partial fractions

17
Section 8.4a PARTIAL FRACTIONS

Upload: cindy

Post on 23-Feb-2016

52 views

Category:

Documents


1 download

DESCRIPTION

Partial Fractions. Section 8.4a. A flashback to Section 6.5…. We evaluated the following integral:. This expansion technique is the method of partial fractions . Any rational function can be written as a sum of basic fractions, called partial fractions , using this method. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Partial Fractions

Section 8.4aPARTIAL FRACTIONS

Page 2: Partial Fractions

A flashback to Section 6.5…We evaluated the following integral:

100100

dPP P

1 1100

dPP P

ln ln 100P P C

This expansion technique is the method of partial fractions.Any rational function can be written as a sum of basicfractions, called partial fractions, using this method.

Page 3: Partial Fractions

Method of Partial Fractions (f(x)/g(x) Proper)Notes: The degree of f(x) must be less than the degree of g(x)(if it is not, do long division!). Also, g(x) must be factorable.

x r1. Let be a linear factor of . Suppose is the highest power of that divides . Then, to this factor, assign the sum of the partial fractions:

g x mx r x r

g x m

1 2

2m

m

AA Ax r x r x r

Do this for each distinct linear factor of . g x

Page 4: Partial Fractions

Method of Partial Fractions (f(x)/g(x) Proper)Notes: The degree of f(x) must be less than the degree of g(x)(if it is not, do long division!). Also, g(x) must be factorable.

2x px q 2. Let be a quadratic factor of .Suppose is the highest power of thisfactor that divides . Then, to this factor, assignthe sum of the partial fractions:

1 1 2 2

22 2 2

n nn

B x CB x C B x Cx px q x px q x px q

Do this for each distinct quadratic factor of that cannot be factored into linear factors with realcoefficients.

g x

g x 2 nx px q

g xn

Page 5: Partial Fractions

Method of Partial Fractions (f(x)/g(x) Proper)Notes: The degree of f(x) must be less than the degree of g(x)(if it is not, do long division!). Also, g(x) must be factorable.

3. Set the original fraction equal to thesum of all these partial fractions. Clear the resultingequation of fractions and arrange the terms indecreasing powers of .

f x g x

x

4. Equate the coefficients of corresponding powersof and solve the resulting equations for theundetermined coefficients.x

The new fractions should be easier to integrate!!!

Page 6: Partial Fractions

Guided PracticeUse partial fractions to evaluate the integral.

2

5 32 3x dx

x x

2

5 32 3x

x x

5 31 3x

x x

1 3

A Bx x

5 3 3 1x A x B x

5 3 3x Ax A Bx B

5 3 3x A B x A B

5A B 3 3A B

Solve the system!!!2, 3A B

Page 7: Partial Fractions

Guided PracticeUse partial fractions to evaluate the integral.

2

5 32 3x dx

x x

1 3A B dxx x

2 31 3

dxx x

2ln 1 3ln 3x x C

Page 8: Partial Fractions

Guided PracticeUse partial fractions to evaluate the integral.

26 72

x dxx

26 72

xx

22 2

A Bx x

6 7 2x A x B 6 7 2x Ax A B

6A

6 7 2x A x A B

2 7A B

Solve the system!!!6, 5A B

Page 9: Partial Fractions

Guided PracticeUse partial fractions to evaluate the integral.

26 72

x dxx

22 2

A B dxx x

26 52 2

dxx x

26 5 22

dx x dxx

16ln 2 5 2x x C

Page 10: Partial Fractions

Guided PracticeUse partial fractions to evaluate the integral.

3 2

2

2 4 32 3

x x x dxx x

The degree of the numerator is larger than the degree ofthe denominator… we need long division first:

2 3 22 3 2 4 3x x x x x 2x

3 22 4 6x x x 5 3x

2

5 322 3xx dx

x x

Page 11: Partial Fractions

Guided PracticeUse partial fractions to evaluate the integral.

3 2

2

2 4 32 3

x x x dxx x 2

5 322 3xx dx

x x

2

5 322 3xxdx dx

x x

2 321 3

xdx dxx x

2 2ln 1 3ln 3x x x C

Page 12: Partial Fractions

Guided PracticeUse partial fractions to evaluate the integral.

3 2

22

2 2

1

x x dxx

3 2

22

2 2

1

x x

x

22 21 1

Ax B Cx Dx x

3 2 22 2 1x x Ax B x Cx D 3 2 3 22 2x x Ax Bx Ax B Cx D

3 2 3 22 2x x Ax Bx A C x B D

Page 13: Partial Fractions

Guided PracticeUse partial fractions to evaluate the integral.

3 2

22

2 2

1

x x dxx

3 2 3 22 2x x Ax Bx A C x B D 1A2B 0A C 2B D

Solve the system!!!

1, 2, 1, 0A B C D

Page 14: Partial Fractions

Guided PracticeUse partial fractions to evaluate the integral.

3 2

22

2 2

1

x x dxx

22 2

21 1

x x dxx x

22 2 2

21 1 1

x x dxx x x

2 1

2

1 1ln 1 2 tan2 2 1

x x Cx

Page 15: Partial Fractions

Guided PracticeSolve the given initial value problem.

22 1dy dx xy y 0 1y

2

1 21dy xdx

y y

2

1 21dy xdx

y y

22

111

A Bx Cy yy y

21 1A y Bx C y

21 A B y Cy A 0A B 0C 1A

1, 1, 0A B C

Page 16: Partial Fractions

Guided PracticeSolve the given initial value problem.

22 1dy dx xy y 0 1y

2

1 21dy xdx

y y

2

1 21

y dy xdxy y

2 21ln ln 12

y y x C

Page 17: Partial Fractions

Guided PracticeSolve the given initial value problem.

22 1dy dx xy y 0 1y

2 21ln ln 12

y y x C

Initial Condition: 2 21ln 1 ln 1 1 02

C

1 ln 22

C ln 2C

2 21ln ln 1 ln 22

y y x Solution: