particle acceleration and applications: status and plans for ......20 fs, 2×1022 w/cm², 100 nm 416...

23
Particle acceleration and applications: status and plans for Apollon/CILEX facility J. Fuchs, LULI, Ecole Polytechnique [email protected] And the teams of the CILEX project ELI-NP, Oct 3-5, 2012

Upload: others

Post on 16-Dec-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Particle acceleration and applications: status and plans for ......20 fs, 2×1022 W/cm², 100 nm 416 MeV 20 fs, 1022 W/cm², 100 nm 104 MeV 22 18 2 0.26eV p i i A I t H V |u in µg/cm2

Particle acceleration and applications: status and plans for

Apollon/CILEX facility

J. Fuchs, LULI, Ecole Polytechnique [email protected]

And the teams of the CILEX project

ELI-NP, Oct 3-5, 2012

Page 2: Particle acceleration and applications: status and plans for ......20 fs, 2×1022 W/cm², 100 nm 416 MeV 20 fs, 1022 W/cm², 100 nm 104 MeV 22 18 2 0.26eV p i i A I t H V |u in µg/cm2

Ion beams

Page 3: Particle acceleration and applications: status and plans for ......20 fs, 2×1022 W/cm², 100 nm 416 MeV 20 fs, 1022 W/cm², 100 nm 104 MeV 22 18 2 0.26eV p i i A I t H V |u in µg/cm2

Ion acceleration: expertise and know-how

of the French teams - I

• Laser-plasma and accelerator physicists

from IRAMIS, DAM, CPHT, INSP, CELIA,

CENBG, LOA, LPGP, LULI

• Ion acceleration mechanisms:

TNSA, shock acceleration RPA,

transparency regime

• Spectral & spatial shaping: plasma

optics for focusing & spectral tailoring

1

10

100

10 16

10 18

10 20

10 22

10 24

1000

10000

S imulations

Experimental data

LULI ELFIE APOLLON

ELI

I l ² (W.cm - 2 ) P

roto

n m

axim

um

en

erg

y [

MeV

]

CEA&LOA

Zone

within

reach with

Apollon

CPA 1

Diverging beam

target

CPA 2

Focused beam

Page 4: Particle acceleration and applications: status and plans for ......20 fs, 2×1022 W/cm², 100 nm 416 MeV 20 fs, 1022 W/cm², 100 nm 104 MeV 22 18 2 0.26eV p i i A I t H V |u in µg/cm2

Ion acceleration: expertise and know-how

of the French teams - II

• Ion diagnostics including real-tim/high-rep

rate & high-energy (200 MeV for PETAL for

example)

• Applications radiography (fields, density),

WDM heating, nuclear physics (stopping &

charge equilibrium measurements), laboratory

astrophysics

• Modeling of UHI laser interaction with

targets (several PIC and hybrid simulation

codes)

Medical applications

Dense material radiography

Spallation

Elementary particle

physics

Astrophysics 30

250

1000

1000000

MeV

C+ C2+ C3+ C4+ C5+ C6+

H+

Energy

Page 5: Particle acceleration and applications: status and plans for ......20 fs, 2×1022 W/cm², 100 nm 416 MeV 20 fs, 1022 W/cm², 100 nm 104 MeV 22 18 2 0.26eV p i i A I t H V |u in µg/cm2

Faisceau CPA 2,

10J/0.3ps, ω

protons 10 µm

Au

500

µm

Spectromètre proton 3

“sonde”

100 nm Al

Protons+

ions carbone

Faisceau CPA 1,

1J/0.3ps, 2ω

plastique1.5

µm

Parabole Thomson 2,

“Sonde”

Parabole Thomson 1

“référence”

LmV

eZ

dx

dE

1 42

0

42

0

X

+3 X+2

Ionization

Electrno

capture Plasma

medium

e-

e-

e-

e-

e-

Example of present nuclear physics experiment: Combining laser+laser or X-rays+laser will allow to do ion stopping /

charge equilibrium measurements

stopping

number Charge de l’ion

M. Gauthier et al.

Page 6: Particle acceleration and applications: status and plans for ......20 fs, 2×1022 W/cm², 100 nm 416 MeV 20 fs, 1022 W/cm², 100 nm 104 MeV 22 18 2 0.26eV p i i A I t H V |u in µg/cm2

