

    200 mm

    Ch4. SOL 400을 이용한  Rubber Seal 접촉해석 

    Ch4 SOL 400을이용한 R bb S l 접촉해석

  • 8/17/2019 Patran Contact

    32/43

    32

    Modeling : Contact :

    SOL 400

    $ Bulk Data Pre Section

    NLMOPTS ASSM ASSUMED

    LRGSTRN 2

    SPROPMAP2

    BCPARA 0 BIAS 0.95 IBSEP 2 FTYPE 6+

    + NLGLUE 1 METHOD SEGSMALL 

    $ Bulk Data Model SectionMATHE 1 Mooney 1000000. 0.0 +

    + 100. 0.0

    PSOLID 1 1 Psolid

    PSLDN1 1 1 +

    + C4 ISOL L Psolid

    $ Bulk Data Post Section

    NLSTEP 1 +

    + GENERAL 10 1 10 ++ ADAPT 0.01 0.55 1.2 +

    + 6 +

    + MECH PVA PFNT

    $ Contact Body: Deformable

    BCBODY 1 3D DEFORM 2 0

    BSURF 2 1 THRU 3858

    $ Contact Body: Moving

    BCBODY 101 3D RIGID 1 -1+

    + 0.0 0.0 1. 0.0 -200. 0.0+

    + RIGID 1 Moving +

    NURBS -2 2 2 2 50 50 0 -생략 

    $ Contact Body: Fixed

    BCBODY 102 3D RIGID 1 0++ 0.0 0.0 1. +

    + RIGID 1 Fixed +

    NURBS -2 2 2 2 50 50 0 -생략 

    $ Contact Table: BCTABLE_1

    BCTABLE 0 3 +

    $ Pair: Deformable / Deformable

    + SLAVE 1 0.1 +

    + MASTERS 1 +

    $ Pair: Deformable / Fixed+ SLAVE 1 1 +

    + 0 1 0

    + MASTERS 102 +

    $ Pair: Deformable / Moving

    + SLAVE 1 1 +

    + 0 1 0

    + MASTERS 101

    Coefficient of friction=0.1

    Small sliding

    Segment-to-Segment

    algorithm

    Bilinear Coulomb friction

    -1: Position Control

    Y Position of -200 mm

    S-to-S with Small sliding [finite sliding] :

    SEGSMALL [SEGLARGE]

    Regular 3D contact (Node to surface) : NODESURF

    Ch4. SOL 400을 이용한  Rubber Seal 접촉해석 - Solution Details

    Large-strain solid elementsIncompressible Solid,

    Linear

    Ch4 SOL 400을이용한 R bb S l 접촉해석

  • 8/17/2019 Patran Contact

    33/43

    33

    Results :

    Contact Status in Segment-to-Segment  Case

    Displacement in Node-to-Segment case

    PENETRATION

    Displacement in Segment-to-Segment  case

    Contact Status in Node-to-Segment Case

    Ch4. SOL 400을 이용한  Rubber Seal 접촉해석 ( Contact Result )

    Ch4 SOL 400을이용한 R bb S l 접촉해석

  • 8/17/2019 Patran Contact

    34/43

    34

    Contact Status in Node-to-Segment case

    [SOL400 - NODE TO SEGMENT]

    Contact Status in Segment-to-Segment case

    Contact Status in Node-to-Segment case

    [MARC - NODE TO SEGMENT]

    Contact Status in Segment-to-Segment case

    [MARC - SMALL SLIDING]

    PENETRATION

    PENETRATION

    [SOL400 - SMALL SLIDING]

    Ch4. SOL 400을 이용한  Rubber Seal 접촉해석  -( Results ( SOL400 & MARC )) 

  • 8/17/2019 Patran Contact

    35/43

    5.SOL 400을 이용한 Springback 해석 

    35

  • 8/17/2019 Patran Contact

    36/43

    원통형 Rigid Body의 EnforcedMotion으로 인한 Forming단계에서 

    금속 구조물의 영구변형 발생.

    - Step 1 : at forming

    원통형 Rigid Body제거 후 금속 구조

    물의 Spring back해석.

    - Step 2 : at the end of forming

    준 정적해석(SOL400),가공 경화 

    탄소성 재료.

    Contact Features에 따른 비교.

    i) Velocity with releaseii) Load

    iii) Load with release.

