pasture(intensifica.on(and(double(cropping(as(mechanisms(to( … · 2020. 5. 13. ·...

20
Pasture Intensifica.on and Double Cropping as Mechanisms to Mi.gate iLUC Andre Nassar IEA Bioenergy ExCo 74 Workshop: Land use and Mitigating iLUC Brussels, October 23 rd , 2014 www.agroicone.com.br

Upload: others

Post on 25-Sep-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Pasture(Intensifica.on(and(Double(Cropping(as(Mechanisms(to( … · 2020. 5. 13. · Pasture(Intensifica.on(and(Double(Cropping(as(Mechanisms(to(Migate iLUC AndreNassar IEA Bioenergy

Pasture  Intensifica.on  and  Double  Cropping  as  Mechanisms  to  Mi.gate  iLUC Andre  Nassar

IEA Bioenergy ExCo 74 Workshop: Land use and Mitigating iLUC

Brussels,  October  23rd,  2014   www.agroicone.com.br  

Page 2: Pasture(Intensifica.on(and(Double(Cropping(as(Mechanisms(to( … · 2020. 5. 13. · Pasture(Intensifica.on(and(Double(Cropping(as(Mechanisms(to(Migate iLUC AndreNassar IEA Bioenergy

iLUC  Factors  Calcula.on:  Two  Steps

Es5ma5ng  iLUC  in  Hectares  

• Global  equilibrium  models  (general  or  par5al)  

• Some  aFempts  to  use  alloca5on  procedures  based  on  historical  data  

• AIer  years  of  using  models,  although  have  been  strongly  improved,  models  are  s5ll  incomplete  

• The  consequence  is  that  they  tend  to  overstate  iLUC  because  they  are  very  conserva6ve  in  yields  improvement  

Integrated  or  not  integrated  in  the  same  tool/model  

Transla5ng  iLUC  in  GHG  Emissions  

• Different  models  available  • Some  are  spa5ally  explicit  others  not  • They  rely  on  emissions  factors  • Since  global  models  not  always  inform  the  types  of  land  converted  (but  only  the  amount  of  conversion  on  forests  and  pastures),  emissions  models  also  allocate  “iLUC  in  ha”  over  types  of  “non  produc5ve”  land  

Page 3: Pasture(Intensifica.on(and(Double(Cropping(as(Mechanisms(to( … · 2020. 5. 13. · Pasture(Intensifica.on(and(Double(Cropping(as(Mechanisms(to(Migate iLUC AndreNassar IEA Bioenergy

CARB  LCFS  Analysis  (September  29th,  2014)

Page 4: Pasture(Intensifica.on(and(Double(Cropping(as(Mechanisms(to( … · 2020. 5. 13. · Pasture(Intensifica.on(and(Double(Cropping(as(Mechanisms(to(Migate iLUC AndreNassar IEA Bioenergy

Evolu.on  of  iLUC  Factors  Results  Over  Time  (from  models)     Corn   Sugar  cane   Sugar  beet   Palm  oil   Rape  oil   Soy  oil   Methodology  Searchinger  et  al.,  2008   104.0   111.0   n.a.   n.a.   n.a.   n.a.   FAPRI  CARB,  2009   30.0   46.0   n.a.   n.a.   n.a.   62.0   GTAP  EPA,  2010   26.3   4.1   n.a.   n.a.   n.a.   43.0   FAPRI  with  Brazilian  model,  FASOM  Hertel  et  al.,  2010   27.0   n.a.   n.a.   n.a.   n.a.   n.a.   GTAP  E4Tech,  2010   n.a.   8.0-­‐27.0   n.a.   8.0-­‐80.0   15.0-­‐35.0   9.0-­‐67.0   Causal-­‐descrip5ve  approach  Tyner  et  al.,  2010     15.2-­‐19.7   n.a.   n.a.   n.a.   n.a.   n.a.   GTAP  Al-­‐Riffai  et  al.,  2010   n.a.   17.8-­‐18.9   16.1-­‐65.5   44.6-­‐50.1   50.6-­‐53.7   67.0-­‐75.4   MIRAGE  Laborde,  2011   10.0   13.0-­‐17.0   4.0-­‐7.0   54.0-­‐55.0   54.0-­‐55.0   56.0-­‐57.0   MIRAGE  Marelli  et  al.,  2011   13.9-­‐14.4   7.7-­‐20.3   3.7-­‐6.5   36.4-­‐50.6   51.6-­‐56.6   51.5-­‐55.7   MIRAGE  and  JRC  methodology  for  emissions  calcula5ons  Moreira  et  al.,  2012   n.a.   7.6   n.a.   n.a.   n.a.   n.a.   Causal-­‐descrip5ve  approach  GREET1_2013   9.2   n.a.   n.a.   n.a.   n.a.   n.a.   GREET  CARB,  2014   23.2   26.5   n.a.   n.a.   n.a.   30.2   GTAP  Laborde,  2014   13.0   16.0   7.0   63.0   56.0   72.0   MIRAGE  and  JRC  methodology  for  emissions  calcula5ons  EllioF  et  al.  2014   5.9   n.a.   n.a.   n.a.   n.a.   n.a.   PEEL  Harfuch  et  al.,  2014   n.a.   13.9   n.a.   n.a.   n.a.   n.a.   BLUM  

