part c: hexagonal ferrites. special lanthanide and actinide compounds

628
Ref. p. 371 5.0 Introduction , 5 Hexagonal ferrites 5.0 Introduction *) Since the discovery in 1951 of the, technically, very important magnetic properties of the ferrite BaFe,,O,, with hexagonal crystal structure, many related compound; have been synthesized, and the properties of these mostly completely new structures have been investigated. At room temperature the magnetic moments of most of these compounds can be ordered in groups in such a way that the magnetic moments of the ions of one group are mutually parallel oriented, whereas the magnetic moments of the ions of different groups are oriented anti- parallel to each other. Such an incompletely compensated antiferromagnetism was called ferrimagnetism by NCel, who was the first to describe this type of magnetism in order to explain the magnetization of ferrites with spine1 structure [48N]. The technical interest in the oxides with hexagonal crystal structure is shown by the fact that someof thesematerials show a very high uniaxial magnetic anisotropy, so that they can be used as a ceramic permanent magnetic material which for some applications can compete technically, and economically, with the metallic permanent magnetsof the AlNiCo-type. Other hexagonal ferrites have interesting properties as magnetic cores at frequencies above about 100 MHz. In electronic equipments for microwaves, single crystals and poly- crystalline samples of hexagonal ferrites with still other chemical compositions are used successfully,because of their exceptionally high internal magnetic field, or becauseof the non-linear effectswhich appear at already relatively low amplitude of the high frequency field. For the h.f. applications it is essentialthat thesesemi-conduct- ing ferrites can be prepared in such a way that their conductivity at room temperature is very low. The chemical compositions and the crystal structures of the’hexagonal ferrites show many similarities, and they are reviewed in sections 7.3 and 7.4 of volume 111/4b. Section 5.5(7.5in vol. 111/4b) includes the paramagnetic properties of the hexagonal ferrites while sections 5.6..=5.10 (7.6...7.10 in vol. 111/4b) deal with the properties of the compounds of each crystal structure separately. Because of the various uncertainties regarding the crystal structures of the calcium ferrites and the substituted calcium ferrites, the properties of these ferrites are given separately in section 5.11 (7.11 in vol. 111/4b). In sections 5.12.. e5.14, properties of some hexagonal ferrites of increasing significance are to be found which have been taken out of the above mentioned sections and arranged into groups. Apart from this, further hexag- onal ferrites which do not belong to the above mentioned sections are listed in section 5.15. 5.1 Quantities and units In today’s literature the magnetic properties are discussedin the SIU (S&me International dUnit&) or in units of the cgs-emu = electromagnetic cgs system.Therefore, and contrary to vol. 111/4b, in tables and figures of this volume, the various quantities are given in cgs-emuor in SI units, i.e. in the units as used in the original pa- pers. In this section 5.1.,however, equations are given in both, cgs-emuand SIU system,in the second case indi- catedby a light shade, though in the original papers from which someequations have been taken, only the electro- magnetic cgs systemhas been used. The relation between the magnetic induction, B, the magnetic field strength, H, and the magnetization, M, is given by B=H+4xM; a) Conductivity The temperature-dependence of the conductivity Q of hexagonal ferrites can usually be describedby the equa- tion : g=g,e-@T (2) where the activation energy 4 is probably a measure for the increaseof the mobility of the negative charge carriers with increasing temperature. b) Magnetic moment Ferrites have mostly been obtained by a sintering process,so that the samplesshow a certain porosity. The overall density of the sampleis then lower than the X-ray density of the compound. The saturation magnetization therefore is often not expressedas a magnetic moment per unit volume M, or 4nM, (SIU: M,), but rather as a specific saturation magnetization per gram of the substance, 6,. The relation between both quantities is given by: *) With kind permission of H. P. J. Wijn sections 5.0and 5.1have been essentially takenfrom Volume111/4b. Bonnenberg/Hempel/Roos

Upload: others

Post on 11-Sep-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

,
5 Hexagonal ferrites 5.0 Introduction *)
Since the discovery in 1951 of the, technically, very important magnetic properties of the ferrite BaFe,,O,, with hexagonal crystal structure, many related compound; have been synthesized, and the properties of these mostly completely new structures have been investigated. At room temperature the magnetic moments of most of these compounds can be ordered in groups in such a way that the magnetic moments of the ions of one group are mutually parallel oriented, whereas the magnetic moments of the ions of different groups are oriented anti- parallel to each other. Such an incompletely compensated antiferromagnetism was called ferrimagnetism by NCel, who was the first to describe this type of magnetism in order to explain the magnetization of ferrites with spine1 structure [48N]. The technical interest in the oxides with hexagonal crystal structure is shown by the fact that some of these materials show a very high uniaxial magnetic anisotropy, so that they can be used as a ceramic permanent magnetic material which for some applications can compete technically, and economically, with the metallic permanent magnets of the AlNiCo-type. Other hexagonal ferrites have interesting properties as magnetic cores at frequencies above about 100 MHz. In electronic equipments for microwaves, single crystals and poly- crystalline samples of hexagonal ferrites with still other chemical compositions are used successfully, because of their exceptionally high internal magnetic field, or because of the non-linear effects which appear at already relatively low amplitude of the high frequency field. For the h.f. applications it is essential that these semi-conduct- ing ferrites can be prepared in such a way that their conductivity at room temperature is very low.
The chemical compositions and the crystal structures of the’hexagonal ferrites show many similarities, and they are reviewed in sections 7.3 and 7.4 of volume 111/4b. Section 5.5 (7.5 in vol. 111/4b) includes the paramagnetic properties of the hexagonal ferrites while sections 5.6..=5.10 (7.6...7.10 in vol. 111/4b) deal with the properties of the compounds of each crystal structure separately. Because of the various uncertainties regarding the crystal structures of the calcium ferrites and the substituted calcium ferrites, the properties of these ferrites are given separately in section 5.11 (7.11 in vol. 111/4b).
In sections 5.12.. e5.14, properties of some hexagonal ferrites of increasing significance are to be found which have been taken out of the above mentioned sections and arranged into groups. Apart from this, further hexag- onal ferrites which do not belong to the above mentioned sections are listed in section 5.15.
5.1 Quantities and units In today’s literature the magnetic properties are discussed in the SIU (S&me International dUnit&) or in
units of the cgs-emu = electromagnetic cgs system. Therefore, and contrary to vol. 111/4b, in tables and figures of this volume, the various quantities are given in cgs-emu or in SI units, i.e. in the units as used in the original pa- pers. In this section 5.1., however, equations are given in both, cgs-emu and SIU system, in the second case indi- cated by a light shade, though in the original papers from which some equations have been taken, only the electro- magnetic cgs system has been used. The relation between the magnetic induction, B, the magnetic field strength, H, and the magnetization, M, is given by
B=H+4xM;
a) Conductivity The temperature-dependence of the conductivity Q of hexagonal ferrites can usually be described by the equa-
tion : g=g,e-@T (2)
where the activation energy 4 is probably a measure for the increase of the mobility of the negative charge carriers with increasing temperature.
b) Magnetic moment Ferrites have mostly been obtained by a sintering process, so that the samples show a certain porosity. The
overall density of the sample is then lower than the X-ray density of the compound. The saturation magnetization therefore is often not expressed as a magnetic moment per unit volume M, or 4nM, (SIU: M,), but rather as a specific saturation magnetization per gram of the substance, 6,. The relation between both quantities is given by:
*) With kind permission of H. P. J. Wijn sections 5.0 and 5.1 have been essentially taken from Volume 111/4b.
Bonnenberg/Hempel/Roos
5.1 Quantities and units [Ref. p. 37
where Q denotes the density of the porous sample. The specific saturation magnetization at 0 K, a:, is a measure of the magnetic moment p, per molecule of the substance. The quantity p, is usually expressed in number of Bohr magnetons according to the equation:
(4)
where (IV,,) is the molar mass of the substance A, NA the number of molecules per mole (Avogadro number) and uB the Bohr magneton:
NA = 6.02. 1O23 mole- ‘, ~-I ._ __--__- .__-_ _.--_---.-
pB=g=9.27.10-21 erg Gauss- ’ ; $B=$9.27. lo-a4A m2
and
pB = 5.58014 m2 mole- ‘.
c) Magneto-crystalline anisotropy of hexagonal crystals Because of the symmetry of the hexagonal crystal lattice, the magneto-crystalline anisotropy energy density
is given by the equation:
n~,=K,sin26+K2sin48+K;sin60+K3sin60cos6(~+$). (5)
The angles 0 and 4 are polar coordinates and the constants Ki are the coefficients of the magneto-crystalline anisotropy. The phase angle $ is zero for a particular choice of the axis of the coordinate system. The term with the coefficient K; can usually be neglected. In cases where the term with K, is predominant, the spontaneous magnetization is oriented parallel to the c-axis for K, >O, the crystal has a so-called preferential direction of magnetization. For K ~0, the spontaneous magnetization is oriented perpendicular to the c-axis, the crystal has a so-called preferential plane of magnetization. In general the angle 0e between the direction of the spontaneous magnetization and the c-axis is a function of K, and K,, as illustrated in Fig. A. In cases where 0<8,<90” the crystal shows a preferential cone for the spontaneous magnetization with a vertex 24, which is given by the equa- tion :
sin e,=fq.
Fig. A. The relation between the preferential direction of ) the magnetization vector in a hexagonal crystal and the corresponding values of the magneto-crystalline anisotropy coefhcients K, and K,. For 0,=0 the c-axis is the preferen- tial direction, for Be =90” the basal plane is the preferential plane for the magnetization. In the sector of the diagram for which sin 0a =I/-K,/2K, all directions of the magneti- zation which make an angle of B0 with the c-axis of the crystal have the lowest energy (preferential cone for the magneti- zation). In the region -2K,>K,>O the spontaneous magnetization has metastable orientations [59CSEF].
(6)
-K, -
.ZK,=-K,
The magneto-crystalline anisotropy field strength HA is defined as the effective field strength that causes the same stiffness for a rotation of the magnetization over a small angle out of its preferential direction as the magneto- crystalline anisotropy does. In the case of a rotation with constant angle 4 we get:
^_^ .__. . ‘. _ .” ,.-_,--- - .-” .” x. _ ._._ __ (7)
sin&,=]/-K,/2K,: H~=2(K,/K,)(K, +2K,)/M,; __-.._ -- I” . . - “__^.__ __- ._ ” ..- H~=WWWK, +~WIGK. (7c)
2 Bonnenberg/Hempel/Roos
Ref. p. 371 5.1 Quantities and units
Ihe effective anisotropy field strength for a rotation of the magnetization out of its equilibrium orientation along the surface of the preferential cone is given by:
H~=(1/M,sin28,)(a2w,/a~‘),=,=36~K,~sin4B,/M,; e=eo (8)
i’y” 7 --“wywy”-pi--y’m~ - q;“” q-tyy-nw~~~-+~~-~~‘~ “‘7y”q-y f=[~/poM6sm &,)(a n@# )~,~~361Ks)sln4~~~~,1M,; ) (, s. “l . __ *. ,” “, i :.; *. -“’ L “,” 1 I ( ,*
d) Linear magnetostriction of a hexagonal cryski ,i x :.” / pB@ ; ?, ‘“‘. * ._j” n, ^, *, ,*” - * * ,* ;
According to [61G] the linear magnetostriction of a hexagonal crystal is given by the equation:
n=A1/1=k,+kX(B:-3)+kl(a:-3)+k,(a:-3)(B~-f)+k,{(cr,B,+a28,)’-~(Clq+CI:)(pq+P~)}
+2k4a,P,(crlP,+a,B,)+...l-kbH+ka’H(P~-4)+... (9)
where /Ii indicate the direction in which the magnetostriction Al/l is measured and ai are the direction cosines of the magnetization; clg and p3 are the direction cosines with respect to the c-axis of the hexagonal crystal.
e) Ferromagnetic resonance in hexagonal crystals
The general equation for the ferromagnetic resonance frequency f,,, for a magnetization M related to a pref- erential direction in the polar coordinates (0 and 4) is given by:
where w(e, 4) is the direction-dependent energy density of the magetization [SSSB]. The gyromagnetic ratio y is given by
PB e ~l-w?y’--wp~*~ yy--v~,
Y =&ff-=&ff2mc h
.“@“:;, ,,, ,i * i, -
where geff is the effective LandC spectroscopic splitting factor for two or more sublattices and m is the electron mass. For the application of the general equation (10) two cases have to be considered:
I. Hexagonal crystal with preferential direction of magnetization parallel to the c-axis.
a) When a d.c.-magnetic field strength H is applied parallel to the preferential direction eq. (10) yields to the resonance equation first given by Kittel [48K]:
2~f,,,=y[(H+HA)+(N,-N,)M]1’2.[(H+HA)+(Ny-NN,)M]1’2;
(12)
Here N, is the demagnetization factor in the direction of the c-axis tind N, and NY are the demagnetization factors in the other two directions of the orthogonal coordinate system.
b) For an a.c. magnetic field oriented perpendicular to the c-axis, i.e. in the case where HIHA the eq. (10) gives according to [55SB]: (NY - NJ M 1
112
for
and
for
HzH*-(N,-NJM,
HA>4nM;
Fig. B shows the graphs for the eqs. (12), (13a) and (13b) for the cases where demagnetizing fields do not appear.
Fig. B. The angular frequency for ferromagnetic resonance, b CO,,,, as a function of the external magnetic field strength H parallel or perpendicular to the preferential direction for the magnetization (c-axis) of a crystal with hexagonal symmetry [59SW].
II. Hexagonal crystals with planar anisotropy.
a) When the magnetic field strength H is oriented parallel to the y-direction in the preferential plane, which will also be the xy-plane, of the orthogonal system the resonance frequency given by (10) is as follows:
2nl,,,=y[H-(NY-Nx)M]1'2~[H+H,A+(Nz-NY)M-J1'2; I_---
,=yp,[H-(NY-NJMj1'2+i+H~+(NI-N,)hfJ112
If only magneto-crystalline energy is considered, according to [59BK] this equation reduces to:
(14)
where the minus and the plus signs in the second factor correspond to an instable and a stable equilibrium ori- entation of the magnetization in the plane, respectively, and K, is another constant in the serial development of the anisotropy energy.
b) For a magnetic field parallel to the direction for difficult magnetization (c-axis) the resonance frequency is given by:
2xf,,,=y[(H-H,A)-(Nz-Nx)M]1'2[(H-H~)-(Nz-NY)M-J1'2; (1% --v--.-v --._-~_--"- -H~)-(Nz-NJM1112[(H-H$)-(Nz-N;)MJ'n
for
Ref. p. 371 5.2 List of symbols and abbreviations
In the derivation of eqs. (14) and (15) the anisotropy field strength H$ is neglected with respect to H and Ht since it is usually lower by several orders of magnitude. In the special case where only magneto-crystalline energy has to be considered, [59BK], the eq. (15) reduces to:
~KL,=YH M M M
4) Symbols
a, c CA1 B I31 W%,x CG. eel d [mm] f L-Hz1 fres CHzl H [A ~‘1, PI HA [@I dfc Dl Ki [erg cm- ‘1 M [A-m-?], [Oe] Pm CPBI PO L-Pi3 4 CW AR R
S [VK-‘1 T WI, CKI Tc c”Cl TN CKI tan 6 &=&‘-if 0, CKI I ~=p’-ip” Pi e Pcml ex Cg cm- 3l 0 [Cl-l cm-r] CT [G cm3 g-l] 6, [G cm3 g-7 x=x’-ix”. x8 [cm3 g- ‘1 x, [cm3 mole-l] w [rad s-l]
b) Abbreviations
5.2 List of symbols and abbreviations
lattice parameters magnetic induction maximum energy product of permanent magnetic materials crystal thickness frequency resonance frequency magnetic field strength magnetocrystalline anisotropy field strength coercive field strength for magnetization magnetocrystalline anisotropy constant magnetization saturation magnetic moment (per formula unit) spontaneous magnetic moment (per formula unit) activation energy
reluctance
direct current ferromagnetic resonance metal nuclear magnetic resonance
Note: In this contribution figure and table numbers which refer to Vol. 111/4b are characterized by an asterisk.
