parameterized partial differential equations and the...

41
Parameterized Partial Differential Equations and the Proper Orthogonal Decomposition David Amsallem Stanford University February 04, 2014 David Amsallem Parameterized Partial Differential Equations and the Proper Orthogonal D

Upload: others

Post on 04-Mar-2020

56 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Parameterized Partial Differential Equations and the …matperso.mines-paristech.fr/Donnees/data12/1282-POD_doc...Parameterized Partial Differential Equations and the Proper Orthogonal

Parameterized Partial Differential Equations andthe Proper Orthogonal Decomposition

David Amsallem

Stanford University

February 04, 2014

David Amsallem Parameterized Partial Differential Equations and the Proper Orthogonal Decomposition

Page 2: Parameterized Partial Differential Equations and the …matperso.mines-paristech.fr/Donnees/data12/1282-POD_doc...Parameterized Partial Differential Equations and the Proper Orthogonal

Outline

• Parameterized PDEs• The steady case• Dimensionality reduction• Proper orthogonal decomposition• Projection-based model reduction• Snapshot selection• The unsteady case

David Amsallem Parameterized Partial Differential Equations and the Proper Orthogonal Decomposition

Page 3: Parameterized Partial Differential Equations and the …matperso.mines-paristech.fr/Donnees/data12/1282-POD_doc...Parameterized Partial Differential Equations and the Proper Orthogonal

Parameterized PDE

• Parametrized partial differential equation (PDE)

L(W,x, t;µ) = 0

• Associated boundary conditions

B(W,xBC, t;µ) = 0

• Initial conditionW0(x) =WIC(x,µ)

• W =W(x, t) ∈ Rq: state variable• x ∈ Ω ⊂ Rd, d ≤ 3: space variable• t ≥ 0: time variable• µ ∈ D ⊂ Rp: parameter vector

David Amsallem Parameterized Partial Differential Equations and the Proper Orthogonal Decomposition

Page 4: Parameterized Partial Differential Equations and the …matperso.mines-paristech.fr/Donnees/data12/1282-POD_doc...Parameterized Partial Differential Equations and the Proper Orthogonal

Model parameterized PDE

• Advection-diffusion-reaction equation: W =W(x, t;µ) solution of

∂W∂t

+ U · ∇W − κ∆W = fR(W, t,µR) for x ∈ Ω

with appropriate boundary and initial conditions

W(x, t;µ) =WD(x, t;µD) for x ∈ ΓD

∇W(x, t;µ) · n(x) = 0 for x ∈ ΓN

W(x, 0;µ) =W0(x;µIC) for x ∈ Ω

• Parameters of interest

µ = [U1, · · · ,Ud, κ,µR,µD,µIC]

David Amsallem Parameterized Partial Differential Equations and the Proper Orthogonal Decomposition

Page 5: Parameterized Partial Differential Equations and the …matperso.mines-paristech.fr/Donnees/data12/1282-POD_doc...Parameterized Partial Differential Equations and the Proper Orthogonal

Semi-discretized problem

• The PDE is then discretized in space by one of the following methods• Finite Differences approximation• Finite Element method• Finite Volumes method• Discontinuous Galerkin method• Spectral method....

• This leads to a system of Nw = q ×Nspace ordinary differential equations(ODEs)

dwdt

= f(w, t;µ)

in terms of the discretized state variable

w = w(t;µ) ∈ RNw

with initial condition w(0;µ) = w(µ)• This is the high-dimensional model (HDM)

David Amsallem Parameterized Partial Differential Equations and the Proper Orthogonal Decomposition

Page 6: Parameterized Partial Differential Equations and the …matperso.mines-paristech.fr/Donnees/data12/1282-POD_doc...Parameterized Partial Differential Equations and the Proper Orthogonal

Parameterized solutions

• Example: two dimensional advection-diffusion equation∂W∂t

+ U · ∇W − κ∆W = 0 for x ∈ Ω

with boundary and initial conditions

W(x, t;µ) =WD(x, t;µD) for x ∈ ΓD

∇W(x, t;µ) · n(x) = 0 for x ∈ ΓN

W(x, 0;µ) =W0(x) for x ∈ Ω

ΓD

ΓN

ΓN

ΓN

Ω U

David Amsallem Parameterized Partial Differential Equations and the Proper Orthogonal Decomposition

Page 7: Parameterized Partial Differential Equations and the …matperso.mines-paristech.fr/Donnees/data12/1282-POD_doc...Parameterized Partial Differential Equations and the Proper Orthogonal

Parameterized solutions

• Example: two dimensional advection-diffusion equation

∂W∂t

+ U · ∇W − κ∆W = 0 for x ∈ Ω

with boundary and initial conditions

W(x, t;µ) =WD(x, t;µD) for x ∈ ΓD

∇W(x, t;µ) · n(x) = 0 for x ∈ ΓN

W(x, 0;µ) =W0(x) for x ∈ Ω

• 4 parameters of interest

µ = [U1,U2, κ,µD] ∈ R4

• w ∈ RNw with Nw = 2, 701

David Amsallem Parameterized Partial Differential Equations and the Proper Orthogonal Decomposition

Page 8: Parameterized Partial Differential Equations and the …matperso.mines-paristech.fr/Donnees/data12/1282-POD_doc...Parameterized Partial Differential Equations and the Proper Orthogonal

Parameterized solutions

David Amsallem Parameterized Partial Differential Equations and the Proper Orthogonal Decomposition

Page 9: Parameterized Partial Differential Equations and the …matperso.mines-paristech.fr/Donnees/data12/1282-POD_doc...Parameterized Partial Differential Equations and the Proper Orthogonal