References  "Al-­‐Riffai,  P,  Dimaranan,  B  and  Laborde,  D  (2010).  Global  Trade  and  Environmental  Impact  Study  of  the  EU  Biofuels  Mandate.  Specific  Contract  No  SI2.537.787  implemen5ng  Framework  Contract  No  TRADE/07/A2,  Final  report  March  2010.  "  CARB  (2009).  CARB  Staff  Report:  Proposed  Regula5on  to  Implement  the  Low  Carbon  Fuel  Standard.  California  Air  Resources  Board:  March,,  2009.  CARB  (2014).  iLUC  Analysis  for  the  Low  Carbon  Fuel  Standard  (Update).  California  Air  Resources  Board:  March,  2014.  E4Tech  (2010).  A  Causal  Descrip5ve  Approach  to  Modeling  the  GHG  Emissions  Associated  with  the  Indirect  Land  Use  Impacts  of  Biofuels.  Final  report.  A  study  for  the  UK  Department  for  Transport,  October  2010.  Elliot,  J.;  Sharma,  B.;  Best,  N.;  GloFer,  M.;  Dunn,  J.  B.;  Foster,  I.;  Miguez,  F.;  Mueller,  S.;  Wang,  M.  A  Spa5al  Modeling  Framework  to  Evaluate  Domes5c  Biofuel-­‐Induced  Poten5al  Land  Use  Changes  and  Emissions.  Environmental  Science  and  Technology,  2014,  48  (4),  pp  2488–2496  (DOI:  10.1021/es404546r).  EPA  (2010).  Renewable  Fuel  Standard  Program  (RFS2)  Regulatory  Impact  Analysis.  Assessment  and  Standards  Division,  Office  of  Transporta5on  and  Air  Quality,  U.S.  Environmental  Protec5on  Agency:  February,  2010.  GREET1_2013.  GREET  Model:  The  Greenhouse  Gases,  Regulated  Emissions,  and  Energy  Use  in  Transporta5on  Model.  Argonne  Na5onal  Laboratory.  Harfuch,  L.;  Bachion,  L.C.;  Moreira  M.M.R.;  Nassar,  A.M.;  Carriquiry,  M.  2014.  Agricultural  Expansion  and  Land  Use  Changes  in  Brazil:  Using  Empirical  Evidence.  In:  Handbook  of  Bioenergy  Economics  and  Policy  (in  press).  Springer,  2014.  "Hertel,  T.;  Golub,  A.  A.;  Jones,  A.  D;  O'Hare  M.;  Plevin,  R.  J.;  Kammen,  D.  M.  Globalland  use  and  greenhouse  gas  emissions  impacts  of  U.S.  maize  ethanol:  es5ma5ng  marketmediatedresponses.  Biosci.  2010,  60  (3),  223–231;  DOI:  10.1525/bio.2010.60.3.8."  Laborde,  D.  (2011).  Assessing  the  Land  Use  Change  Consequences  of  European  Biofuel  Policies.  Final  Report,  IFPRI,  October  2011.  Laborde,  D.;  Padella,  M.;  Edwards,  R.;  Marelli,  L.  Progress  in  Es5mates  of  iLUC  with  Mirage  Model.  Joint  Research  Center,  Report  EUR  26106  EN.  Marelli,  L.;  Ramos,  F.;  Hiederer,  R.;  Koeble,  R.  (2011)  Es5mate  of  GHG  emissions  from  global  land  use  change  scenarios.    JRC  Technical  Notes.  EUR  24817  EN  -­‐  2011  Moreira,  M.;  Nassar,  A.;  Antoniazzi,  L.;  Bachion,  L.  C.;  Harfuch,  L.  (2012).  Direct  and  indirect  land  use  change  assessment.  In:  Poppe,  M.  K.;  Cortez,  L.  A.  B.  Sustainability  of  sugarcane  bioenergy.  Center  for  Strategic  Studies  and  Management  (CGEE),  2012.  "SEARCHINGER,  T.;  HEIMLICH,  R.;  HOUGHTON  R.A.;  DONG,  F.;  ELOBEID,  A.;  FABIOSA  J.  Use  of  UScroplands  for  biofuels  increases  greenhouse  gases  through  emissions  from  land-­‐use  change.  Sciencev.  319,  p.  1238–1240.  2008."  "Tyner,  W.  E.;  Taheripour,  F.;  Zhuang,  Q.;  Birur,  D.;  Baldos,  U.  Land  use  changes  andconsequent  CO2  emissions  due  to  US  corn  ethanol  produc5on:  a  comprehensive  analysis;  PurdueUniversity,  West  LafayeFe,  Indiana,  2010;hFps://www.gtap.agecon.purdue.edu/resources/download/5200.pdf."    