Bonnenberg/Hempel/Roos
Ref. p. 371 5.2 List of symbols and abbreviations
In the derivation of eqs. (14) and (15) the anisotropy field strength H$ is neglected with respect to H and Ht since it is usually lower by several orders of magnitude. In the special case where only magneto-crystalline energy has to be considered, [59BK], the eq. (15) reduces to:
~KL,=YH M M M
4) Symbols
a, c CA1 B I31 W%,x CG. eel d [mm] f L-Hz1 fres CHzl H [A ~‘1, PI HA [@I dfc Dl Ki [erg cm- ‘1 M [A-m-?], [Oe] Pm CPBI PO L-Pi3 4 CW AR R
S [VK-‘1 T WI, CKI Tc c”Cl TN CKI tan 6 &=&‘-if 0, CKI I ~=p’-ip” Pi e Pcml ex Cg cm- 3l 0 [Cl-l cm-r] CT [G cm3 g-l] 6, [G cm3 g-7 x=x’-ix”. x8 [cm3 g- ‘1 x, [cm3 mole-l] w [rad s-l]
b) Abbreviations
5.2 List of symbols and abbreviations
lattice parameters magnetic induction maximum energy product of permanent magnetic materials crystal thickness frequency resonance frequency magnetic field strength magnetocrystalline anisotropy field strength coercive field strength for magnetization magnetocrystalline anisotropy constant magnetization saturation magnetic moment (per formula unit) spontaneous magnetic moment (per formula unit) activation energy
reluctance
direct current ferromagnetic resonance metal nuclear magnetic resonance
Note: In this contribution figure and table numbers which refer to Vol. 111/4b are characterized by an asterisk.
Bonnenberg/Hempel/Roos
5.5 Paramarrnetic DroDerties of ferrites with hexagonal crystal structure [Ref. D. 37 1 . - -
5.3 Chemical compositions and phase diagrams of hexagonal ferrites (See Vol. III/4b, p. 555).
5.4 Crystal structures (See Vol. III/4b, p. 557).
5.5 Paramagnetic properties of ferrites with hexagonal crystal structure Table 1. (See also Vol. 111/4b, Table 3* and Figs. 16*...19*, p. 561).
Compound Ref. Remarks Fig.
BaFed49 73F theoretical x of ferrimagnet with five sublattices BaZnxTi,Fe,,- 2xO19 70DWA f'/& vs. H for x = 2.25 at 295 K
PbFe&9 66ABB 1
SrFe12019 70BKMG anisotropy of x SrAI,Fe,,-,O,, 73FPG l/x vs. T for different x, Ntel parameters SrCO%.a% 69BKM anisotropy of x 2
70BK, 70BKMG anisotropy of x
10 @ cm3
g/cm3
3
I 6
2 $ L
1 2
0 710 720 730 740 K 750 0 100 200 300 400 500 600 “C 700
I- I-
Fig. 1. PbFe,zO,,. The inverse of the molar suscepti- Fig. 2. SrCr,,,Fe,,,O,,. Temperature dependence of the bility, l/x,. vs. temperature, T. paramagnetic inverse susceptibility per gram, l/xs, vs. tem- Open circles: measured 11 to the r-axis; perature, T, along the c-axis (II) and in the basal plane (I) full circles: measured 1 to the c-axis [66ABB]. [69BKM].
6 Ronnenberg/Hempel/Roos
5.6 M (magnetoplumbite)-type ferrites 56.1 Survey of the chemical substitution in the M structure and
room temperature lattice constants
Table 2. Survey of the chemical substitution in the M structure. (See also Vol. 111/4b, Table 4*, p. 562 and Figs. 20*.‘.23*, p. 564).
Compound Ref. Remarks Properties zi i
Tables Fig.
BaFe1201g 71GS addition of L3,4, 5, 3913, rare-earth 6,798 20,21,
22,23 BaAl,Fe,,- .Olg 68BS-3 4, 5, 6, 7 5, 9,15
7ovz see Fig. 20*, 21* 71HK-2 see Fig. 20*, 21*
BaAs,Fe,,- r019 73KG 4 74EK-1 ,H,,avs.T 75EK-1
BaCr,Fe,,- xOlg 71KH see Fig. 20*, 21” 4,5,6 4,10,15
Bal-xWe12-xWlg 74G a vs. T 4 D=K’+, Bi3+ P= Cu2+, Ni2+
Mn4+, Zn’;, Ti4+
BaGa,Fe,,- xO1g 73HK-1 4, 5, 6 15
BaGa2Scl.2Fes.sOlg 23.63 5.95 73ACCY 4 BaIn,Fe,2-,0,, 70EM 4, 537 4, 5,10,
71KH 11 71 PVZS 71vz
BaIndes.dAg 23.790 6.000 72ALNY
Bal-xPbxFe1201g 74AFS 4 12
75EK-1 75EK-2
BaSbi,:Fe:,iFe3+ 0 10.5 19 74L 5 BaSc,Fe,,- xO,g 69AY 435
69ASYL 71vz 5,17
Ba%.5Felo.501g 71 PSSF 4 Ba,Srl-.Fe1201g 69JM 435 Ba o.75Sro.25Fe1201g 70WK admixtures of 4
B,03,A1,03,
Ga203
Ba,-,Sr,Al,Fe,,-.O,, 68BS-3 a vs. x, y 4 BaTio,,FeisFe3+ 0 10.8 19 74L 5 19 BaTi,Co,Fe,,- 2xOlg 76KG 495, 7 BaTi,Co,Fe,O,, 73BKSZ 4 . . WTl, WPn,AW12 - x- ty+ zJ 1g 0 69D 7 BaZnli2~Ge1,2~Fe12-x0,, 71KH 4 4,lO BaZn2,3xNb1,3~Fe12-.01g 71KH 4 4,10,13 BaZn2~Jali3%Olg 71KH 4 13 BaZn,Ti,Fe,,- 2xO1g 72MTS-2 127 BaZnTiMnFeaO,, 73MASE 4,5
continued
Table 2 continued
Compound i 1
Ref. Remarks Properties
Tables Fig.
BaZnxTi,Mn,Fe,,- I- y- z019 72MTS-1 4 18 Ba(Zn2~~~VlIV,i~,)Fe12-,01g 71KH 4 4,13
CaFe1201g 22.01 5.566 71MSK0 CaW, W1201g 71MSK0 4 CaLa,Fe,,-,O,,
J-aFe12019 Lao.sAo.sFe1201g A=Na,K,Ag LaFe2+Fe3+0 La3+Me2:;e’:90
Me = Zn, Cd, I%, di, Mg, Co LaNiFe,,O,, Lao.s’&.sFe1201g
79YKN a, c vs. x
74DL 4,s 68LV
PbFe1201g
22.50 5.945
69AFY 1,3,6, 67CKBG 798 67CKBG 67 71 PVZS 5 71 PVZS 4,5 16
SrFe12% 22.98 5.78
SrSc,Fe,, - =Olg SrSb,Fe,,-,Olg
68AAB-2 69AFY 78W 67B-2 72EK
76LS 70KBSK-2 69SPC 69BKM 72BS 68AAB-2 68BS-2 72CC-1 74EK-1
1,3,4, 5, 14 6,7,8
with increasing 4,5 x -+ transition M to W
0.125 5 x 5 0.5 4 425 1 2 7 4 8,14
3 495
5.900 5.900
5.875 5.875
5.850 5.850 0 0 0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0 2.5 2.5 3.0 3.0 3.5 3.5
x-
I I I I I Ye- 1
5.878
5.877
5.876
5.875 Y 0 cl.1 0.2 0.3 0.4 0.5 1.0 Fig. 5. BaIn,Fe,,-,O,,, BaAl,Fe,,-,O,,,
x- BaSc,Fe,,-,O,,. Lattice constants, c and a, and ratio c/a g. 3. x/2 Me,O, . (1 -x) BaO .5.75 Fe,O,. as a function of composition lttice constants a and c of ferrites vs. x. (1) c (2) a (3) c/a for BaIn,Fe,,-,O,, pen circles: Me=La; full circles: Me=Gd; (4) c/a for BaAl,Fe,,-,O,, (5) c/a for BaSc,Fe,,-,O,, angles: Me=Lu [IJlGS]. [71VZ].
23.2 23.2 A A
21.6 21.6 1 0 2 4 6 8 IO 12
x- :. 6. PbAl,,-,Fe,O,,. Lattice constant c as a function composition [67CKBG].
0 2 4 6 8 IO 12 x-
6.4
H
s 3.91 b 0 3 6 9 12
x- Fig. 8. SrGa,Fe,,-,O,,. Lattice constants c and a and ratio c/a vs. composition x [68BS-21.
4 Fig. 7. PbAl,,-,Fe,O,, . Lattice constant a as a function of composition [67CKBG].
Bonnenberg/Hempel/Roos 9
5.6 M-type ferrites [Ref. p. 37
5.6.2 Electric and dielectric properties of ferrites with M structure Iable 3. (See also Vol. III/4b, Table 5*, p. 564 and Figs. 24*...33*, p. 565..566).
“ompound
BaFe&~
PbFe,&
SrFeJb
73B-1 74D 75VH 78H
Remarks
for BaFe~,+_,,Fe$~O,,-,, see Fig. 31* Seebeck coefficient, electrical conductivity at GHz-frequencies model of grain boundary barriers, see Fig. 32* Seebeck coefficient, see [69K] and [69DW] electrical resistivity and maximum magnetic energy (BH),,,
for different additions of rare earths see Fig. 24*, anisotropy of the Peltier coefficient see Fig. 25*, 32*, 33* see Fig. 32*, dielectric after-effects Q and q as a function of the amount of added SiO,
see Fig. 26*
activation energy see Fig. 27* u, q and Q as a function of the amount of added SiO, see Fig. 27* see Fig. 27* activation energy vs. x
5.6.3 Miissbauer spectra, saturation magnetization and Curie temperature of ferrites with M structure
Table 4. (See also Vol. III/4b, Tables 8*...11*, p. 569,572 and Figs. 34*..+61*, p. 567...572).
Compound
BaFeJb
74K-1
75KGTH 76KG 78SKZS 80ACDL 67BT-2 68AAB-1 69D 70B-1 73ACD 74ACD 73KG
74EK-1 74EK-2 75EK-2 69D 71HK-2 71KH
Remarks Fig.
see Fig. 34*, 35* see Fig. 34* see Fig. 37* see Fig. 34* see Fig. 42* 13 sublattice magnetization see Fig. 34*, MSssbauer spectra of barium
ferrite powder milled for various times see Fig. 34*, M-formation studied
by Miissbauer spectra see Fig. 34* for various temperatures see Fig. 34* for various temperatures see Fig. 34*, 35*, high field Mijssbauer study Mijssbauer spectra; Q, Tc: influence of Ca substitution cr vs. x (0 5 x 5 12), see Fig. 47*, 50*
9 see Fig. 46*, 52*, 54* see Fig. 46*, 47*, 52* Mijssbauer spectra Mijssbauer spectra, sublattice magnetization see Fig. 34*, nearly composition
BaO(As,O,),,,,(Fe,O,), ,H,,avs.T ,H,,avs.T ,H,,avs.T see Fig. 46*, 52* see Fig. 52*, see [71KH] see Fig. 50* 10
continued
Table 4 continued
Bal-xPbx%201g Ba,Pb,Srl-~,+,,Fe12019 BaSb,Fe,2-,0,,
BaZn2~3Vl13Fell%
CaAl,Fe,,- xO,g
LaMeFe,,O,, Me=Ni, Zn, Cd, Co, Mg, Cu ~ao.5’%.5Fe1201g
PbInl.gFelo.lOlg
SrFe1201g
Ref. Remarks Fig.
74G D=K’+ Bi3+ P=Cu’I, Ni’+, Mn4+, Zn2+, Ti4+ us, d&, Tc vs. x
69D see Fig. 46*, 50*, 52* 73ACCY neutron diffraction patterns 70EM 11 71KH 10 71 PVZS a, c, T,, cr and K, vs. x 71PSSF u vs. T 74AFS 12 76MMO-1 Q vs. T for various x 72EK u vs. T 74EK-1,74EK-2, MHc, c vs. T 75EK-1,75EK-2 71 PSSF u vs. T 72CC-2 u vs. T 73BKSZ sublattice magnetization 67BT-1 0 vs. x for various sintering temperatures 70WK influence of the admixture
(B,O,, Al,O,, Ga,O,) on the magnetic properties
74ACD Mossbauer spectra, hyperfine magnetic fields 76KG Mossbauer spectra, various temperatures 73BKSZ sublattice magnetization 71KH 10 71KH 10,13 71KH 13 72MTS-2 Mijssbauer spectra for different compositions 72MTS-1 Q, Miissbauer spectra and hyperfine fields
for different compositions 71KH 13
71 MSKO u vs. x 72GWMP Mossbauer spectra for different compositions,
ESR spectra 79YKN u vs. x for various sintering temperatures
74L see Fig. 42* 73DHM Mossbauer spectra 74DL Mossbauer spectra 78SKZS high field Mijssbauer study 70MS see Fig. 42*, os, T,, q, Q vs. T
73DHM Miissbauer spectrum
71 PVSZ a, c, 0, T, and K, vs. composition 71PSSF avs.T
68AAB-2 see Fig. 40* 68AAB-3 see Fig. 40* 69SB see Fig. 42*, c vs. T 70KBSK-2 see Fig. 40* 72CPM see Fig. 40*, 41*, temperature dependence
of hyperfine fields 73BKSZ sublattice magnetization 78VE see Fig. 40*, 41*
continued
1ompound
irFe,,O,,
irAl,Fe,,-,O,,
irAs,Fe,,-,O,,
irCo,.,,Ti,.,,Fe,,.,60,9
Ref. Remarks Fig.