Although only low WDM temperatures are now accessible, single-shot laser

experiments show their capability

LmV

eZ

dx

dE

1 42

0

42

0

X

+3 X+2

Ionization

Electrno

capture Plasma

medium

e-

e-

e-

e-

e-

10 -3

10 -2

10 -1

10 0

10 1 0

1

2

3

4

5

6

Energy (Mev/nucl)

Zm

ea

n

Carbon spectra through 100 nm Al without counting Neutrals

Rear cold shot#104 ETACHA

accélérateurs

M. Gauthier et al.

Page 7: Particle acceleration and applications: status and plans for ......20 fs, 2×1022 W/cm², 100 nm 416 MeV 20 fs, 1022 W/cm², 100 nm 104 MeV 22 18 2 0.26eV p i i A I t H V |u in µg/cm2

Target development: Production of Hydrogen films

Experimental program at ELI-NP

Fast

valves

Large

pellet

cutter

25

microns

Extruder

Liquefier

Diagnostic

chamber

Pumpi

ng

Pumpi

ng

The possibility to have D2

or H2 is attractive neutrons

LH

e

H

e

Screw motor

20 fs, 2×1022 W/cm², 100 nm 416 MeV

20 fs, 1022 W/cm², 100 nm 104 MeV

2 2

18

20.26eV

p

i

i

A I t

in µg/cm2

Ion energy by RPA:

Alternative: use DLC

membranes (few nm thick)

C ions

Page 8: Particle acceleration and applications: status and plans for ......20 fs, 2×1022 W/cm², 100 nm 416 MeV 20 fs, 1022 W/cm², 100 nm 104 MeV 22 18 2 0.26eV p i i A I t H V |u in µg/cm2

Technical challenges that will be tackled - II

1. Achieving the highest intensity

Wavefront correction

Plasma focusing could be a solution

Focusing plasma

f/0.4

3mm 3mm 1/5 spot

~ 4.4mm (FWHM) ~ 0.9mm (FWHM)

M. Nakatsutsumi et al.

Avant correction Après correction

1,5x1020 W/cm2

Page 9: Particle acceleration and applications: status and plans for ......20 fs, 2×1022 W/cm², 100 nm 416 MeV 20 fs, 1022 W/cm², 100 nm 104 MeV 22 18 2 0.26eV p i i A I t H V |u in µg/cm2

Technical challenges that will be tackled - I

2. Laser temporal contrast

3. Target development

4. Light polarisation control

5. Radioprotection

Page 10: Particle acceleration and applications: status and plans for ......20 fs, 2×1022 W/cm², 100 nm 416 MeV 20 fs, 1022 W/cm², 100 nm 104 MeV 22 18 2 0.26eV p i i A I t H V |u in µg/cm2

For Apollon/CILEX, we have an ongoing design

of the Laser/Experimental Hall Layout +

radioprotection implementation

Switch out

for circular

polarization

Plasma

mirrors

I~2 x 1022 W/cm2 with

SR=0.5 and 4.6 mm FWHM

spot

Ma

in S

hort

puls

e b

ea

m

2nd short

pulse

beam

F/2.5 parabola for

F1

F/3 for F2

1 Main beam 10PW + 1 synchronized

energetic beam

1PW (15J/15fs/1shot per minute) + 1

probe beam few TW / budget ~2.5 M€

Page 11: Particle acceleration and applications: status and plans for ......20 fs, 2×1022 W/cm², 100 nm 416 MeV 20 fs, 1022 W/cm², 100 nm 104 MeV 22 18 2 0.26eV p i i A I t H V |u in µg/cm2

Electron beams

Page 12: Particle acceleration and applications: status and plans for ......20 fs, 2×1022 W/cm², 100 nm 416 MeV 20 fs, 1022 W/cm², 100 nm 104 MeV 22 18 2 0.26eV p i i A I t H V |u in µg/cm2

Electron acceleration: expertise and know-

how of the French teams

• Laser-plasma and accelerators physicists from IRAMIS, LAL, LLR, LOA, LPGP, LULI, SACM, SOLEIL

• Electron injectors: All optical or RF Photo-Inj. • Electron diagnostics including betatron radiation • Plasma wave excitation over a long distance:

laser guiding in capillary tubes and optical diagnostics

• Electron beam transport and focusing • Undulators to generate synchrotron radiation • Modeling of UHI laser interaction with

underdense plasma (several PIC and hybrid simulation codes)