Page 5: Pasture(Intensifica.on(and(Double(Cropping(as(Mechanisms(to( … · 2020. 5. 13. · Pasture(Intensifica.on(and(Double(Cropping(as(Mechanisms(to(Migate iLUC AndreNassar IEA Bioenergy

Op.ons  for  mi.ga.ng  iLUC  (the  ones  more  relevant  in  my  opinion)

•  Reducing  deforesta.on  over  .me  through  policies,  monitoring,  command  and  control  sanc.ons,  land  use  planning,  zoning

•  However,  out  of  the  scope  of  bioenergy  systems

•  Increasing  the  yields  of  individual  crops,  induced  by  technological  improvement  or  price  induced

•  Making  land  more  produc.ve •  Reducing  yield  gaps  on  crops •  Increasing  produc.vity  in  grass-­‐fed  caWle  systems •  Integra.on  systems:  double-­‐cropping  and  crop-­‐livestock

•  Developing  crops  suitable  for  marginal,  degraded  or  low  precipita.on  lands

Page 6: Pasture(Intensifica.on(and(Double(Cropping(as(Mechanisms(to( … · 2020. 5. 13. · Pasture(Intensifica.on(and(Double(Cropping(as(Mechanisms(to(Migate iLUC AndreNassar IEA Bioenergy

Op.ons  for  mi.ga.ng  iLUC:  a  closer  look Op6ons   Opportuni6es/weaknesses  

Reducing  deforesta5on   §  Very  important  but  long  term  §  Requires  government  empowerment  §  Much  broader  agenda  than  biofuels  §  Models  are  shy  in  this  issue  

Increasing  the  yields  of  individual  crops   §  Can  bring  posi5ve  effects  in  the  short  term  §  But  rate  of  yields  increase  in  crops  is  decreasing  (contribu5on  is  low)  §  GMO  §  Model  capture  that  effect  

Reducing  yields  gaps  on  crops   §  It  can  have  huge  effects  §  Require  capacity  building  §  Long  term  §  Models  capture  but  tend  to  be  conserva5ve  

Increasing  produc6vity  in  grass-­‐fed  caFle  systems   §  It  can  have  even  larger  effects  given  that  2/3  of  agricultural  land  is  used  for  grazing  

§  Models  are  conserva6ve  and  pasture  intensifica6on  is  a  consequence  not  a  driving  force  (CETs  and  compe66on  elas6ci6es  are  not  calibrated  to  achieve  real  pasture  intensifica6on  

Integra6on  systems:  double-­‐cropping  and  crop-­‐livestock  

§  It  is  a  reality  but  it  is  not  captured  by  models.  §  Short  term  

Developing  crops  suitable  for  marginal,  degraded  or  low  precipita5on  lands  

§  Long  term  §  Probably  will  have  lower  effects  than  pasture  intensifica5on  

Page 7: Pasture(Intensifica.on(and(Double(Cropping(as(Mechanisms(to( … · 2020. 5. 13. · Pasture(Intensifica.on(and(Double(Cropping(as(Mechanisms(to(Migate iLUC AndreNassar IEA Bioenergy