79VE see Fig. 40* 80ACDL Mhsbauer spectra; u, T,: influence of Ca
substitution 67BT-2 Q vs. x 68AAB-2 72FBBM see Fig. 40* 73FPG see Fig. 49* 74GT see Fig. 52* 74FBMT see Fig. 40* 72EK 74EK-1,74EK-2 u vs. T 70KBSK-2 Miissbauer spectrum 73BKSZ sublattice magnetization 69SPC u vs. T 80RGG MGssbauer spectra as a function of x 68AAB-2 see Fig. 40* 14 68AAB-3 see Fig. 40* 73ACD Mhsbauer spectra 74ACD Mhsbauer spectra, sublattice magnetization 74EK-1,74EK-2 a vs. T
16
PB
II 1 1 I 0 0.5 1.0 1.5 2.0 is 3.0 3.5 x-
Fig. 10. BaCr,Fe,,-,O,, (open triangles), BaIn,Fe,,-,O,, (open circles), Ba(Zn,,,Ge,,,)Fe,,-,0,9 (full triangles), Ba(Zn,,,,Nb,,,)Fe,,_,O,, (full circles).
a98 - Saturation magnetic moment, pm,. vs. substitution content, x, at RT for polycrystalline samples [71KH].
a97 -
0.96 -
a95 -
I I ’ I I I I I I
4 Fig. 9. BaAl,Fe,, -XO,, . Miissbauer spectra at RT
I I I I I a) x=0 b) x=2.5 [68AAB-11. b II I I fi ’ l!I Decomposition into four sixline spectra is indicated. Com-
I I t I I pare Fig. 14. -12 -8 -4 0 4 8 mm/s 12
V-
Ref. p. 371 5.6 M-type ferrites
I- Fig. 11. BaIn,Fe,,-,O,, . Temperature dependence of the saturation magnetization, cs, of single crystals for different values of x. (I) x=1 (2) x=2.7 (3) x=3 (4) x=3.6 C70EM-j.
460
I
x-
Fig. 12. Ba,-,Pb,Fe,,O,,. Curie temperature, Tc, vs.. x, for polycrystalline samples [74AFS].
Gcm3 a-’ I I I I I
I -80
50
401 I I -180 -150 -120 -90 -60 -30 0 “C :
T-
1.00
0.98
0.96
0.94
a) Subspectrum I: sublattice 12k II: sublattice 4f,v and 2a
III: sublattice 4f,,, IV: sublattice 2b
b) Subspectrum Ia, Ib: sublattice 12k II: sublattice 4f,v and 2a
III: sublattme 4fv, IV: sublattice 2b [68AAB-21.
(12k, 4f,v, 2a), 4fv, and 2b correspond to three different octahedral lattice sites, a tetrahedral surrounding, and a trigonal bipyramid with fivefold coordination, respectively.
4 Fig. 13. BaFe,,O,, (open circles), Ba(Zn,,,Nb,,,)Fe,,O,, (open triangles), Ba(Zn,,3Ta,,,)Fe,,0,, (full circles), Ba(Zn,,,V,,,)Fe,,O,, (full triangles). Specific magnetization, 6, vs. temperature, T [IIlKH].
Bonnenberg/Hempel/Roos 13
5.6 M-type ferrites [Ref. p. 31
5.6.4 Effective spectroscopic splitting factor gert of ferrites with M structure (See Vol. 111/4b, p. 573).
5.6.5 Magneto-crystalline anisotropy of ferrites with M structure Table 5. (See also Vol. III/4b, Tables 13*...15*, p. 575...576 and Figs. 62*...77*, p. 573...577).
Compound Ref. Remarks Fig.
BaFeJ49 67H theoretical consideration of deriving the anisotropic constants from measured torque curves
67J-1,67J-2 saturation magnetization and anisotropic constants of single crystals
68J-2,68PK, saturation magnetization and anisotropic 69JM constants measured by the torque method 69SB see Fig. 63*, 64* 78F 80ACDL Ca substitution
BaAl,Fe,,-,O,, 70B-1 HA vs. x, see Fig. 70* 73HK-1 15
BaCr,Fe,,- r019 73HK-1 15 BaGa,Fe,,- xO19 73HK-1 15 BaIn,Fe,,-,O,, 71 PVZS 16
71 PSSF K, vs. T 72GVKZ
BaSb,Fe,,-,O,, 74EK-1,74EK-2 75EK-1 see Fig. 64* 75EK-2
BaSbSCFe:.$Fe3+ 0 0.5 10.5 19 74L magnetic anisotropy, saturation magnetization
BaSc,Fe,,-,O,, 68PC Q and K, vs. T for various x, see Fig. 63* 17 BaSco.2Fe,l.@19 68PK saturation magnetization and anisotropic
constants measured by the torque method Ba~cAe~0.A 70SPF K, vs. H for different temperatures
71 PSSF K, vs. T 72CC-2 17
BG%-xh2019 69JM saturation magnetization and anisotropic constants measured by the torque method
BaTi,Co,Fe,,- 2xO1g 69SPC saturation magnetization and anisotropic constants measured by the torque method
BaTi,.,Fe~~Fe:&O,, 74L magnetic anisotropy, saturation 19 magnetization
BaZn;Ti,Mn,Fe,,-,-,-,O,g 72MTS1 18
PbIn,Fe,,-,O,, 71 PVZS 16 71 PSSF K, vs. T
SrFedh9 67J-1,67J-2 saturation magnetization and anisotropic constants of single crystals
68J-2,69JM saturation magnetization and anisotropic constants measured by the torque method
69% see Fig. 63*, 64* 80ACDL Ca substitution
SrALFe~2-2x% 69D HA vs. x, see Fig. 70* SrAs,Fe,, - xO1g 74EK-1
I4 Bonnenberg /Hempel /Roes
rable 5 continued
constants measured by the torque method 74EK-1
32
8 I-
Fig. 16. BaIn,Fe,,-,O,,, PbIn,,,Fe,,,,O,,. Magnetic anisotropy constant, K,, vs. temperature for mono-
4 crystals. (1) x=0.2 (2) x=1.9 (3) x=2.4 (4) x=2.5 (5) x= 3.6 (6) PbIn,,,Fe,,,,O,, [71PVZS].
0 1 2 3
Fig. 15. BaAl,Fe,,-,O,, (I): BaCa,Fe,,-,O,, (2), BaCr,Fe,,-,O,, (3). Magnetocrystalline anisotropy field, HA, vs. composition, x [73HK-11.
Fig. 17. BaSc,Fe,,-,O,, . Anisotropy constant, K,, vs. scandium concentration x in crystals at (1) T=293 K, and (2) T=78 K [72CC-2-j.
Fig. 18. BaZn;Ti,Mn,Fe,,_,_,_.0,, . Magnetization, 0, and anisotropy field, HA, vs. temperature, T, for different values of x [72MTS-11.
Bonnenberg /Hempel/ Roos
5.6 M-type ferrites [Ref. p. 37
.19. BaTi~,$Fe~,~Fe,,,, ,9r ‘+ 0 BaFe~.+,Sb~,;Fe:,&O 19’ Magnetization, o,, and cl, measured for H parallel and
0 perpendicular to the preferred c-direction as a function of
5 10 15 20 25 kOe 30 H at 4.2 K and 293 K for oriented crystals [74L]. H-
5.6.6 Hysteresis properties of ferrites with M structure Table 6. (See also Vol. III/4b, Table 16*, p. 578 and Figs. 78*...88*, p. 577...580).
Compound Ref. Remarks Fig.
BaFe,K4~ 62H, 64H-3, influence of grinding and annealing 74HK, 74FG-2 on saturation magnetization and coercivity 64MH influence of raw materials 65F influence of annealing on coercivity 65T influence of static pressure on coercivity 66H-1 influence of water vapour on reactivity 66KS-1,69B influence of additions of 0 to 5 mole % B&O,
on magnetic properties, see Table 16* 66OC demagnetization measurements 67S-1 see Fig. 86* 68BKT, 683-2 milling and sintering behaviour 68R, 68RD, influence of milling on magnetic properties 70MR, 76G 69JIBA influence of different preparation methods
on magnetic properties 70D-2,7OS-1, see Fig. 78*, minor loops 705-2, 71D 70M-1 effects of heat treatment 70RB influence of crystal defects on magnetic 20
properties 71 BH, 72SW reaction studies during hexaferrite formation 71G effect of sintering temperatures on
crystallographic orientation continued
5.6 M-type ferrites [Ref. p. 37
.19. BaTi~,$Fe~,~Fe,,,, ,9r ‘+ 0 BaFe~.+,Sb~,;Fe:,&O 19’ Magnetization, o,, and cl, measured for H parallel and
0 perpendicular to the preferred c-direction as a function of
5 10 15 20 25 kOe 30 H at 4.2 K and 293 K for oriented crystals [74L]. H-
5.6.6 Hysteresis properties of ferrites with M structure Table 6. (See also Vol. III/4b, Table 16*, p. 578 and Figs. 78*...88*, p. 577...580).
Compound Ref. Remarks Fig.
BaFe,K4~ 62H, 64H-3, influence of grinding and annealing 74HK, 74FG-2 on saturation magnetization and coercivity 64MH influence of raw materials 65F influence of annealing on coercivity 65T influence of static pressure on coercivity 66H-1 influence of water vapour on reactivity 66KS-1,69B influence of additions of 0 to 5 mole % B&O,
on magnetic properties, see Table 16* 66OC demagnetization measurements 67S-1 see Fig. 86* 68BKT, 683-2 milling and sintering behaviour 68R, 68RD, influence of milling on magnetic properties 70MR, 76G 69JIBA influence of different preparation methods
on magnetic properties 70D-2,7OS-1, see Fig. 78*, minor loops 705-2, 71D 70M-1 effects of heat treatment 70RB influence of crystal defects on magnetic 20
properties 71 BH, 72SW reaction studies during hexaferrite formation 71G effect of sintering temperatures on
crystallographic orientation continued
Table 6 continued
Ba%% 71GS addition of rare earths 71H-1, 73LP-1, studies on sintering process, densification 73LP-2,73LP-3 710IT, 71SP-1, hot-pressing, microstructure, orientation 72GZ, 79BH 71RRS spray roasting process, demagnetization curves 71SB coercivity vs. particle size 72BCCG grinding effects on magnetization process 72W, 73W-1 sintering behaviour, see Fig. 9* 73A-2, 73A-3, liquid-phase sintering 77CMM 73B-2 influence of composition BaO . nFe,O,
on magnetic properties, see Table 16* 73HBB deformation texture 73HK-2,73KH angular variation of coercivity 73S-2,75S high-pressure technique 75HMK demagnetization curves vs. composition 77CBCM measurements of rotational hysteresis 77CRCA metal-oxides composites,
magnetic properties 778-4 see Table 16* ** 1
BaMe,Fe,,- xO19 73HK-1 coercivity, anisotropy field vs. composition (Me = Al, Cr, Ga)
PbFe12019 66KS-1 addition of 0 to 5 mole % Bi,O, *** )
SrFedb 66H-1 influence of water vapour on reactivity 66HM-1 magnetization reversal 66KS-1 additions of 0 to 5 mole % Bi,O, 67C-2 effects of sulfates addition on magnetic
properties 73Ay2, 73A-3 liquid-phase sintering 77CBCM measurements of rotational hysteresis 773-4 see Table 16* *** 1
**) Further references: 66C-2,70K, ‘JITIYB, 73RF, 77E, 77R-2. ***) See also [66C-21. Fig. 20, see p. 19
5.6.7 High-frequency magnetic properties of ferrites with M structure
Table 7. (See also Vol. 111/4b, Table 17*, p. 583 and Figs. 89*. . .lOO*, p. 580.. .582).
Compound Ref. Remarks Fig.
BaFeJ4~ 64H-2 FMR of crystal-oriented samples 67STA see Fig. 99* 688-3 NMR measurements 68W j.L', $I, E', E" vs. f 69KFL see Fig. 97* 69s NMR measurements in single crystals
and polycrystalline samples 70F-1 nonlinear phenomena of microwave behaviour 70G-2 temperature dependence of microwave 21
absorption continued
Table 6 continued
Ba%% 71GS addition of rare earths 71H-1, 73LP-1, studies on sintering process, densification 73LP-2,73LP-3 710IT, 71SP-1, hot-pressing, microstructure, orientation 72GZ, 79BH 71RRS spray roasting process, demagnetization curves 71SB coercivity vs. particle size 72BCCG grinding effects on magnetization process 72W, 73W-1 sintering behaviour, see Fig. 9* 73A-2, 73A-3, liquid-phase sintering 77CMM 73B-2 influence of composition BaO . nFe,O,
on magnetic properties, see Table 16* 73HBB deformation texture 73HK-2,73KH angular variation of coercivity 73S-2,75S high-pressure technique 75HMK demagnetization curves vs. composition 77CBCM measurements of rotational hysteresis 77CRCA metal-oxides composites,
magnetic properties 778-4 see Table 16* ** 1
BaMe,Fe,,- xO19 73HK-1 coercivity, anisotropy field vs. composition (Me = Al, Cr, Ga)
PbFe12019 66KS-1 addition of 0 to 5 mole % Bi,O, *** )
SrFedb 66H-1 influence of water vapour on reactivity 66HM-1 magnetization reversal 66KS-1 additions of 0 to 5 mole % Bi,O, 67C-2 effects of sulfates addition on magnetic
properties 73Ay2, 73A-3 liquid-phase sintering 77CBCM measurements of rotational hysteresis 773-4 see Table 16* *** 1
**) Further references: 66C-2,70K, ‘JITIYB, 73RF, 77E, 77R-2. ***) See also [66C-21. Fig. 20, see p. 19
5.6.7 High-frequency magnetic properties of ferrites with M structure
Table 7. (See also Vol. 111/4b, Table 17*, p. 583 and Figs. 89*. . .lOO*, p. 580.. .582).
Compound Ref. Remarks Fig.
BaFeJ4~ 64H-2 FMR of crystal-oriented samples 67STA see Fig. 99* 688-3 NMR measurements 68W j.L', $I, E', E" vs. f 69KFL see Fig. 97* 69s NMR measurements in single crystals
and polycrystalline samples 70F-1 nonlinear phenomena of microwave behaviour 70G-2 temperature dependence of microwave 21
absorption continued
Table 7 continued
Compound Ref. Remarks Fig.
BaFG4~ 70H-1 hysteresis of microwave absorption 22 70HK NMR at various temperatures 71HK hysteresis of microwave absorption 7iPK NMR measurements 73A-1 FMR of crystal-oriented samples 73PK NMR at various temperatures 732 NMR measurements 75GLZ field dependence of NMR frequency 76s correlation between resonance absorption
and domain structure 7lLVZZ nuclear spin-lattice and spin-spin relaxation
in domain walls 77RHVH, 80RH 23 77%3 see Fig. 99* 78GL FMR measurements on M-type layers ** 1
BaCo~.sTWe9019 71 PK NMR measurements 72PE see Fig. 95*, p vs. T
BaFe,Al,2-,0,9 66L-1 paramagnetic resonance of Fe3+ BaIn,Fe,,- & 73MMT FMR measurements at various temperatures BaO.(6-x-y-z)Fe,O, 69D see Fig. 99*, absorption curves xTiO,NiO, yMn,O,, vs. composition z Al,O, BaZnXTi,Fe,,- zXOr9 70DWA FMR for various frequencies
71DAS see Table 17*, microwave resonance linewidths
PbFedb 66SS FMR measurements on crystals with different domain structure
73PK NMR measurements
SrF@l~ 68W p’, /r vs. f 73PK NMR measurements
%.sCr3.6%.4%.s 72BS paraprocess anisotropy in a high frequency magnetic field
I*) See also [69MS, 77A].
2.5 orb.