Page 13: Particle acceleration and applications: status and plans for ......20 fs, 2×1022 W/cm², 100 nm 416 MeV 20 fs, 1022 W/cm², 100 nm 104 MeV 22 18 2 0.26eV p i i A I t H V |u in µg/cm2

EX. of results: Laser guiding in capillary tubes for Laser Plasma Accelerators (LPGP)

1. Optimisation of laser guiding using capillary tubes (10cm):

– vacuum or under-dense plasmas

– Relevant for intensities of laser wakefield (1018W/cm2)

– Active control of laser properties to improve coupling

2. Measurement of a plasma

wave in the wake of an

intense laser beam guided in

a capillary tube over 8 cm,

using optical diagnostics.

• Measured field up to 7GV/m

over 8 cm.

0 10 20 30 40 50 60 70 80

0

1

2

3

4

5

6

7

8

Ele

ctr

ic fie

ld (

GV

/m)

Filling pressure (mbar)

Phys. Rev. E 80, 066403 (2009), New J. Phys. 12, 045024 (2010), JOSA B 27, 1400 (2010)

Page 14: Particle acceleration and applications: status and plans for ......20 fs, 2×1022 W/cm², 100 nm 416 MeV 20 fs, 1022 W/cm², 100 nm 104 MeV 22 18 2 0.26eV p i i A I t H V |u in µg/cm2
Page 15: Particle acceleration and applications: status and plans for ......20 fs, 2×1022 W/cm², 100 nm 416 MeV 20 fs, 1022 W/cm², 100 nm 104 MeV 22 18 2 0.26eV p i i A I t H V |u in µg/cm2

Objective: Multiple plasma stages for accelerators at the energy frontier and applications

• For a multi-TeV laser-wakefield collider: variation of plasma and laser parameters (i.e. density, intensity and pulse duration) over a large range is necessary. Laser pulse energy depletion ultimately limits acceleration length: successive stages are required.

• APOLLON laser to demonstrate 2 stages acceleration:

All optical plasma injector + guided plasma wave section

• Use of the produced electron beams to:

– Investigate plasma wave acceleration relevant for alternative excitation (e.g. PWFA either e– or proton driven)

– Test beams for nuclear and HE particle detectors

– Produce high energy photons

– Investigate electrons- photons interactions

Page 16: Particle acceleration and applications: status and plans for ......20 fs, 2×1022 W/cm², 100 nm 416 MeV 20 fs, 1022 W/cm², 100 nm 104 MeV 22 18 2 0.26eV p i i A I t H V |u in µg/cm2

Technical challenges that will be tackled

1. Full electron bunch characterization before

and after each stage

2. Compact, beam quality conserving, robust

electron transport

3. Laser beam coupling into plasma wave

section

4. Laser pulse synchronisation

Page 17: Particle acceleration and applications: status and plans for ......20 fs, 2×1022 W/cm², 100 nm 416 MeV 20 fs, 1022 W/cm², 100 nm 104 MeV 22 18 2 0.26eV p i i A I t H V |u in µg/cm2

Design of implementation of multi-stage acceleration on CILEX/APOLLON

• two stage acceleration with all optical injector

• 3 laser beams : 100mJ/6J/[10-100J]

address instrumentational challenges:

laser guiding over O(1m),

compact electron transport («fight against gradient dilution»)

laser & electron coupling into 2nd stage

max. non-destructive e–-diag’s at highest E (~20 GeV), integrated X-ray diag’s

insure beam stability and control

Page 18: Particle acceleration and applications: status and plans for ......20 fs, 2×1022 W/cm², 100 nm 416 MeV 20 fs, 1022 W/cm², 100 nm 104 MeV 22 18 2 0.26eV p i i A I t H V |u in µg/cm2

For both electrons and ions, applying strong external magnetic fields to plasmas is now also possible and will open new doors

Experimental set-up up to 50 T

Laser

Access for

diagnostics

Magnetized plasmas of interest for:

*laboratory astrophysics

Shocks induced by high-velocity

plasmas for g-ray burst studies

*electron acceleration

Increase of injection, better

collimation)