Double  Cropping

Page 8: Pasture(Intensifica.on(and(Double(Cropping(as(Mechanisms(to( … · 2020. 5. 13. · Pasture(Intensifica.on(and(Double(Cropping(as(Mechanisms(to(Migate iLUC AndreNassar IEA Bioenergy

Soy-­‐Corn  Double  Copping  System

•  In  the  same  raining  season  (Summer)  soy  and  corn  are  cul.vated.  Soy  is  planted  firstly,  in  the  beginning  of  Spring  (September-­‐October)  and  harvested  in  January.  Corn  is  planted  just  a[er  soy  is  harvested  and  it  is  harvested  in  mid  Autumn.

•  Short  cycle  soy  varie.es  were  developed  to  allow  corn  being  planted  a[er  soy •  Requires  3  to  5  years  to  prepare  the  soil,  recover  fer.lity  and  organic  maWer  to  op.mize  produc.on

•  100%  no  .ll •  90%  of  corn  planted  area  is  rain  fed •  Very  efficient  in  energy  use  and  carbon  footprint  reduc.ons

•  Potassium  and  phosphorus  use  is  op.mized •  Only  addi.onal  fer.lizer  is  nitrogen  (because  soy  does  not  require  nitrogen) •  Requires  herbicides  for  the  no  .ll  cul.va.on

•  The  system  has  saved  around  9  million  ha  in  the  last  10  years:  reduc.on  in  the  first  crop  area  (around  3  million  ha)  and  increase  in  the  second  crop  (6  million)

Page 9: Pasture(Intensifica.on(and(Double(Cropping(as(Mechanisms(to( … · 2020. 5. 13. · Pasture(Intensifica.on(and(Double(Cropping(as(Mechanisms(to(Migate iLUC AndreNassar IEA Bioenergy

Corn  Produc.on  in  Brazil

•  Currently,  each  addi.onal  1  ha  of  soy  leads  to: •  0.17  ha  reduc.on  in  corn  1st  crop •  0.50  ha  increase  in  corn  2nd  crop •  Given  that  corn  2nd  crop  has  higher  yields  than  corn  1st  crop,  effects  in  produc.on  are  even  higher

Variable   Corn  harvest   2003   2004   2005   2006   2007   2008   2009   2010   2011   2012   2013  

Area    (1000ha)  

1st  crop   9.690     9.381     8.581     9.280     9.686     9.422     8.511     6.864     7.508     6.895     6.749  

2nd  crop   3.276     3.030     2.968     3.333     4.082     5.022     4.381     5.043     5.711     7.304     8.967  

Produc6on  (1000  t)    

1st  crop   35.028     31.349    27.161    31.485    37.658    39.829    30.705    29.852    33.488    32.819    34.157  

2nd  crop   13.299     10.439    7.952     11.177    14.455    19.105    16.367    21.568    22.172    38.254    46.381  

Source:  IBGE.  

Page 10: Pasture(Intensifica.on(and(Double(Cropping(as(Mechanisms(to( … · 2020. 5. 13. · Pasture(Intensifica.on(and(Double(Cropping(as(Mechanisms(to(Migate iLUC AndreNassar IEA Bioenergy

Sources:  CONAB;  IBGE;  ABRAF;  ÚNICA;  BLUM  

Corn  Produc5on  (million  tons)  1,000  ha  Planted  Area  

0  

2,000  

4,000  

6,000  

8,000  

10,000  

12,000  

0  

10,000  

20,000  

30,000  

40,000  

50,000  

60,000  

2003  2004  2005  2006  2007  2008  2009  2010  2011  2012  2013  Soybean   Corn  1st  Crop   CoFon  

Eucalyptus  and  Pinus   Sugarcane   Corn  2nd  Crop  

34   31   27   31   36   40  34   34   36   34   36  

13  11  

8  11  

15  19  

17   22   21  39  

46  

0  

10  

20  

30  

40  

50  

60  

70  

80  

90  

2003   2004   2005   2006   2007   2008   2009   2010   2011   2012   2013  

Corn  1st  Crop   Corn  2nd  Crop  

Corn  2nd  crop  1,000  ha  

Corn  Double  Cropping:  Planted  Area  and  Produc.on

Page 11: Pasture(Intensifica.on(and(Double(Cropping(as(Mechanisms(to( … · 2020. 5. 13. · Pasture(Intensifica.on(and(Double(Cropping(as(Mechanisms(to(Migate iLUC AndreNassar IEA Bioenergy