0.5
I I 0 2 4 6 8 10 12 14 16 18 kOe 22
H- Fig. 21. BaFe,,O,,. Absorption curves of isotropic sam- ples for various temperatures, see Fig. 98* [70G-21.
18 Ronnenberg/Hempel/Rooos
-1.5 -1.0 -0.5 0 0.5 1.0 1.5 a=H/HA'-
Fig. 22. BaFe,,O,, Hysteresis of reduced resonance fre- I I quency in the case of single-domain crystal for an arbitrary
0 100 200 K 300 angle, a,, between the applied magnetic d.c. field and the T- c-axis of the crystal (generalisation of equations 13a* and
Fig. 20. BaFe,,O,, . Influence of deformation and anneal- 13b*, see Fig. 97*). [70H-11. H’* is the effective anisotropy ing treatments on magnetic properties of barium ferrite field strength. powders at RT [70RB].
Sample number Sample description
GC820 glass-crystal 820 “C leached GC840 glass-crystal 840 “C leached GCD840 glass-crystal 840 “C deformed GC670 glass-crystal 670 “C leached GCD670 GC670 deformed at 30 kbar
Fig. 23. BaFe,,O,, . Microwave absorption of polycrys- ) talline chemically coprecipitated BaFe,,O,, (f=ll.9 GHz). I I I The additional absorption peaks at ca. 6 kOe correspond -20 -15 -10 -5 kOe 0
to theory given in [70H-l] (see Fig. 22) [77RHVH]. H-
5.6.8 Magnetic domains I’able 8.
Compound
BaFe12019
Ref. Remarks
67ACGL, 68ACM domain-wall motion in single crystals, wall velocity as a function of internal field
68DSGV influence of domain structure on the rotational hysteresis loss
68J-2, 69V-1, irreversible movements of domain walls, 7ov measurements of magnetic stiffness 69VH-1,69VH-2, investigation on the magnetization structure of 65HV polycrystalline uniaxial ferrites with the torsion
pendulum method 69ZB Faraday rotation 71s-4 temperature dependence of the wave domain structure 748-2 internal domain structure in thick crystals
(d= 50...3000 urn) 79BP static magnetic measurements of small magnetic particles
(=:1 w) 80RVDH typical magnetization loops of samples of about 3 pm size
continued
-1.5 -1.0 -0.5 0 0.5 1.0 1.5 a=H/HA'-
Fig. 22. BaFe,,O,, Hysteresis of reduced resonance fre- I I quency in the case of single-domain crystal for an arbitrary
0 100 200 K 300 angle, a,, between the applied magnetic d.c. field and the T- c-axis of the crystal (generalisation of equations 13a* and
Fig. 20. BaFe,,O,, . Influence of deformation and anneal- 13b*, see Fig. 97*). [70H-11. H’* is the effective anisotropy ing treatments on magnetic properties of barium ferrite field strength. powders at RT [70RB].
Sample number Sample description
GC820 glass-crystal 820 “C leached GC840 glass-crystal 840 “C leached GCD840 glass-crystal 840 “C deformed GC670 glass-crystal 670 “C leached GCD670 GC670 deformed at 30 kbar
Fig. 23. BaFe,,O,, . Microwave absorption of polycrys- ) talline chemically coprecipitated BaFe,,O,, (f=ll.9 GHz). I I I The additional absorption peaks at ca. 6 kOe correspond -20 -15 -10 -5 kOe 0
to theory given in [70H-l] (see Fig. 22) [77RHVH]. H-
5.6.8 Magnetic domains I’able 8.
Compound
BaFe12019
Ref. Remarks
67ACGL, 68ACM domain-wall motion in single crystals, wall velocity as a function of internal field
68DSGV influence of domain structure on the rotational hysteresis loss
68J-2, 69V-1, irreversible movements of domain walls, 7ov measurements of magnetic stiffness 69VH-1,69VH-2, investigation on the magnetization structure of 65HV polycrystalline uniaxial ferrites with the torsion
pendulum method 69ZB Faraday rotation 71s-4 temperature dependence of the wave domain structure 748-2 internal domain structure in thick crystals
(d= 50...3000 urn) 79BP static magnetic measurements of small magnetic particles
(=:1 w) 80RVDH typical magnetization loops of samples of about 3 pm size
continued
Table 8 continued
Remarks
dependence of the honeycomb domain structure on the crystal thickness, D=domain width, T= crystal thickness, D - T213
energy of Bloch-walls and NCel-walls hysteresis of domain structure irreversible movements of domain walls,
measurements of magnetic stiffness
irreversible movements of domain walls, measurements of magnetic stiffness
temperature dependence of honeycomb domain structure influence of domain nucleation on magnetization reversal temperature dependence of domain structure
5.7 W-type ferrites 5.7.1 Survey of chemical substitutions in the W structure
Table 9. (See also Vol. III/4b, Table 18*, p. 584).
Compound Ref. Remarks Properties
Fig. Tables
BaCoFe’+Fe:z 0 BaCo ,.65Feo.3s 2+ FeijO,, BaCo,.75Fei%5Fe%027 BaCo,Fe,,-,Al,O,, BaCo,Fe 16--11nx027 BaCo,TiFe,,O,, BaCoZnFe,,O,,
BaMg2Fe,6027 BaMe,Fe,,O,,
70KBSK-1 68NW 77LV 66V-2
73BKSZ 75SKC 75BSK 70KBSK-1 69EMM 68EMM 69PSC 66VAE 72S-1 68ACM 73PK
66VAE 77LRS
27 0 j x 5 2, 0 denotes a metal vacancy 2 - 3 x >= 0.03, chemical instability
galvanomagnetic effect-measurements 24
domain-wall mobility nuclear magnetic resonance
measurements
11
11,12
11,12 11
SrFe2+Fe:,+0 2 21
SrU~2-,,,3Fe:+Fe::-2,,1302, SrCo,Fe,,O,, SrZn,Fe,,O,,
69CKB 14 69CKB 14 66VAE c= 32.82 A, ex= 5.36 g/cm3 14
73GHT, 77LRS, 78SL-2 77LV chemical instability 66VAE c = 32.76 A, ex = 5.19 g/cm’ 14 66VAE c = 32.80 A, ex = 5.22 g/cm3 14
20 Ronnenberg/Hempel/Roos
Table 8 continued
Remarks
dependence of the honeycomb domain structure on the crystal thickness, D=domain width, T= crystal thickness, D - T213
energy of Bloch-walls and NCel-walls hysteresis of domain structure irreversible movements of domain walls,
measurements of magnetic stiffness
irreversible movements of domain walls, measurements of magnetic stiffness
temperature dependence of honeycomb domain structure influence of domain nucleation on magnetization reversal temperature dependence of domain structure
5.7 W-type ferrites 5.7.1 Survey of chemical substitutions in the W structure
Table 9. (See also Vol. III/4b, Table 18*, p. 584).
Compound Ref. Remarks Properties
Fig. Tables
BaCoFe’+Fe:z 0 BaCo ,.65Feo.3s 2+ FeijO,, BaCo,.75Fei%5Fe%027 BaCo,Fe,,-,Al,O,, BaCo,Fe 16--11nx027 BaCo,TiFe,,O,, BaCoZnFe,,O,,
BaMg2Fe,6027 BaMe,Fe,,O,,
70KBSK-1 68NW 77LV 66V-2
73BKSZ 75SKC 75BSK 70KBSK-1 69EMM 68EMM 69PSC 66VAE 72S-1 68ACM 73PK
66VAE 77LRS
27 0 j x 5 2, 0 denotes a metal vacancy 2 - 3 x >= 0.03, chemical instability
galvanomagnetic effect-measurements 24
domain-wall mobility nuclear magnetic resonance
measurements
11
11,12
11,12 11
SrFe2+Fe:,+0 2 21
SrU~2-,,,3Fe:+Fe::-2,,1302, SrCo,Fe,,O,, SrZn,Fe,,O,,
69CKB 14 69CKB 14 66VAE c= 32.82 A, ex= 5.36 g/cm3 14
73GHT, 77LRS, 78SL-2 77LV chemical instability 66VAE c = 32.76 A, ex = 5.19 g/cm’ 14 66VAE c = 32.80 A, ex = 5.22 g/cm3 14
20 Ronnenberg/Hempel/Roos
Ref. p. 371 5.7 W-type ferrites
5.7.2 Electric and dielectric properties of ferrites with W structure Table 10. (See also Vol. 111/4b, Table 19*, 20*, p. 586 and Figs. lOl*, 102*, p. 585).
Compound Ref. Remarks Fig.
5.7.3 Saturation magnetization, Curie temperature and MSssbauer spectra of ferrites with W structure
Table 11. (See also Vol. 111/4b, Figs. 103*.++113*, p. 586.++588).
Compound Ref. Remarks Fig.
BaFe2+Fe3+0 2 16 27 70KBSK-1 27 73BKSZ MGssbauer spectra 77A Mijssbauer spectra,
NMR measurements 80LLS
21 73BKSZ Mijssbauer spectra BaCol.75 Fe$zFe:,$O,, 70KBSK-1, Mijssbauer spectra
73BKSZ BaCo,In,Fe,,-,O,, 68EMM 25 BaCo,TiFe,,O,, 69PSC 26 BaMg2Fe1602, 70AA Mijssbauer spectra BaZn,Fe,,O,, 76ACA Mijssbauer spectra 28
SrFe*+Fe:zO 2 21 8OLLS p, measurements
z-50- 8 10.5 J.NK-'
loo- 2 13.5
501 01 I I I 114.5 0 1 2 3 W3 K“ 4 0 0.4 0.8 1.2 1.6 2.0
l/T - x-
Fig. 24. BaCo,,,,Fe~,~,Fe:~O,,. Dependences of In R, Fig. 25. BaCo,Fe,,Jn,O,,. Saturation magnetization, (I), In@ (2), S (3) on l/T [75BSK]. R,: spontaneous Hall (TV, vs. concentration of In3 + at various temperatures coefficient. Units of R, and Q not stated in original paper. (I) 4 K, (2) 77 K, (3) 300K C68EMM-j.
Bonnenberg/Hempel/Roos 21
80 Gem
20
0 -0 4 8 12 16 0 4 8 12 kOe 16
H- Fig. 26. BaCo,TiFe,,O,, . Magnetization curves at T= 77 K (1,2), T=293 K (3,4);(1,2) Hlc,(3,4) Hllc [69PSC].
-10 -8 -6 -4 -2 0 2 4 6 Emm/s
Fig. 27. BaFe:+Fe&+O,,. Mijssbauer spectrum (super- position of five sixline spectra I...V) [IIOKBSK-I].
23. 40:
I I I I I I
0 1 I I I
I I I I I
LL---I--~---~-------J y 1
I I I I I I I I I I
-8 -6 -4 -2 0 2 4 6 EmmAlO V-
Fig. 28. BaZn,Fe,,O,, . MGssbauer spectrum. The de- composition into live subspectra I...V is indicated [76ACA].
22 Ronnenberg/Hempel/Roos
Ref. p. 371 , 5.7 W-type ferrites
5.7.4 Effective spectroscopic splitting factor geff of ferrites with W structure (See Vol. 111/4b, p. 588).
5.7.5 Magneto-crystalline anisotropy of ferrites with W structure Table 12. (See also Vol. 111/4b, Table 22*, 23*, p. 589 and Figs. 116*...132*, p. 588...592).
Compound
Ref. Remarks
66V-2 K,=34.105 erg/cm3, K,=O 68PK see Fig. 116*, K, vs. T 80LLS Kt 66V-2 K, = -1.78. lo5 erg/cm3, K, = -0.67 + lo5 erg/cm3 68DSGV, 68MN K,, K, vs. T 69EMM Kt 69EMM K, vs. x 69EMM K, vs. x 72MM K,, K, vs. T, y 76MMO-2 anisotropy constants vs. y and T 71MM Kt, K2
78ABLC K,,K,,K,vs.T
80LLS Kt
5.7.6 Magnetostriction of ferrites with W structure Table 13. (See also Vol. 111/4b, Fig. 133*, p. 592).
Compound Ref. Remarks
BaCo,FeZ’,Fe,,O,, 68KMM 1 vs. composi- tion, OS&s2
BaCo,Ni,-,Fe,,O,, 66BDM O$y12, magnetostric- tion measure- ments
BaZn,Fe,,O,, 74KP magnetostriction measurements
Compound
BaCo,Fe,,O,,
Ref.
66VAE
Remarks
PbCo,Fe,,O,, 69CKB p’, p” vs. x at 5 MHz
PbNi,Co,- xFe16027 69CKB p’, p” vs. x at 5 MHz
PbZn,Fe,,O,, 66VAE P’, P” VS. f, see Fig. 134*
SrCo,Fe,,O,,
SrZn,Fe,,O,,
66VAE
66VAE
Bonnenberg/Hempel/Roos 23
5.8 Y-type ferrites
5.8 Y-type ferrites 58.1 Survey of chemical substitutions in the Y structure
rable 15. (See also Vol. III/4b, Table 24*, p. 593).
[Ref. p. 31
Ba,Co,Fe,,O,, 69EB magnetostriction measurements 17,20 71 PK, 72PK, NMR studies 73KPE
BazCo,Zn,-,Fe,,0,2 68AP lattice parameters vs. x 33 16,17, 71BGKM 0 s x 5 2.0, anisotropy of 18,20
paramagnetic 1 71 PSSF
71 KGVK 20,22 Ba,MnZnFe,,O,, 67STS lattice parameter measurements 22
69HS susceptibility measurements Ba2Mno.,23Zn,.3,sFe12022 68AAL 17 Ba,Ni,Fe,,Ozz 72PK, 73KPE NMR studies 20 Ba,Ni,- 2X Zn2xFe12022 69AS 33 20 Ba,-,Pb,Co,Fe,,O,, 69CKB 21 Ba,-XPb,Zn,Fe,,O,, 71KMM magnetostriction measurements Ba,-.Sr,Zn,Fe,,O,, 68SSY neutron diffraction investigations 34 20
7OPV lattice constants vs. x Bao.4%Jn2Fe12022 67PSSY neutron diffraction patterns, 30 18
torque measurements 67SSY, 69SAY, neutron diffraction 69SBS, 74S-1, 71 PSSF 71S-1,71S-2 neutron spectra
Ba o.45Srl.55Zn2Fe12022 71S-1,71S-2 neutron spectra Ba,Zn,Fe,,O,, 69BKM, 70BKMG, anisotropy of the paraprocess 29, 30, 16,17,
71BGKM 30a, 31, 18,19, 69GF dislocations 32, 35 20,21, 69EB, 69KMM, magnetostriction measurements 22 71KMM 69ZB Faraday rotation 70TF crystal structure 7OYL neutron diffraction 71BITC magnetocaloric effects 71KM-1 antisymmetric spin-coupling 71PK NMR studies 73LAKE-1, structure studies by electron 73LAKE-2, microscopy 74LAKE
Ba2Zn2A12.sFe9.5022 69ASY neutron diffraction Ba2Zno.3Col.7Fe12022 7OYL neutron diffraction Ba2Zn2-2,Cu2xFe12022 78ADLR 17 Ba,Zn Fe2+Fe3+0 1.9 0.1 12 22 73T 16 BazZnZ-,Mn,+,Fe,,-,O,, 7lKGVK 31,36 19,22
71SAC NMR studies for various Mn substitutions
Ba,Zn,- ,Mn~+Fe:~- ,Mn:+O,, 73T 16
Pb,Ni,Co,-.Fe,,O,, 69CKB 21
Fig. Table
%Me2%%2 71P-1, 71P-2 20 Me = Co, Zn, Mg, Ni, Mn, Cu
S@n2%2022 71KM-1 antisymmetric spin-coupling 18
5.8.2 Electric and dielectric properties of ferrites with Y structure
Table 16. (See also Vol. 111/4b, Table 25*, p. 593 and Figs. 137*...139*, p. 594).