    Ch.5 SOL 400을 이용한 Springback 해석 

    36

    Fig. FE Model

    Constraint : x 

    Metal 

    Cylinder

    Constraint : y 

    - Enforced motion: 0.1125 inch

    Parts Contact Material Property Remarks

    Metal Deformable

    E = 10.6e6 psi

    Nu = 0.33

     Yield Stress

    = 4.29e10 psi

    - 2D Plane

    Strain

    - Friction

    Coefficient =

    0.2

    Cylinder Rigid -

    Ch 5 SOL 400 Springback

  • 8/17/2019 Patran Contact

    37/43

    Ch.5 SOL 400을 이용한 Springback 해석 

    - Solution Details

    37

    i) Velocity controlled rigid body- BCMOVE ii) Load controlled rigid body- without BCMOVE iii) Load controlled rigid body- BCMOVE

    Contact Features

    Control

    : 0 for velocity

    Contact Body

    Release

    Control Node

    : 239

    Contact Body

    Release

    Enforced Motion

    : 0.1125 in

    Control

    : Positive number

    for load

    Ch 5 SOL 400 S i b k

  • 8/17/2019 Patran Contact

    38/43

    Deformation: 0.228 in

    at Forming

    Deformation: 0.182 in

    at the End of Forming

    38

    Ch.5 SOL 400을 이용한 Springback 해석 

    ( Results ( SOL400 & MARC))

    Point A

    Comparison of Marc

    The Results of each Contact Feature

    The Same Results

    of MSC Marc.

    Contact Features Deformation atForming

    Deformation at

    the End of

    Forming

    Solving Time

    Velocity with

    release0.228 in 0.182 in 8.619 sec

    Load 0.228 in 0.182 in 11.016 sec

    Load with

    release0.228 in 0.182 in 10.994 sec

    Point A

    At Forming

    At the End of Forming

  • 8/17/2019 Patran Contact

    39/43

    6.SOL 400을 이용한 Circuit Board

    열응력 해석 

    39

  • 8/17/2019 Patran Contact

    40/43

    한번의 수행으로 열 / 응력 연계 해석. 비선형 열 / 응력 해석.

    SOL400(Chain Analysis)과 

    SOL 153/101 해석의 결과 비교.

    40

    Fig. 1.2 Geometry of Circuit Board

    Case

    Fig. 1.1 Circuit Board

    Paste

    Leads

    Chip3.80 X 3.80

    0.7t

    Ch.6 SOL 400을 이용한 Circuit Board 열응력 해석 

    C 6 SO 400 C

  • 8/17/2019 Patran Contact

    41/43

     대류와 복사 고려  Element type : HEX8

    41

    Heat Convection (top)

    : 4.05e-5 W/(mm^2C)

    Heat Convection (bottom)

    : 2.026e-5 W/(mm^2C)

    Heat Convection

    (side)

    : 7.00e-5 W/(mm^2C)

     AmbientTemperature

    : 70 CRadiation (top)

    - Ambient Temperature : 40C

    - Emissivity : 0.8

    - View Factor : 1.0

    Heat Flux: 0.025 W/(mm^2C)

    Constraint

    : Fixed

    Material

     Young’s

    Modulus

    [ N/mm^2 ]

    Thermal

    Conductivity

    [ kW/(mm/C ]

    Thermal

    Expansion

    [ 1/C ]

    Stefan-

    Boltzmann

    [ W/(mm^2K) ]

    Lead

    Frame6.9e4 0.14700 1.0e-6

    1.7140e-9Chip 5.52e4 0.16800 1.0e-5

    Case 4.5e4 0.07140 1.0e-6

    Paste 2.0e3 0.02016 1.0e-5

    Ch.6 SOL 400을 이용한 Circuit Board 열응력 해석 

    Ch 6 SOL 400 Ci it B d

  • 8/17/2019 Patran Contact

    42/43

    42

    Solution Type

    STEP SOL Name Description

    1 HSTAT Steady State Heat Transfer

    2 NLSTAT Nonlinear Static

    SOL Description

    153 Steady State Heat Transfer

    101 Linear Static

    SOL400 – Chain Analysis

      SOL153 & SOL101

    STEP 1

    : Heat Transfer

    STEP 2

    : Nonlinear Static

    Temperature Load

    Ch.6 SOL 400을 이용한 Circuit Board 열응력 해석 

    Ch 6 Thermal Stress Analysis

  • 8/17/2019 Patran Contact

    43/43

    Temperature: 87.8 C

    Displacement: 0.00294 mm

    Stress – Von Mises: 89.1 MPa

    Ch.6 Thermal Stress Analysis

    of an Integrated Circuit Board - Result

    • The Same Results of Sol400 & Sol153/101 !

    Solution Type Temperature DisplacementStress

    : Von MisesSolving Time

    SOL400 87.8 C 0.00294 mm 89.1 MPa 9.931 sec

    SOL153 87.8 C - - 1.711 sec

    SOL101 - 0.00294 mm 89.1 MPa 5.957 sec