Brazil:  Annual  Crops  Expansion

11  Source:  Agrosatelite  

Page 12: Pasture(Intensifica.on(and(Double(Cropping(as(Mechanisms(to( … · 2020. 5. 13. · Pasture(Intensifica.on(and(Double(Cropping(as(Mechanisms(to(Migate iLUC AndreNassar IEA Bioenergy

Soy-­‐Corn  System  Environmental  Indicators

20  30  40  50  60  70  80  90  100  110  120  

Soybean  Land  Use  Efficiency    

Energy/tons  Carbon  Intensity/tons  

Soybean-­‐Corn  (2004-­‐2006=100)    

2004-­‐2006  

2007-­‐2009  

2010-­‐2012  

Source:  Agroicone  

Page 13: Pasture(Intensifica.on(and(Double(Cropping(as(Mechanisms(to( … · 2020. 5. 13. · Pasture(Intensifica.on(and(Double(Cropping(as(Mechanisms(to(Migate iLUC AndreNassar IEA Bioenergy

Pasture  Intensifica.on

Page 14: Pasture(Intensifica.on(and(Double(Cropping(as(Mechanisms(to( … · 2020. 5. 13. · Pasture(Intensifica.on(and(Double(Cropping(as(Mechanisms(to(Migate iLUC AndreNassar IEA Bioenergy

Pasture  Intensifica.on

•  Roughly  2/3  of  agricultural  area  worldwide  is  occupied  with  pastures  and  meadows.  We  do  not  know  how  much  is  natural  and  how  much  is  planted/managed.  But  we  have  a  good  idea  of  which  regions  can  increase  pasture  produc.vity

•  Situa.on  in  Brazil •  Planted/managed  pastures:  115  million  ha  (of  which  10  million  is  considered  degraded) •  Natural  (but  used  for  caWle  raising):  60  million •  Produc.vity  is  growing  but  s.ll  is  below  the  poten.al

•  Majority  of  pastures  is  located  in  areas  non  suitable  for  crops.  However,  in  specific  regions  such  as  Brazil,  central  and  eastern  Africa,  which  represents  18%  of  total  grasslands,  there  are  strong  poten.al  for  intensifica.on

•  Pasture  intensifica.on  means •  Grass-­‐fed  caWle  raising  systems  with  poten.al  to  produce  more  meat  per  ha,  without  increasing  caWle  herd,  but  reducing  pasture  area

•  It  is  a  func.on  of  adapted  animals  (gene.cally  improved),  managed  pasture,  rota.on  grazing  and  some  specializa.on  (calf  crop,  yearling,  finishing)

Page 15: Pasture(Intensifica.on(and(Double(Cropping(as(Mechanisms(to( … · 2020. 5. 13. · Pasture(Intensifica.on(and(Double(Cropping(as(Mechanisms(to(Migate iLUC AndreNassar IEA Bioenergy

Pastureland  Worldwide

Source:  IIASA;  FAO   Hectares  Arable  land  and  Permanent  crops        1,562,548    Permanent  meadows  and  pastures        3,359,659    

Page 16: Pasture(Intensifica.on(and(Double(Cropping(as(Mechanisms(to( … · 2020. 5. 13. · Pasture(Intensifica.on(and(Double(Cropping(as(Mechanisms(to(Migate iLUC AndreNassar IEA Bioenergy

Factors  Explaining  Beef  Produc.on  Expansion  in  Brazil

Source:  Martha  Jr,  G.  B.;  Alves,  E.;  Con5ni,  E.  Land-­‐saving  approaches  and  beef  produc5on  growth  in  Brazil.  Agricultural  Systems  110  (2012).  hFp://dx.doi.org/10.1016/j.agsy.2012.03.001.  

Page 17: Pasture(Intensifica.on(and(Double(Cropping(as(Mechanisms(to( … · 2020. 5. 13. · Pasture(Intensifica.on(and(Double(Cropping(as(Mechanisms(to(Migate iLUC AndreNassar IEA Bioenergy

Produc.vity  is  growing

Source:  Juliano  Assunção,  CPI.  