Compound
Ba,Zn,-,Mnl’~2e::f:Mn,3+0,,
Ref. Remarks
71 SD-1 CT vs. T 71SDK o vs. T 71SD-3,71SD-4,73SDS CT vs. T, see Fig. 138” 73T 0 at RT, tan 6 at 9 GHz 73T 0 at RT, tan 6 at 9 GHz
5.8.3 MSssbauer spectra and saturation magnetization of ferrites with Y structure
Table 17. (See also Vol. 111/4b, Table 26*, p. 595 and Figs. 140*~..144*, p. 595...596).
Compound
BGoPe12%
Remarks Fig.
MGssbauer studies MGssbauer absorption, magnetization
measurements MGssbauer measurements see Fig. 140* CT vs. T see Fig. 143* 29 magnetization measurements Miissbauer measurements
Fig. 29, see p. 26
5.8.4 Magneto-crystalline anisotropy of ferrites with Y structure 5.8.4.1 Magneto-crystalline anisotropy derived from static measurements
Table 18. (See also Vol. 111/4b, Table 29*, 30*, p. 598 and Figs. 145*...149*, p. 597).
Compound
70PSFS 71 PSSF
K,, K,, K, vs. x, T 30
KI, K, K,,K,vs.T K, vs. T see Fig. 145* 30a Kl
anisotropy and magnetization curves CT, K, vs. T
Figs. 30,30a see pp. 26,27
Bonnenberg/Hempel/Roos 25
Fig. Table
%Me2%%2 71P-1, 71P-2 20 Me = Co, Zn, Mg, Ni, Mn, Cu
S@n2%2022 71KM-1 antisymmetric spin-coupling 18
5.8.2 Electric and dielectric properties of ferrites with Y structure
Table 16. (See also Vol. 111/4b, Table 25*, p. 593 and Figs. 137*...139*, p. 594).
Compound
Ba,Zn,-,Mnl’~2e::f:Mn,3+0,,
Ref. Remarks
71 SD-1 CT vs. T 71SDK o vs. T 71SD-3,71SD-4,73SDS CT vs. T, see Fig. 138” 73T 0 at RT, tan 6 at 9 GHz 73T 0 at RT, tan 6 at 9 GHz
5.8.3 MSssbauer spectra and saturation magnetization of ferrites with Y structure
Table 17. (See also Vol. 111/4b, Table 26*, p. 595 and Figs. 140*~..144*, p. 595...596).
Compound
BGoPe12%
Remarks Fig.
MGssbauer studies MGssbauer absorption, magnetization
measurements MGssbauer measurements see Fig. 140* CT vs. T see Fig. 143* 29 magnetization measurements Miissbauer measurements
Fig. 29, see p. 26
5.8.4 Magneto-crystalline anisotropy of ferrites with Y structure 5.8.4.1 Magneto-crystalline anisotropy derived from static measurements
Table 18. (See also Vol. 111/4b, Table 29*, 30*, p. 598 and Figs. 145*...149*, p. 597).
Compound
70PSFS 71 PSSF
K,, K,, K, vs. x, T 30
KI, K, K,,K,vs.T K, vs. T see Fig. 145* 30a Kl
anisotropy and magnetization curves CT, K, vs. T
Figs. 30,30a see pp. 26,27
Bonnenberg/Hempel/Roos 25
5.8.4.2 Magneto-crystalline anisotropy field derived from ferromagnetic resonance frequency
Table 19. (See also Vol. III/4b, Table 31*, 32*, p. 598).
Compound Ref. Remarks
[Ref. p. 37
Fig. 29. Ba,Zn,Fe,,O,,. Temperature dependence of the spontaneous moment, p,, per Zn,Y [77SVHK].
E:“:“l J;;;p;2$202: jLg Ba,Zn,Fe,,O,, (5,6). Magnetrzatlon curves
0 10 20 30 koe 40 (2) H 11 c-axis at 293 K H- (3) H 1 c-axis at 77 K
Fig. 31. Ba,Zn,.,Mn,.,,Fe,,O,, (3,4, (4) H 11 c-axis at 77 K BazMg,Fe,,O,, (I, 2). FMR frequency vs. applied field, H (5) H Ic-axis at 293 K [71 KGVK]. (6) H 11 c-axis at 293 K [67PSSY].
26 Bonnenberg/Hempel/Roos
kAm-'
300
Fig. 30a. Ba,Zn,Fe,,O,,. Magnetization curves of a single crystal measured parallel to the easy and hard direction at various temperatures [78SVH].
Fig. 32. Ba,Zn,Fe,,O,, .
-200 -150 -100 -50 0 50 100 "C 150 T-
Anisotropy field, HA, vs. temperature, T [66MM].
5.8.5 Hysteresis properties of ferrites with Y structure Table 20. (See also Vol. 111/4b, Figs. 151*, 152*, p. 599).
Compound Ref. Remarks Fig.
BGo2- 2xZnZxFe12% 69AS see Fig.152* 33 Ba2Me2Fedb2 71 P-l, see Fig.152*
Me = Co, Zn, Mg, 71 P-2 Ni, Mn, Cu
BGL 2xZn2xFei2022 69AS see Fig.152* 33 Ba,-.Sr,Zn,Fe,,O,, 7OPV 34
%MePe12% Me = Co, Zn, Mg,
Ni, Mn, Cu
71P-1, 71 P-2
kAm-'
300
Fig. 30a. Ba,Zn,Fe,,O,,. Magnetization curves of a single crystal measured parallel to the easy and hard direction at various temperatures [78SVH].
Fig. 32. Ba,Zn,Fe,,O,, .
-200 -150 -100 -50 0 50 100 "C 150 T-
Anisotropy field, HA, vs. temperature, T [66MM].
5.8.5 Hysteresis properties of ferrites with Y structure Table 20. (See also Vol. 111/4b, Figs. 151*, 152*, p. 599).
Compound Ref. Remarks Fig.
BGo2- 2xZnZxFe12% 69AS see Fig.152* 33 Ba2Me2Fedb2 71 P-l, see Fig.152*
Me = Co, Zn, Mg, 71 P-2 Ni, Mn, Cu
BGL 2xZn2xFei2022 69AS see Fig.152* 33 Ba,-.Sr,Zn,Fe,,O,, 7OPV 34
%MePe12% Me = Co, Zn, Mg,
Ni, Mn, Cu
71P-1, 71 P-2
20
15
I-
I I I I I I I
-100 -75 -50 -25 0 25 50 75 "C I I-
Fig. 33. BazCo,_,,Zn,,Fe,,O,,, Fig. 34. Ba,-,Sr,Zn,Fe,,O,,. Initial permeability, /li. vs. BazNi,_,,Zn,,Fe,,O,,. Initial permeability, /li, vs. tem- temperature, T; the numbers on the curves indicate the perature, T values of x [‘IOPV]. (a) Ni-Zn system (I) x=0, (2) 0.03, (3) 0.15, (4) 0.25, (5) 0.50, (6) 1 (b) Co - Zn system (I) x = 0, (2) 0.05, (3) 0.15, (4) 0.25, (5) 0.50 [69AS].
5.8.6 High-frequency magnetic properties of ferrites with Y structure 5.8.6.1 Magnetic spectrum of the initial permeability of ferrites with Y structure
Table21. (See alsoVo1. III/4b, Figs. 153*...156*,p. 600).
Compound
Ba2CoPe12%
Ref. Remarks
70WD 69CKB p’, /I” vs. x 71ss see Fig. 154*
p’, p” vs. f
28 Ronnenberg/Hempel/Roos
20
15
I-
I I I I I I I
-100 -75 -50 -25 0 25 50 75 "C I I-
Fig. 33. BazCo,_,,Zn,,Fe,,O,,, Fig. 34. Ba,-,Sr,Zn,Fe,,O,,. Initial permeability, /li. vs. BazNi,_,,Zn,,Fe,,O,,. Initial permeability, /li, vs. tem- temperature, T; the numbers on the curves indicate the perature, T values of x [‘IOPV]. (a) Ni-Zn system (I) x=0, (2) 0.03, (3) 0.15, (4) 0.25, (5) 0.50, (6) 1 (b) Co - Zn system (I) x = 0, (2) 0.05, (3) 0.15, (4) 0.25, (5) 0.50 [69AS].
5.8.6 High-frequency magnetic properties of ferrites with Y structure 5.8.6.1 Magnetic spectrum of the initial permeability of ferrites with Y structure
Table21. (See alsoVo1. III/4b, Figs. 153*...156*,p. 600).
Compound
Ba2CoPe12%
Ref. Remarks
70WD 69CKB p’, /I” vs. x 71ss see Fig. 154*
p’, p” vs. f
28 Ronnenberg/Hempel/Roos
5.8.6.2 Ferrimagnetic resonance properties of ferrites with Y structure
Table 22. (See also Vol. 111/4b, Table 33*, p. 601 and Figs. 157**..166*, p. 600...603).
Compound
Ba2Znl.l~no.9Fe12022 Ba,Zn,-.Mn,+,Fe,,-,O,,
20
Ref.
77HS 77HS, 71S-3 67M, 68M-2 67V 68YSA 72SP 73MS 75MS 66SL 66MM
Remarks Fig.
anisotropy of g-factors anisotropy of g-factors linewidth measurements linewidth, anisotropy field
35 effect of stress linewidth linewidth and relaxation linewidth vs. f linewidth vs. T
500
0 5 IO 15 kOe 20 H-
Fig. 35. Ba,Zn,Fe,,O,,. Resonance frequency, f,,,, vs. magnetic field, H, for a spherical hexaferrite Zn,Y single crystal at RT (I) field in the basal plane (2) field parallel to the c-axis [68YSA].
Fig. 36. Ba2Zn2-xMnr+yFe12-y0~~. Linewidths,AH,vs. ) temperature, T (a) f=10.7 GHz (b) f=8.8 GHz [66MM]. T-
5.8.6.3 Non-linear effects in the ferromagnetic resonance of ferrites with Y structure
(See Vol. 111/4b, p. 603).
5.9 Z-type ferrites 59.1 Survey of chemical substitution in the Z structure
Table 23. (See also Vol. 111/4b, Table 36*, p. 606).
Compound Ref. Remarks Properties
kinetic of formation 24, 27 37,40, , 41 thermophysical properties densification magnetostriction measurements initial permeability vs. temperature
continued
Table 23 continued
Ba3Co,Fe,4-,Sc,04, Ba,Co,Zn,-,Fe,404, Ba,CoZnFe,,O,, Ba3Fe2Fe24041 Bao.6Sr2.4Zn2Fe24041 Ba,-,SrxCo,Fe,,04, Ba,-,SrxZn,Fe,404, Ba3Zn2Fe24041
Sr3C02Fe24041 Sr3Zn2Fe24041
71 PSSF 72PGB 70G-1 69EB 69SP 69SSY, 72S-2 7OP 72NAY 7OP 72GVKZ
66VAE 71KM-1
antisymmetric spin coupling
26,27 40
27 25,26
5.9.2 The resistivity of ferrites with Z structure .,,$ Table 24. (See also Vol. III/4b, Fig. 177*, p. 606). 2.8
Compound Ref. Remarks Fig. 2x
Ba3C02Fe24041 66K ARjR vs. T 37
I 2.0 1.6 5 2 1.2
0.8
0.4 b
Fig. 37. Ba,Co,Fe,,O,, . Temperature dependence of the 0 longitudinal reluctance in oriented Co,Z in fields of (I) LSOOOe, (2) 5OOOOe, (3) 3OOOOe, -0.4 [4) paraprocess reluctance in a field of 8000Oe, HI/c-axis 120 160 200 240 280 320 360 400°C 441 [66K]. T-
5.9.3 Saturation magnetization and Curie temperature of ferrites with Z structure
Table 25. (See also Vol. III/4b, Table 37*, p. 606).
Compound
Ba,Co,Zn,-,Fe,,O,, Ba,Co2-,Zn,Fe2404, Ba3Fe2Fe24041 Bao.6Sr2.4Zn2Fe24041
Ref.
68PVG 71 PSSF 70G-1 68PVG 7OBKMG 69SP 71 PSSF 68PVG 71 PSSF
Remarks
Table 23 continued
Ba3Co,Fe,4-,Sc,04, Ba,Co,Zn,-,Fe,404, Ba,CoZnFe,,O,, Ba3Fe2Fe24041 Bao.6Sr2.4Zn2Fe24041 Ba,-,SrxCo,Fe,,04, Ba,-,SrxZn,Fe,404, Ba3Zn2Fe24041
Sr3C02Fe24041 Sr3Zn2Fe24041
71 PSSF 72PGB 70G-1 69EB 69SP 69SSY, 72S-2 7OP 72NAY 7OP 72GVKZ
66VAE 71KM-1
antisymmetric spin coupling
26,27 40
27 25,26
5.9.2 The resistivity of ferrites with Z structure .,,$ Table 24. (See also Vol. III/4b, Fig. 177*, p. 606). 2.8
Compound Ref. Remarks Fig. 2x
Ba3C02Fe24041 66K ARjR vs. T 37
I 2.0 1.6 5 2 1.2
0.8
0.4 b
Fig. 37. Ba,Co,Fe,,O,, . Temperature dependence of the 0 longitudinal reluctance in oriented Co,Z in fields of (I) LSOOOe, (2) 5OOOOe, (3) 3OOOOe, -0.4 [4) paraprocess reluctance in a field of 8000Oe, HI/c-axis 120 160 200 240 280 320 360 400°C 441 [66K]. T-
5.9.3 Saturation magnetization and Curie temperature of ferrites with Z structure
Table 25. (See also Vol. III/4b, Table 37*, p. 606).
Compound
Ba,Co,Zn,-,Fe,,O,, Ba,Co2-,Zn,Fe2404, Ba3Fe2Fe24041 Bao.6Sr2.4Zn2Fe24041
Ref.
68PVG 71 PSSF 70G-1 68PVG 7OBKMG 69SP 71 PSSF 68PVG 71 PSSF
Remarks
Ref. p. 371 5.9 Z-type ferrites
Fig. 38. Ba,,,Sr,,,Zn,Fe,,O,, . Magnetization curves (A4 vs. Hj for H 11 c-axis (I) T= 77 K Hlc-axis (2) T= 77 K H 1 c-axis (3) T= 125 K 100 H I c-axis (4) T= 155 K H I c-axis (5) T= 205 K H Ic-axis (6) T= 293 K [69SP]. Inset shows critical field, Hcri, that is linearly dependent on T (cf. curves 2.. .5). 0
8 0 100 K 200
r- I I I
I 2.1 x
Fig. 39. Ba,Co,,,,Zn,,,,Fe,,O,,. Mag- netization curve of isotropic polycrystal- line sample at T=4.2K [70G-11. Curve is reversible from negative saturation up to the point B’. When all irreversible changes of magnetization have finished, the upper branch is reversibel down to B Isee insert). -0 2 4 6 8
l=C2K
321 n.sl
Fig. 40. Ba,Co,-,Zn,Fe,,O,,. Initial permeability, pi, vs. temperature, ?; for various x. The temperature dependence of the specific magnetization of Zn,Z (I) and Co,Z (2) is given in Fig. b [68PVG].