Demonstration of effectiveness by magnetic

collimation of jets

B. Albertazzi et al.

Page 19: Particle acceleration and applications: status and plans for ......20 fs, 2×1022 W/cm², 100 nm 416 MeV 20 fs, 1022 W/cm², 100 nm 104 MeV 22 18 2 0.26eV p i i A I t H V |u in µg/cm2

Conclusion

•There are many opportunities to grasp with Apollon-class

lasers: oWe have demonstrated unique features complementary to accelerators

oWe have already started exploiting those for applications, e.g. accessing

previously unaccessible parameters

oNew, wider, applications will be opened by Appolon (higher energy, more

particules, better energy selected)

•Strategy: oExplore new mechanisms which are already hinted at + multi-stage

acceleration

oDevelop targets & diagnostics

•We are eager to collaborate with ELI-NP: oFrench teams –particularly on the plateau de Saclay- have expertise

oCollaboration with ELI-NP will be mutually benefical

Page 20: Particle acceleration and applications: status and plans for ......20 fs, 2×1022 W/cm², 100 nm 416 MeV 20 fs, 1022 W/cm², 100 nm 104 MeV 22 18 2 0.26eV p i i A I t H V |u in µg/cm2

20

Solide Ionisation + chauffage

electronique

Ene

rgy t

ransfe

rt

from

ele

ctr

ons to

ions

Relaxation WDM

~ 10 – 100 ps p

um

p

Principle of ion stopping power

measurements in Warm Dense Matter

Chauffage isochore d’une cible solide d’aluminium par faisceau de

protons

Mesure des conditions de la WDM générée (densité et température)

Génération d’un faisceau d’ions sonde

Mesure de la distribution de charges du faisceau d’ions en sortie de

la cible chauffée

Page 21: Particle acceleration and applications: status and plans for ......20 fs, 2×1022 W/cm², 100 nm 416 MeV 20 fs, 1022 W/cm², 100 nm 104 MeV 22 18 2 0.26eV p i i A I t H V |u in µg/cm2

Faisceau CPA 2,

10J/0.3ps, ω

protons 10 µm

Au

500

µm

Spectromètre proton 3

“sonde”

100 nm Al

Protons+

ions carbone

Faisceau CPA 1,

1J/0.3ps, 2ω

plastique1.5

µm

Parabole Thomson 2,

“Sonde”

Parabole Thomson 1

“référence”

LmV

eZ

dx

dE

1 42

0

42

0

X

+3 X+2

Ionization

Electrno

capture Plasma

medium

e-

e-

e-

e-

e-

Page 22: Particle acceleration and applications: status and plans for ......20 fs, 2×1022 W/cm², 100 nm 416 MeV 20 fs, 1022 W/cm², 100 nm 104 MeV 22 18 2 0.26eV p i i A I t H V |u in µg/cm2

Theory: Energy loss in dense

plasma

• Energy loss per unit length of a projectile ion when

interacting with an electron gas:

LmV

eZ

dx

dE

1 42

0

42

0stopping number

Wigner Seitz

cell Ion velocity

Electronic mass

Elementary charge Ion charge

J. Lindhard and A. Winter, Mat. Fys. Medd. (1964)

C. Gouedard and C. Deutsch, J. Math. Phys. (1978)

G. Maynard and C. Deutsch, J. Phys. (1985)

P. Wang et al., Phys. Plasmas (1998)

S. Y. Gus’kov et al., Plasma Phys. Rep. (2009)

G. Faussurier et al., Phys. Plasmas (2010)

dimensionless quantity that

captures the slowing down

process of the charged

particle by the host

medium.

Page 23: Particle acceleration and applications: status and plans for ......20 fs, 2×1022 W/cm², 100 nm 416 MeV 20 fs, 1022 W/cm², 100 nm 104 MeV 22 18 2 0.26eV p i i A I t H V |u in µg/cm2

Theory: Local Density Approximation

00

,),( )( VTrLrrdL ee

Ion velocity

temperature Electronic density

uniform-electron

stopping number

J. Lindhard and A. Winter, Mat. Fys. Medd. (1964)

G. Maynard and C. Deutsch, J. Phys. (1985)

P. Wang et al., Phys. Plasmas (1998)

G. Faussurier et al., Phys. Plasmas (2010)

0

0

1),(

1,,

0

200

kV

kVp

ek

dk

dkiVTL

Locally spatially

homogeneous

electron gas

Linear

response to the

ion perturbation

Simulation goal