Page 18: Pasture(Intensifica.on(and(Double(Cropping(as(Mechanisms(to( … · 2020. 5. 13. · Pasture(Intensifica.on(and(Double(Cropping(as(Mechanisms(to(Migate iLUC AndreNassar IEA Bioenergy

Sources:  IBGE,  UFMG,  INPE,  BIGMA  Consul5ng,  Agroicone.  

179,000

180,000

181,000

182,000

183,000

184,000

185,000

-

10.00

20.00

30.00

40.00

50.00

60.00

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012Livestock yield Pasture Area

(kg meat / ha) (1000 ha)

2002   2012   Varia6on   CAGR  (%)  

Pasture  area  (1000  ha)   184,037   180,785   -­‐3,252   -­‐0.14%  Herd  (1000  Head)   185,349   213,239   27,890   0.98%  

Meat  produc6on  (1000  MT)   7,139   9,748   2,609   2.64%  

Livestock  yield  (kg  of  meat/ha)   39   54   15   2.78%  

Milk  produc6on  (1000  liters)   24,172     33,996     9.824     3.6%    

Milk  produc6on  per  cow  (liters/cow)     1,286     1,479     193     1.4%    

Yield  Improvement:  livestock

Page 19: Pasture(Intensifica.on(and(Double(Cropping(as(Mechanisms(to( … · 2020. 5. 13. · Pasture(Intensifica.on(and(Double(Cropping(as(Mechanisms(to(Migate iLUC AndreNassar IEA Bioenergy

Intensifica.on  poten.al

Source:  Bernardo  B.N.  Strassburg  Agnieszka  E.  Latawie,  Luis  G.  Barioni,  Carlos  A.  Nobre,  Vanderley  P.  da  Silva,  Judson  F.  Valen5m,  Murilo  Vianna,  Eduardo  D.  Assad.    When  enough  should  be  enough:  Improving  the  use  of  current  agricultural  lands  could  meet  produc5on  demands  and  spare  natural  habitats  in  Brazil.  Global  Environmental  Change  28,  p.  84–97,  2014.    

•  Managed  pastures:  115  million  ha  •  Current  carrying  capacity:  94  million  

animals  (produc5vity  of  0.81  AU/ha)  •  Poten5al  carrying  capacity:  274-­‐293  

million  animals  

Page 20: Pasture(Intensifica.on(and(Double(Cropping(as(Mechanisms(to( … · 2020. 5. 13. · Pasture(Intensifica.on(and(Double(Cropping(as(Mechanisms(to(Migate iLUC AndreNassar IEA Bioenergy

159.4

316.3 386.6 391.8

254.3

105.6 85.2

236 290.3 275.9

121.4

-37.2 1 - 3 @/ha 3 - 6 6 - 12 12 - 18 18 - 26 26 - 38 @/

ha

77.2 130.7

342.3 540.3 574.9

817.5

5.2 12.8 185.8 427.9 460.7

702.9

1 - 3 @/ha 3 - 6 6 - 12 12 - 18 18 - 26 26 - 38 @/ha

73 175

317 364 484

712

00 76 158

233 351

579

1 - 3 @/ha 3 - 6 6 - 12 12 - 18 18 - 26 26 - 38 @/ha

R$/hectare/year

Gross profit Operating profit

Livestock  technology:  small  improvement,  large  response

Calf breeding

Growth and termination

Investment, yields and returns

40% 31% 30% 30%

56% 64% 65% 65%

0%

20%

40%

60%

80%

100%

2012 Basline 2020 PNMC 2020 DZ 2020

Brazilian livestock technology profile

Low (0-3 @/ha) Average (3-6) High (>6)

•  Technology profile (@/ha): low (0-3 @/ha); average (3-6); high (>6)

•  2012: 40% of production on low tech; 56% on average; 4% on high; average production per hectare 3.63 @/ha; 10 mm tons of beef; 181 mm of ha pasture

•  2020 Baseline: 31-64-5%; 4.65 @/ha; 3.5 mm ha less; 12 mm tons of beef

•  2020 ZD: 30-65-5%; 4.78 @/ha; 10 mm ha less; 12 mm tons of beef

•  Calf breeding presents decreasing profitability when tech is higher than 12@/ha – limit to intensification;

•  Termination with high tech: competitive profitability compared to grains, not considering investments costs.

Complete cycle