Bonnenberg/Hempel/Roos
5.9.4 Magneto-crystalline anisotropy of ferrites with Z structure Table26. (See also Vol. III/4b, Figs.180*...184* and Table 38*, p. 607).
Compound Ref. Remarks
Ba3Zn2Fe2& 72GVKZ anisotropy measure- ments
Wn 2%% 70PSFS torque mea- surements
59.5 High-frequency magnetic properties of ferrites with Z structure Table 27. (See also Vol. 111/4b, Figs. 185*...188*, p. 608).
Compound Ref. Remarks Fig.
BGo2h@41 66VAE p’, p” vs. f, see Figs. 185*, 186* 68PGE mhgnetic spectra, see Figs. 185*, 186* 68W 41 71 PK, 72RPS NMR measurements
Ba,Co2-,Zn,Fe2404, 73KPE NMR measurements, Oj x5 1.4 Ba,CoZnFe,,O,, 72RPS NMR measurements Ba3Zn2Fe2& 71PK NMR measurements
7OPS FMR meahrements 75GLEG anisotropy field
SrP2Fe2& 66VAE p’, p” vs. j, see Fig. 185*, 186*
3.0 30 5.10 U-type ferrites Table 28. (See also Vol. III/4b, Figs. 189*, 190*, p. 609).
2.5 25 Compound Ref. Remarks
Ba4Zn2Fe36060 69KAD Ferromagnetic resonance
I
73B-2
&
1.0 10
a5 5
4 0 0 Fig. 41. Ba,Co,Fe,,O,, . Permeabilities, p’, p”, and di- 2 4 6 610 2 4 6 6th lo2 electric constants, E’, E”, vs. frequency, f [6SWJ
f-
Ref. p. 371 5.11 Calcium ferrites
5.11 Calcium ferrites Iable 29. (See also Vol. III/4b, Table 39*, 40* and Figs. 191*...207*, p. 609...614).
Compound Ref. Remarks Fig.
ZaFe,O, 66ABIP x vs. T, neutron diffraction 66BCAS neutron diffraction, Mijssbauer measurements 66MJ formation process 67HRG X-ray data 67HW Mijssbauer spectra 67SOF neutron diffraction 68B-2 hot-pressing 69BGR Mossbauer spectra, ESR measurements 73EP Mossbauer measurements
Ca,Fes-,O., 71HKMP _ _ 0 I xl 0.55, Miissbauer spectra
%5Bao.sFe204 71HB crystallographic properties
Ca,Ni,- xFe204 72VCRL 0 Ix s 0.7, dielectric properties 42 72VRL Tc vs. x
CaSc,- .Fe,O, \ 69BGR Mossbauer spectra, ESR measurements
Ca,Fe,O, 66PW Mossbauer spectra, see Fig. 191* 67HRG X-ray data 67FSS neutron diffraction 67GGGW Mijssbauer spectra, see Fig. 191* 67HW Mijssbauer spectra 68B-2 hot-pressing 68TYTF neutron diffraction 68YOWF Mossbauer spectra 69EGS Mossbauer spectra, o vs. T 69G-1 Mossbauer spectra 71B-2 refinement of crystal structure 73GPG x vs. T 43
Ca,Fe,- &LO, 73GMPH Miissbauer spectra (M = Cr, Co)
Ca,Fe,-,M,O, 75GPH x vs. T for various x (M =Al, SC, Cr, Co, Ga)
Ca2Fel.5Alo.505 67HW Mossbauer spectra Ca,FeAlO, 67HW Mossbauer spectra CaMeFeO, 711TK magnetic properties
(Me = Ni, Mg, Mn, Co, Zn) CaFe,O, 71wos MGsSbauer spectra
200 0 200 100 600 800 1000 K 1200
T- Fig. 43. Ca,Fe,O,. The inverse molar susceptibility, l/x,, vs. temperature T [73GPG].
Fig. 42, see p. 34.
Bonnenberg/Hempel/Roos 33
5.12 X-type ferrites; 5.13 F-type ferrites [Ref. p. 37
4 Fig. 42. Ca,,,Ni,,,Fe,O,. Dielectric constant, E, and di- electric loss factor, tan 6, vs. temperature, T, at various frequencies [72VCRL]. Full circles: 0.1 kHz, open circles: 1 kHz, triangles: 10 kHz.
5.12 X-type ferrites (general chemical formula BaMe’+FeTaO,,)
Table 30. (See also Vol. III/4b, Table l*, p. 558).
Compound
BGo2N&
70PSFS
Remarks Fig.
anisotropy determined by FMR measurements HA, Q, K, vs. T anisotropy determined by FMR measurements anisotropy determined by FMR measurements HA, 6, K, vs. T 44
a=5.87A c = 84.0 A
5.13 F-type ferrites (general chemical formula BaFe,O,)
Table 31. (See also Vol. 111/4b, Table l*, p. 558).
Compound
BaFe,O,
Ba,.sSr,.s,Cao.s-o.s,,Fe,O, Bao.s%.sFe2Q
Ref. Remarks Fig.
69DBC MGssbauer and neutron diffraction studies 69PCL, 74HKK differential thermal analysis, T, 71MMO,72M crystal structure 77BISS magnetic measurements 79ws crystal structure ‘IODCBB, 72CD MGssbauer and neutron diffraction 45 71HB crystal structure 78RJ a = 5.407 A, c= 7.703 A, Mijssbauer spectrum 68HSPH crystal parameters a, c; x vs. T
80RJ 0 5 x 5 1 MGssbauer spectra 73LMM-2 crystal structure
34 Ronnenberg/Hempel/Roos
5.12 X-type ferrites; 5.13 F-type ferrites [Ref. p. 37
4 Fig. 42. Ca,,,Ni,,,Fe,O,. Dielectric constant, E, and di- electric loss factor, tan 6, vs. temperature, T, at various frequencies [72VCRL]. Full circles: 0.1 kHz, open circles: 1 kHz, triangles: 10 kHz.
5.12 X-type ferrites (general chemical formula BaMe’+FeTaO,,)
Table 30. (See also Vol. III/4b, Table l*, p. 558).
Compound
BGo2N&
70PSFS
Remarks Fig.
anisotropy determined by FMR measurements HA, Q, K, vs. T anisotropy determined by FMR measurements anisotropy determined by FMR measurements HA, 6, K, vs. T 44
a=5.87A c = 84.0 A
5.13 F-type ferrites (general chemical formula BaFe,O,)
Table 31. (See also Vol. 111/4b, Table l*, p. 558).
Compound
BaFe,O,
Ba,.sSr,.s,Cao.s-o.s,,Fe,O, Bao.s%.sFe2Q
Ref. Remarks Fig.
69DBC MGssbauer and neutron diffraction studies 69PCL, 74HKK differential thermal analysis, T, 71MMO,72M crystal structure 77BISS magnetic measurements 79ws crystal structure ‘IODCBB, 72CD MGssbauer and neutron diffraction 45 71HB crystal structure 78RJ a = 5.407 A, c= 7.703 A, Mijssbauer spectrum 68HSPH crystal parameters a, c; x vs. T
80RJ 0 5 x 5 1 MGssbauer spectra 73LMM-2 crystal structure
34 Ronnenberg/Hempel/Roos
I 80 b
0 0 200 400 600 K 800
T- Fig. 44. B&Zn,Fe,,O,, . Saturation magnetization, 0, anisotropy constant, K,, and anisotropy field, HA, vs. tem- perature, T [IIOTMS].
701 I I I I I I I I -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 mm s-1 I
V-
Fig. 45. BaFeAlO, . MGssbauer spectrum at RT [‘IODCBB]. N: number of counts.
5.14 KFe,,O,, Table 32. (See also Vol. 111/4b, Table 1 and Fig. 15, p. 558).
Compound Ref. Remarks Fig.
76HD 47 68H x = 0.87, crystal
structure is similar to
KF%&
I I -to.: solid lines : this work dashed lines : Roth 174 RI
I I I
1 n-" I 0 12 3.4 5 6 7 8 9 IO -1O‘3 K-’ 12
l/1 - Fig. 46. K,+,Fe,,O,, . Electric conductivity, (r, vs. tem- ,perature, T, for different values of x [76DSH].
Ref. p. 371 5.14 KFe,,O,,
I 80 b
0 0 200 400 600 K 800
T- Fig. 44. B&Zn,Fe,,O,, . Saturation magnetization, 0, anisotropy constant, K,, and anisotropy field, HA, vs. tem- perature, T [IIOTMS].
701 I I I I I I I I -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 mm s-1 I
V-
Fig. 45. BaFeAlO, . MGssbauer spectrum at RT [‘IODCBB]. N: number of counts.
5.14 KFe,,O,, Table 32. (See also Vol. 111/4b, Table 1 and Fig. 15, p. 558).
Compound Ref. Remarks Fig.
76HD 47 68H x = 0.87, crystal
structure is similar to
KF%&
I I -to.: solid lines : this work dashed lines : Roth 174 RI
I I I
1 n-" I 0 12 3.4 5 6 7 8 9 IO -1O‘3 K-’ 12
l/1 - Fig. 46. K,+,Fe,,O,, . Electric conductivity, (r, vs. tem- ,perature, T, for different values of x [76DSH].
5.15 Further hexagonal ferrites [Ref. p. 37
r 1 I I , 20 act. I I I I I , 12koct.
I I I I 1 I spine1 tetr. I I I I I I bridging tetr.
I 1 I 1 I I I I I I I
-10 -8 -6 -4 -2 0 2 4 6 8 mm 9 12
Fig. 41. Kl+,Fe,&. MGssbauer spectra for x =0.31 [76HD]. Decomposition into subspectra is indicated for T=295 K. Site assignment is given (see original paper for further information). Arrow (T= 77 K) indicates a small peak from an impurity in the cryostat windows.
5.15 Further hexagonal ferrites Table 33. Survey of further crystal structures of hexagonal ferrites.
Compound Ref. Remarks
Ba,Me,Ti,Fe,,O,, , Me = Co, Cu(Zn, Mg)
Bas.,Mg,.,Zno.,Ti,.,Fe~l.~O~l Ba~.lNil.lCoo.~Ti~.~F~l~.~~~o.~~~l Ba,Zn,Ti,Fe,,O,,
69TKBS
75STS 75STS 71KE
crystal structure Mijssbauer studies, magnetization
curves R-block, see Table l*, crystal structurr crystal structure and magnetic
properties, Massbauer measurement’
a=5.844& c=43.020A
5.15 Further hexagonal ferrites [Ref. p. 37
r 1 I I , 20 act. I I I I I , 12koct.
I I I I 1 I spine1 tetr. I I I I I I bridging tetr.
I 1 I 1 I I I I I I I
-10 -8 -6 -4 -2 0 2 4 6 8 mm 9 12
Fig. 41. Kl+,Fe,&. MGssbauer spectra for x =0.31 [76HD]. Decomposition into subspectra is indicated for T=295 K. Site assignment is given (see original paper for further information). Arrow (T= 77 K) indicates a small peak from an impurity in the cryostat windows.
5.15 Further hexagonal ferrites Table 33. Survey of further crystal structures of hexagonal ferrites.
Compound Ref. Remarks
Ba,Me,Ti,Fe,,O,, , Me = Co, Cu(Zn, Mg)
Bas.,Mg,.,Zno.,Ti,.,Fe~l.~O~l Ba~.lNil.lCoo.~Ti~.~F~l~.~~~o.~~~l Ba,Zn,Ti,Fe,,O,,
69TKBS
75STS 75STS 71KE
crystal structure Mijssbauer studies, magnetization
curves R-block, see Table l*, crystal structurr crystal structure and magnetic
properties, Massbauer measurement’
a=5.844& c=43.020A
48K 48N 55SB 59BK 59CSEF
59sw 61G 62H 64G 64GZ 64H-2 64H-3 64MH 65F 65HV 65M-1 65T 66ABB 66ABIP 66BCAS
66BDM 66C-2 66H-1 66HM-1 66K 66KS-1 66L-1 66M-2 66MJ 66MM 66OC 66PW 66SL 66SS
66V-2 66VAE
67H 67HRG 67HW 67J-1 67J-2 67KCMS
5.16 References for 5.0. - -5.15 Kathel, Ch.: Phys. Rev. 73 (1948) 155. NCel, L.: Ann. Phys. (Paris) 3 (1948) 137. Smit, J., Beljers, H.: Philips Res. Rept. 10 (1955) 113. Belson, H.S.. Kriessmann, C.J.: J. Appl. Phys., 30 (1959) 175 S. Casimir, H.B.G., Smit, J., Enz, U., Fast, J.F., Wijn, H.P.J., Gorter, E.W., Duyvesteyn, A.J.W.,
Fast, J.D., De Jong, J.J.: J. Phys. Radium 20 (1959) 360. Smit, J., Wijn, H.P.J.: Ferrites. New York and Eindhoven 1959. Gersdorf, R. : Proefschrift Gem. Univers. Amsterdam 1961. Heimke, G.: Ber. Dtsch. Keram. Ges. 39 (1962) 326. Gemperle, R.: Phys. Status Solidi 6 (1964) 89. Gemperle, R., Zeleny, M.: Phys. Status Solidi 6 (1964) 839. Hempel, K.A.: Z. Angew. Phys. 16 (1964) 395. Heimke, G.: Z. Angew. Phys. 17 (1964) 181. Mtiller, H.G., Heinecke, U.: Wiss. Z. Hochsch. Dresden 11 (1964) 465. Fahlenbach, H.: Tech. Mitt. Krupp Forschungsber. 23 (1965) 26. Hempel, K.A., Voigt, C.: Z. Angew. Phys. 19 (1965) 108. Mori, S.: J. Am. Ceram. Sot. 48 (1965) 165. Tenzer, R.K.: J. Appl. Phys. 36 (1965) 1180. Aleonard, R., Bloch, D., Boutron, P.: C.R. Acad. Sci. (Paris) 263B (1966) 951. Allain, M.M.J., Boucher, B., Imbert, P., Perrin, U. : C.R. Acad. Sci. (Paris) 263B (1966) 9. Bertaut, E.F., Chappert, J., Apostolov, A., Semenov, V. : Bull. Sot. Fr. Mineral. Crist. 89
(1966) 206. Borovik, E.S., Dikiy, A.P., Mamaluy, Y.A.: Ukr. Fiz. Zh. 12 (1966) 1341. Cochardt, A.: J. Appl. Phys. 37 (1966) 1112. Heimke, G.: Ber. Dtsch. Keram. Ges. 43 (1966) 600. Heinecke, U., Mtiller, H.G. : Phys. Status Solidi 15 (1966) 575. Koroleva, L.I.: Physics Met. Metallogr. 22 (1966) 101; Fiz. Met. Metalloved. 22 (1966) 574. Kojima, H., Sakai, K. : Nippon Kinzoku Gakkaishi 30 (1966) 640. Lerner, N.R.: J. Appl. Phys. 37 (1966) 3917. Mori, S. : J. Am. Ceram. Sot. 49 (1966) 600. Mazanek, E., Jasienska, S.: J. Iron Steel Inst. 204 (1966) 344. McCall, G.S., Maertin, L.: Proc. IEEE 54 (1966) 681. Ochsenfeld, R., Capptuller, H.: Z. Angew. Phys. 20 (1966) 407. Phillips, R., Ware, N.G.: Mineral. Mag. 36 (1966) 422. Stinson, D.C., Le Mere, C.E.: Proc. IEEE 54 (1966) 679. Shur, Y.S., Shiryaeva, 0.1.: Izv. Akad Nauk SSSR, Ser. Fiz. 30 (1966) 1012; Bull. Acad.
Sci. USSR, Phys. (English Transl.) Ser. 30 (1966) 1055. Voskanyan, R.A.: Kristallografiya 10 (1966) 748; Sov. Phys. Cryst. 10 (1966) 628. Vinnik, M.A., Agranovskaya, A.I., Erystova, A.P.: Izv. Akad. Nauk. SSSR, Neorg. Mater.
2 (1966) 1612; Bull. Acad. Sci. USSR, Inorg. Mater (English Transl.) 2 (1966) 1383. Asti, G., Colombo, M., Giudici, M., Levialdi, A.: J. Appl. Phys. 38 (1967) 2195. Batti, P.: Ann. Chim (Rom) 57 (1967) 98. Batti, P., Tella, F.Di.: Ann. Chim. (Rom) 57 (1967) 64. Batti, P., Tella, F.Di. : Ann. Chim. (Rom) 57 (1967) 74. Cochardt, A.: J. Appl. Phys. 38 (1967) 1904. Croft, W.J., Kestigian, M., Borovicka, R., Garabedian, F. : Mater. Res. Bull. 2 (1967) 849. Friedmann, Z., Shaked, H., Shtrikman, S.: Phys. Lett. A 25 (1967) 9. Geller, S., Grant, R.W., Gonser, U., Wiedersich, H., Espinosa, G.P.: Phys. Lett. A 25 (1967)
722. Hempel, K.A.: Z. Angew. Phys. 23 (1967) 186. Hughes, H., Roos, P., Goldring, D.C.: Mineral. Mag. 36 (1967) 280. Hudson, A., Whitfield, H.J.: J. Chem. Sot. A 3 (1967) 376. Jahn, L.: Wiss. Z. Hochsch. Dresden 14 (1967) 327. Jahn, L.: Wiss. Z. Hochsch. Dresden 14 (1967) 325. Kumar, N., Chandra, P., Mulay, V.N., Sinha, A.P.B. : Indian J. Pure Appl. Phys. 5 (1967)
614.
Bonnenberg/Hempel/Roos
j7M i7PSSY
;7s-I
Mita, M.: J. Phys. Sot. Jpn. 22 (1967) 529. Perekalina, T.M., Sizov, V.A., Sizov, R.A., Yamzin, I.I., Voskamyan, R.A. : Zh. Eksp. Teor.
Fiz. 52 (1967) 409; Sov. Phys. JETP (English Transl.) 25 (1967) 266. Shtolts, E.V.: Fiz. Tverd. Tela (English Transl.) 8 (1966) 3416; Sov. Phys. Solid State 8
(1967) 2738. j7SOFW Sugimoto, M., Okada, T., Fukase, M., Watanabe, H., Yamauchi, H., Ohashi, M. : J. Phys.
Sot. Jpn. 22 (1967) 939. 57SSY 57STA 57STS 57V 57W 58AAB-1 58AAB-2 58AAB-3 58AAL 68ACM 68AP
Sizov, V.A., Sizov, R.A., Yanozia, 1.1. : JETP Lett. 6 (1967) 176. Silber, L.M., Tsantes, E., Angelo, P.: J. Appl. Phys. 38 (1967) 5315. Shappirio, J.R., Tauber, A., Savage, R.O.: Mater. Res. Bull 2 (1967) 101. Verwell, J.: J. Appl. Phys. 38 (1967) 1111. Wittmann, F.: Phys. Lett. A 24 (1967) 252. Albanese, G., Asti, G., Batti, P. : Nuovo Cimento 58B (1968) 480. Albanese, G., Asti, G., Batti, P.: Nuovo Cimento 58 B (1968) 467. Albanese, G., Asti, G., Batti, P.: Nuovo Cimento 58 B (1968) 339. Albanese, G., Asti, G., Lamborizio, C.: J. Appl. Phys. 39 (1968) 1198. Asti, G., Conti, F., Maggi, CM. : J. Appl. Phys. 39 (1968) 2039. Agapova, N.N., Perekalina, T.M.: Fiz. Tverd. Tela 9 (1967) 2330; Sov. Phys. Solid State
(English Transl.) 9 (1968) 1825. 68B-2 68BKT
Brunner, M.: Jernkontorets Ann. 152 (1968) 287. Bungardt, K., Kassner, P., Thtimmler, F.: DEW (Dtsch. Edelstahlwerke) Tech. Ber. 8 (1968)
157. 68BS-2 68BS-3 68DSGV
68EMM
Batti, P., Sloccari, G.: Univ. Studi Trieste, Facolta. Ing. 1st. Chim. Appl. 26 (1968). Batti, P., Sloccari, G.: Ann. Chim. (Rom) 58 (1968) 213. Drokin, A.I., Sudakov, N.I., Gendelev, S.Sh., Vershinina, N.I.: Izv. Vyssh. Uchebn. Zaved.
Fiz. 11 (1968) 7; Sov. Phys. J. (English Transl.) 11 (1968) 1. Efimova, N.N., Mamaluy, Yu.A., Murakhovskii, A.A.: Sov. Phys. Solid State 10 (1968)
1271. 68H 68HSPH 68J-1 685-2 6SKMh?
68LV 68M-2 68MN
68NW . 68PC
Hever, K.O.: J. Electrochem. Sot. 115 (1968) 826. Hennig. H., Sieler, J., Papstein, H., Holzapfel, H. : Z. Chem. 8 (1968) 188. Jahn, L.: Wiss. Z. Hochsch. Dresden 15 (1968) 299. Jahn, L.: Wiss. Z. Hochsch. Dresden 15 (1968) 515. Kuntsevich, S.P., Mamaluy, Yu.A., Mimer, AS.: Fiz. Met. Metalloved. 26 (1968) 610; Phys
Met. Metallogr. (English Tram.) 26 (1968) 35. Laroia, K.K., Vadhera, K.K.: Indian J. Technol. 6 (1968) 61. Mita, M.: J. Phys. Sot. Jpn. 24 (1968) 725. Mamaluy, Yu.A., Nikolenko, Yu.A.: Fiz. Met. Metalloved. 25 (1968) 449; Phys. Met. Metallogr
(English Transl.) 25 (1968) 69. Neumann, H., Wijn, H.P.J. : J. Am. Ceram. Sot. 51 (1968) 536. Perekarima, T.M., Cheparin, V.P.: Fiz. Tverd. Tela 9 (1967) 3205; Sov. Phys. Solid Stan
(English Transl.) 9 (1968) 2524. 68PGE
68PK
Petrova, I.I., Grigoreva, L.N., Ermakov, B.N.: Izv. Akad. Nauk. SSSR, Neorg. Mater. 1 (1968) 2171; Bull. Acad. Sci. USSR, Inorg. Mater. (English Transl.) 4 (1968) 1889.
Polivanov, K.M., Kalugin, Ye.1.: Fiz. Met. Metalloved. 26 (1968) 33; Phys. Met. Metallogr (English Transl.) 26 (1968) 31.
68PVG
68R 68RD 68RTF 683-2 68S-3 68SSY
Petrova, I.I., Vinnik, M.A., Grigoreva, L.N.: Fiz. Tverd. Tela 9 (1967) 3026; Sov. Phys Solid State (English Transl.) 9 (1968) 2389.
Richter, H.G.: DEW (Dtsch. Edelstahlwerke) Tech. Ber. 8 (1968) 192. Richter, H.G., Dietrich, H.E.: IEEE Trans. Magn. 4 (1968) 263. Rosenberg, M., Tanasoiu, C., Florescu, V.: J. Appl. Phys. 39 (1968) 879. Stablein, H.: Tech. Mitt. Krupp. Forschungsber. 26 (1968) 81. Streever, R.L.: Phys. Lett. A 27 (1968) 563. Sizov, V.A., Sizov, R.A., Yamzin, 1.1.: Zh. Eksp. Teor. Fiz. 53 (1967) 1256; Sov. Phys.
JETP (English Transl.) 26 (1968) 736. 68TYTF Takeda, T., Yamaguchi, Y., Tomiyoshi, Sh., Fukase, M., Sugimoto, M., Watanabe, H.: J
Phys. Sot. Jpn. 24 (1968) 446. 68V-2 Vinnik, M.A.: Izv. Akad. Nauk SSSR, Neorg. Mater. 4 (1968) 1767; Bull. Acad. Sci. USSR
Inorg. Mater. (English Transl.) 4 (1968) 1540. J 38 Ronnenberg/Hempel/Roos
5.16 References for 5.0...5.15
69EGS 69EMM
69G-1 69GF
69SK
Wartenberg, B.: Z. Angew. Phys. 24 (1968) 211. Yamamoto, H., Okada, T., Watanabe, H., Fukase, M.: J. Phys. Sot. Jpn. 24 (1968) 275. Yakovlev, Yu., M., Shil’nikov, Yu., R., Agapova, N.N.: Fiz. Tverd. Tela 10 (1968) 942;
Sov. Phys. Solid State (English Transl.) 10 (1968) 745. Aleshko-Ozhevskii, O.P., Faek, M.K., Yamzin, 1.1.: Kristallografiya 14 (1969) 447; Sov. Phys.
Cryst. (English Transl.) 14 (1969) 367. Avramenko, V.P., Sinyakov, E.V.: Izv. Akad. Nauk SSSR, Neorg. Mater. 5 (1969) 1264;
Bull. Acad. Sci. USSR, Inorg. Mater. (English Transl.) 5 (1969) 1075. Aganova, N.N., Sizov, V.A., Yamzin, 1.1.: Fiz. Tverd. Tela 10 (1968) 2859; Sov. Phys. Solid
State 10 (1969) 2258. Aleshko-Ozhevskii, O.P., Sizov, R.A., Yamzin, I.I., Lubimtsev, V.A. : Sov. Phys. JETP 28
(1969) 425. Aleshko-Ozhevskii, O.P., Yamzin, 1.1.: Zh. Eksp. Teor. Fiz. 56 (1969) 1217; Sov. Phys. JETP
(English Transl.) 29 (1968) 655. Bradley, F.N.: J. Austr. Ceram. Sot. 5 (1969) 9. Birchall, T., Greenwood, N.N., Reid, A.F.: J. Chem. Sot. Sec. A 1969, 2382. Belov, K.P., Koroleva, L.I., Mitina, L.P.: Fiz. Tverd. Tela 10 (1968) 2599; Sov. Phys. Solid
State (English Transl.) 10 (1969) 2329. Castelliz, L.M., Kim, K.M., Boucher, P.S. : J. Can Ceram. Sot. 38 (1969) 57. Deschamps, A.: Z. Angew. Phys. 26 (1969) 190. Do-Dinh, C., Bertaut, E.F., Chappert, J.: J. Phys. (Paris) 30 (1969) 566. Dullenkopf, P., Wijn, H.P.J. : Z. Angew. Phys. 26 (1969) 22. Elkina, T.A., Bolshova, K.M.: Vestn. Mosk. Univ. Fiz. Astronomiya 24 (1969) 72; Moscow
Univ. Phys. Bull. (English Transl.) 24 (1969) 57. Eibschtitz, M., Ganiel, U., Shtrikman, S. : J. Mater. Sci. 4 (1969) 574. Efimova, N.N., Mamaluy, Yu.A., Murakhovski, A.A.: Ukr. Fiz. Zh. (Russ. Ed.) 14 (1969)
930. Grant, R.W.: J. Chem. Phys. 51 (1969) 1156. Gendelev, S.Sh., Fedorovich, L.D.: Izv. Akad. Nauk SSSR, Neorg. Mater. 5 (1969) 612;
Bull. Acad. Sci. USSR, Inorg. Mater. (English Transl.) 5 (1969) 522. Haberey, F.: J. Appl. Phys. 40 (1969) 2835. Helszajn, J., McStay, J.: Electron. Lett. 5 (1969) 525. Jaworski, J.M., Ingham, G.A., Bowman, W.S., Alexander, G.E.: J. Can. Ceram. Sot. 38
(1969) 171. Jahn, L., Mtiller, H.G.: Phys. Status Solidi 35 (1969) 723. Krausse, J.: Z. Angew. Phys. 27 (1969) 251. Kerecman, A.J., Au Coin, T.R., Dattilo, W.P.: J. Appl. Phys. 40 (1969) 1416. Kokarovtseya, LG., Belyaev, I.N.: Zh. Fiz. Khim. 40 (1969) 2645; Russ. J. Phys. Chem.
(English Transl.) 43 (1969) 1487. Kurtin, S., Foner, S., Lax, B. : J. Appl. Phys. 40 (1969) 818. Kuntsevich, S.P., Mamaluy, Yu.A., Mil’ner, AS. : Fiz. Tverd. Tela 10 (1968) 3495; Sov.
Phys. Solid State (English Transl.) 10 (1969) 2780. Monosov, Ya.A., Surin, V.V.: Fiz. Tverd. Tela 11 (1969) 764; Sov. Phys. Solid State (English
Transl.) 11 (1969) 612. Negas, T., Roth, R.S. : J. Res. Nat. Bur. Stand. Sect. A 73 (1969) 425. Pavlenishvili, T.A., Chachanidze, G.D., Landia, N.A.: Sroobshch. Akad. Nauk. Gruz. SSR
56 (1969) 93. Perekalina, T.M., Shchurova, A.D., Cheparin, V.P.: Fiz. Tverd. Tela 10 (1968) 3119; Sov.
Phys. Solid State 10 (1969) 2460. Rensen, J.G., Wieringen, J.S. van: Solid State Commun. 7 (1969) 1139. Streever, RI.: Phys. Rev. 186 (1969) 285. Sizov, V.A., Agapova, N.N., Yamzin, 1.1. : Sov. Phys. Crystallogr. 14 (1969) 263. Skirk, O.T., Buessem, W.R. : J. Appl. Phys. 40 (1969) 1294. Sizov, R.A., Bokhenkov, E.L., Sizov, V.A.: Fiz. Tverd. Tela 10 (1968) 3205; Sov. Phys.
Solid State (English Transl.) 10 (1969) 2537. Shur, Ya.S., Kandaurova, G.S.: Fiz. Tverd. Tela 11 (1969) 797; Sov. Phys. Solid State (English
Transl.) 11 (1969) 646.
Bonnenberg /Hempel / Roos 39
5.16 References for 5.0..a5.15
70B-4 70BFFK
70KBSK-2
70h4-1
70RB 70RTF
Sannikov, D.G., Perekalina, T.M.: Zh. Eksp. Teor. Fiz. 56 (1969) 730; Sov. Phys. JETP (English Transl.) 29 (1969) 396.
Shchurova, A.D., Perekalina, T.M., Cheparin, V.P.: Zh. Eksp. Teor. Fiz. 55 (1968) 197; Sov. Phys. JETP (English Transl.) 28 (1969) 626.
Sizov, V.A., Sizov, R.A., Yamzin, 1.1. : Zh. Eksp. Teor. Fiz. 55 (1968) 1166; Sov. Phys. JETP (English Transl.) 28 (1969) 619.
Silber, L.M., Tsantes, E.: IEEE Trans. Magn. 5 (1969) 600. Takada, T., Kiyama, M., Bando, Y., Shinjo, T.: Bull. Inst. Chem. Res. Kyoto Univ. 47
(1969) 298. Voigt, C.: Ber. Arbeitsgem. Ferromagn. 1969, 11: Z. Angew. Phys. 28 (1969) 11. Xoigt, C. : Z. Angew. Phys. 26 (1969) 160. Voigt, C., Hempel, K.A.: Phys. Status Solidi 33 (1969) 241. Voigt, C., Hempel, K.A.: Phys. Status Solidi 33 (1969) 249. Zanmarchi, G., Bongers, P.F.: J. Appl. Phys. 40 (1969) 1230. Albanese, G., Asti, G.: IEEE Trans. Magn. 6 (1970) 158. Balbashov, A.M.: Izv. Akad. Nauk SSR, Ser. Fiz. 34 (1970) 1221 ; Bull. Acad. Sci. USSR,
Phys. Ser. (English Transl.) 34 (1970) 1086. Bunget, I.: Rev. Roum. Phys. 15 (1970) 433. Belyaev, I.N., Fesenko, E.G., Filipev, V.S., Kokarovtseva, LG.: Kristallografiya 14 (1969)
910; Sov. Phys. Cryst. (English Transl.) 14 (1970) 782. Belov, K.P., Koroleva, L.I.: Fiz. Met. Metalloved 29 (1970) 180; Phys. Met. Metallogr.
(English Transl.) 29 (1970) 183. Belov, K.P., Koroleva, L.I., Mitina, L.P., Goryagu, A.N.: Izv. Akad. Nauk SSR, Ser. Fiz.
34 (1970) 1099; Bull. Acad. Sci. USSR., Phys. Ser. (English Transl.) 34 (1970) 981. Dietrich, H.: DEW (Dtsch. Edelstahlwerke) Tech. Ber. 10 (1970) 219. Do-Dinh, C., Chevalier, R., Burlet, P., Bertaut, E.F.: J. Phys. (Paris) 31 (1970) 401. Dixon, S., Weiner, M., AuCoin, T.R.: J. Appl. Phys. 41 (1970) 1357. Efimova, N.N., Mamaluy, Yu.A.: Izv. Akad. Nauk SSR, Ser. Fiz.‘34 (1970) 979; Bull. Acad.
Sci. USSR, Phys. Ser. (English Transl.) 34 (1970) 871. Fiksa, J.: J. Phys. Sot. Jpn. 29 (1970) 1152. Florescu, V., Rosenberg, M.: Japan. J. Appl. Phys. 9 (1970) 217. Gerling, W.H.: Ber. Arbeitsgem. Ferromagn. 1970, IEEE Trans. Magn. 6 (1970) 737. Grosser, P.: Z. Angew. Phys. 30 (1970) 133. Gleitzer, C., Zanne, M., Zeller, C.: CR. Acad. Sci. (Paris) Ser. B 270 (1970) 1496. Hempel, K.A. : Z. Angew. Phys. 28 (1970) 280. Hareyama, K., Kohn, K. : J. Phys. Sot. Jpn. 29 (1970) 791. Krijtenburg. G.S.: 2. European. Conf. Hard Magn. Mater., Milan, Italy, Sep. 23, 1970. Khimich, T.A., Belov, V.F., Shipko, M.N.: Fiz. Tverd. Tela 11 (1969) 2093; Sov. Phys.
Solid State (English Transl.) 11 (1970) 1690. Khimich, T.A., Belov, V.F., Shipko, M.N.: Zh. Eksp. Teor. Fiz. 57 (1969) 395; Sov. Phys.
JETP (English Transl.) 30 (1970) 217. Mondin, L.Ya.; Poroshk. Metall. 10 (1970) 83; Sov. Powder Metall. Met. Ceram. (English
Transl.) 1 (1970) 66. Mori, S.: J. Phys. Sot. Jpn. 28 (1970) 44. Maurer, Th., Richter, H.G.: DEW (Dtsch. Edelstahlwerke). Tech. Ber. 10 (1970) 252. Mulay, V.N., Sinha, A.P.B.: Indian J. Pure Appl. Phys. 8 (1970) 412. Petrova, 1.1.: Fiz. Tverd. Tela 12 (1970) 1447; Sov. Phys. Solid State (English Transl.) 12
(1970) 1135. Petrakovskii, G.A., Smokotin, E.M.: Izv. Akad. Nauk SSR, Ser. Fiz. 34 (1970) 1253; Bull.
Acad. Sci. USSR, Phys. Ser. (English Transl.) 34 (1970) 1112. Perekalina, I.M., Shchurova, A.D., Fonton, S.S.: Zh. Eksp. Teor. Fiz. 57 (1969) 749; Sov.
Phys. JETP (English Transl.) 30 (1970) 410. Perekalina, T.M., Shchurova, A.D., Fonton, S.S., Sannikov, D.G.: Zh. Eksp. Teor. Fiz.
58 (1970) 821; Sov. Phys. JETP (English Transl.) 31 (1970) 440. Petrova, I.I., Vinnik, M.A.: Fiz. Tverd. Tela 11 (1969) 2688; Sov. Phys. Solid State (English
Transl.) 11 (1970) 2177. Ratnam, D.V., Buessem, W.R.: IEEE Trans. Magn. 6 (1970) 610. Rosenberg, M., Tanasoiu, C., Florescu, V.I.: IEEE Trans. Magn. 6 (1970) 207.
40 Bonnenberg/Hempel/Roos
7101T
7100SI
Stablein, H.: Tech. Mitt. Krupp Forschungsber. 28 (1970) 103. Stablein, H.: IEEE Trans. Magn. 6 (1970) 172. Shchurova, A.D., Perekalina, T.M., Fonton, S.S.: Zh. Eksp. Teor. Fiz. 58 (1970) 1571; Sov.
Phys. JETP (English Transl.) 31 (1970) 840. Townes, W.D., Fang, J.H.: Z. Kristallogr. 131 (1970) 196. Tauber, A., Megill, J.S., Shappirio, J.R. : J. Appl. Phys. 41 (1970) 1353. Voigt, C.: IEEE Trans. Magn. 6 (1970) 177. Vinnik, M.A., Zvereva, RI.: Kristallografiya 14 (1969) 697; Sov. Phys. Crystallogr. (English
Transl.) 14 (1970) 590. Weiner, M., Dixon, S.: IEEE Trans. Magn. 6 (1970) 397. Wolski, W., Kowalewska, J.: Japan. J. Appl. Phys. 9 (1970) 711. Yamzin, I.I., Leciejewicz, J.: Kristallografiya 15 (1970) 280; Sov. Phys. Crystallogr. (English
Transl.) 15 (1970) 235. Albanese, G., Asti, G., Rinaldi, S.: Nuovo Cimento 6B (1971) 153. Arai, T., Ido, T.: Proc. Int. Conf. Ferrites, Kyoto 1970 (pub. 1971) 1225; Univ. Park Press,
Baltimore Md. Berggren, J.: Acta Chem. Stand. 25 (1971) 3616. Belov, K.P., Goryaga, A.N., Koroleva, L.I., Mitina, L.P.: Fiz. Tverd. Tela 12 (1970) 3038;
Sov. Phys. Solid State (English Transl.) 12 (1971) 2455. Bye, G.C., Howard, CR. : J. Appl. Chem. Biotechnol. 21 (1971) 319. Belov, K.P., Ivanovskii, V.I., Talalaeva, E.V., Chernikova, L.A.: Vestn. Mosk. Univ. Fiz.
Astronomiya 12 (1971) 615; Moscow Univ. Phys. Bull. (English Transl.) 26 (1971) 99. Dietrich, H.: Proc. Int. Conf. Ferrites, Kyoto 1970, (pub. 1971) 283; Univ. Park Press, Balti-
more, Md. Dixon, S., AuCoin, T.R., Savage, R.O.: J. Appl. Phys. 42 (1971) 1732. Gershov, LYu.: Poroshk. Metall. 5 (1971) 53; Sov. Powder Metall. Met. Ceram. (English
Transl.) 10 (1971) 388. Gorbaryuk, V.A., Samsonov, G.V.: Poroshk. Metall. 6 (1971) 51; Sov. Powder Metall. Met.
Ceram. (English Transl.) 10 (1971) 471. Harada, H. : Proc. Int. Conf. Ferrites, Kyoto 1970 (pub. 1971) 279; Univ. Park Press, Baltimore,
Md. Herrmann, D., Bachmann, M.: Mater. Res. Bull. 6 (1971) 725. Hempel, K.A., Kmitta, H.K.: J. Phys. (Paris) 32 (1971) C 1-159. Haneda, K., Kojima, H., Phys. Status Solidi (a) 6 (1971) 259. Hrynkiewicz, A.Z., Kulgawczuk, D.S., Mazanek, E.S., Fustowka, A.J., Sawicki, J.A., Wyderko,
M.E.: Phys. Status Solidi (b) 43 (1971) 401. Ichinose, N., Tanno, Y., Kurihara, K.: Proc. Int. Conf. Ferrites, Kyoto 1970 (pub. 1971)
165; Univ. Park Press, Baltimore, Md. Kohn, J.A., Eckart, D.W.: Mater. Res. Bull. 6 (1971) 743. Kunevich, V.K., Gromzin, D.E., Voronkov, V.D., Kozlyaeva, N.I., Zvereva, R.I. : Izv. Akad.
Nauk SSR, Ser. Fiz. 35 (1971) 1132; Bull. Acad. Sci. USSR, Phys. Ser. (English Transl.) 35 (1971) 1038.
Kojima, H., Haneda, K.: Proc. Int. Conf. Ferrites, Kyoto 1970 (pub. 1971) 380; Univ. Park Press, Baltimore, Md.
Koroleva, L.I., Mitina, L.P.: Phys. Status Solidi (a) 5 (1971) K 55. Kuntsevich, S.P., Mamaluy, Yu.A., Mil’ner, A.S.: Ukr. Fiz. Zh. (Kiev) 16 (1971) 67. Kiriyama, R., Tsai, T., Kiahama, K.: Proc. Int. Conf. Ferrites, Kyoto 1970 (pub. 1971)
171; Univ. Park Press, Baltimore, Md. Mamaluy, Yu.A., Murakhovkii, A.A.: Zh. Eksp. Teor. Fiz. 60 (1971) 1418; Sov. Phys. JETP
(English Transl.) 33 (1971) 768. Mitsuda, H., Mori, S., Okazaki, Ch.: Acta Cryst. B 27 (1971) 1263. MacChesney, J.B., Sherwood, R.C., Keve, E.T., O’Connor, P.B., Blitzer, L.D. : Proc. Int.
Conf. Ferrites, Kyoto 1970 (pub. 1971) 158 ; Univ. Park Press, Baltimore, Md. Okazaki, K., Igarashi, H., Takemoto, H.: Proc. Int. Conf. Ferrites, Kyoto 1970 (pub. 1971)
131; Univ. Park Press, Baltimore, Md. Okamoto, S., Okamoto, Sh., Sekizawa, H., Ito, T.: Proc. Int. Conf. Ferrites, Kyoto 1970
(pub. 1971) 168; Univ. Park Press Baltimore, Md.
Bonnenberg/Hempel/Roos 41
71P-1
IlP-2
tlPK
IlPSSF
IIPVZS
1lRRS
71s-1
71s-2
71SD-3
71SD-4
71SDK
72CD 72CPM 72EK 72FBBM
Petrova, 1.1.: Izv. Akad. Nauk SSSR, Neorg. Mater. 7 (1971) 1885; Bull. Acad. Sci. USSR, Inorg. Mater. (English Transl.) 7 (1971) 1685.
Petrova, 1.1.: Izv. Akad. Nauk SSSR, Neorg. Mater. 7 (1971) 1001; Bull. Acad. Sci USSR, Inorg. Mater. (English Transl.) 7 (1971) 885.
Petrov, M.P., Kunevich, A.V.: Izv. Akad. Nauk SSSR, Ser. Fiz. 35 (1971) 1090; Bull. Acad. Sci. USSR, Phys. Ser. (English Transl.) 35 (1971) 1001.
Perekalina, T.M., Shchurova, A.D., Sannikov, P.G., Fonton, S.S., Vinnik, M.A., Zvereva, R.I.: Izv. Akad. Nauk SSSR, Ser. Fiz. 35 (1971) 1099, Bull. Acad. Sci. USSR, Phys. Ser. (English Transl.) 35 (1971) 1003.
Perekalina, T.M., Vinnik, A.A., Zvereva, R.I., Shchurova, D.: Zh. Eksp. Teor. Fiz. 59 (1970) 1490; Sov. Phys. JETP (English Transl.) 32 (1971) 813.
Ruthner, M.J., Richter, H.G., Steiner, IL.: Proc. Int. Conf. Ferrites, Kyoto 1970 (pub. lW1) 75; Univ. Park Press, Baltimore, Md.
Sizov, R.A.: Fiz. Tverd. Tela 12 (1970) 2869; Sov. Phys. Solid State (English Transl.) 12 (1971) 2316.
Sizov, R.A.: Zh. Eksp. Teor. Fiz. 60 (1971) 1363; Sov. Phys. JETP 33 (English Transl.) (1971) 737.
Silber, L.M.: IEEE Trans. Magn. 7 (1971) 605. Szymczak, R.: J. Phys. (Paris) 32 (1971) C l-263. Streever, R.L., AuCoin, T.R., Caplan, P.J.: J. Phys. Chem. Solids 32 (1971) 519. Shirk, B.T., Buessem, W.R.: IEEE Trans. Magn. 7 (1971) 659. Shchelkotunov, V.A., Danilov, N.N.: Izv. Akad. Nauk SSSR Neorg. Mater. 7 (1971) 127; Bull.
Acad. Sci. USSR, Inorg. Mater. (English Transl.) 7 (1971) 115. Shchelkotunov, V.A., Danilov, V.N.: Izv. Akad. Nauk SSSR, Ser. Fiz. 35 (1971) 1158; Bull.
Acad. Sci. USSR, Phys. Ser. (English Transl.) 35 (1971) 1060. Shchelkotunov, V.A., Danilov, V.N.: Izv. Akad. Nauk SSSR, Neorg. Mater. 7 (1971) 2222;
Bull. Acad. Sci. USSR, Inorg. Mater. (English Transl.) 7 (1971) 1975. Shchelkotunov, V.A., Danilov, V.D., Kalacheva, V.S.: Izv. Akad. Nauk SSR, Neorg. Mater.
7 (1971) 495; Bull. Acad. Sci. USSR, Inorg. Mater. 7 (1971) 404. Semile