Steady parameterized PDE

• Steady parameterized HDM

f(w;µ) = 0

• Linear caseA(µ)w = b(µ)

• Example: steady advection-diffusion equation

David Amsallem Parameterized Partial Differential Equations and the Proper Orthogonal Decomposition

Page 10: Parameterized Partial Differential Equations and the …matperso.mines-paristech.fr/Donnees/data12/1282-POD_doc...Parameterized Partial Differential Equations and the Proper Orthogonal

Dimensionality reduction

• Consider the manifold of solutions

M = w(µ) s.t. µ ∈ D ⊂ RNw

• Often dim(M) Nw

• Therefore,M could be described in terms of a much smaller set ofvariables, rather than e1, · · · , eNw

• Hence dimensionality reduction

David Amsallem Parameterized Partial Differential Equations and the Proper Orthogonal Decomposition

Page 11: Parameterized Partial Differential Equations and the …matperso.mines-paristech.fr/Donnees/data12/1282-POD_doc...Parameterized Partial Differential Equations and the Proper Orthogonal

Dimensionality reduction

• First idea: use solutions of the equation to describeM• Consider pre-computed solution w(µ1), · · · ,w(µm) whereµ1, · · · ,µm ⊂ D

• Let µ ∈ D. Then approximate w(µ) as

w(µ) ≈ α1(µ)w(µ1) + · · ·+ αm(µ)w(µm)

where α1(µ), · · · , αm(µ) are coefficients to be determined

David Amsallem Parameterized Partial Differential Equations and the Proper Orthogonal Decomposition

Page 12: Parameterized Partial Differential Equations and the …matperso.mines-paristech.fr/Donnees/data12/1282-POD_doc...Parameterized Partial Differential Equations and the Proper Orthogonal

Reduced-order basis

• There may be redundancies in the solutions w(µ1), · · · ,w(µm).• Better approach: remove the redundancies by considering an equivalent

independent set v1, · · · ,vk with k ≤ m such that

span v1, · · · ,vk = span w(µ1), · · · ,w(µm)

• V = [v1, · · · ,vk] ∈ RNw×k is a reduced-order basis with k Nw

David Amsallem Parameterized Partial Differential Equations and the Proper Orthogonal Decomposition

Page 13: Parameterized Partial Differential Equations and the …matperso.mines-paristech.fr/Donnees/data12/1282-POD_doc...Parameterized Partial Differential Equations and the Proper Orthogonal

Basis construction

• Lagrange basis

span v1, · · · ,vk = span w(µ1), · · · ,w(µm)

• Hermite basis

span (v1, · · · ,vk) = span

w(µ1),∂w∂µ1

(µ1), · · · , ∂w∂µp

(µ1),w(µ2), · · ·

David Amsallem Parameterized Partial Differential Equations and the Proper Orthogonal Decomposition

Page 14: Parameterized Partial Differential Equations and the …matperso.mines-paristech.fr/Donnees/data12/1282-POD_doc...Parameterized Partial Differential Equations and the Proper Orthogonal

Data compression

• It is possible to remove more information from the snapshotsw(µ1), · · · ,w(µm)

• Consider the snapshot matrix W = [w(µ1), · · · ,w(µm)]• Can we quantify the main information contained in W and discard the

rest (noise)?• This amount to data compression• Here orthogonal projection will be used to compress the data

David Amsallem Parameterized Partial Differential Equations and the Proper Orthogonal Decomposition

Page 15: Parameterized Partial Differential Equations and the …matperso.mines-paristech.fr/Donnees/data12/1282-POD_doc...Parameterized Partial Differential Equations and the Proper Orthogonal

Orthogonal projection

• Let V ∈ RNw×k be an orthogonal matrix (VTV = Ik) which columnsspan S, a subspace of dimension k

• Let x ∈ RNw . The orthogonal projection of x onto the subspace S is

VVTx

• Projection matrixΠV,V = V(VT V)−1VT = VVT

• special case 1: if x belongs to S

ΠV,Vx = VVT x = x

• special case 2: if x is orthogonal to S

ΠV,Vx = VVT x = 0

David Amsallem Parameterized Partial Differential Equations and the Proper Orthogonal Decomposition

Page 16: Parameterized Partial Differential Equations and the …matperso.mines-paristech.fr/Donnees/data12/1282-POD_doc...Parameterized Partial Differential Equations and the Proper Orthogonal

David Amsallem Parameterized Partial Differential Equations and the Proper Orthogonal Decomposition

Page 17: Parameterized Partial Differential Equations and the …matperso.mines-paristech.fr/Donnees/data12/1282-POD_doc...Parameterized Partial Differential Equations and the Proper Orthogonal

Proper Orthogonal Decomposition

• POD seeks the subspace S of a given dimension k minimizing theprojection error of the snapshots w(µ1), · · · ,w(µm)

• Mathematical formulation S = range(V) where

V = argminY

m∑i=1

‖w(µi)−ΠY,Yw(µi)‖22

s.t. YTY = Ik

David Amsallem Parameterized Partial Differential Equations and the Proper Orthogonal Decomposition

Page 18: Parameterized Partial Differential Equations and the …matperso.mines-paristech.fr/Donnees/data12/1282-POD_doc...Parameterized Partial Differential Equations and the Proper Orthogonal

POD by eigenvalue decomposition

• Minimization problem

V = argminYT Y=Ik

m∑i=1

‖w(µi)−ΠY,Yw(µi)‖22

• Equivalent maximization problem

V = argmaxYT Y=Ik

m∑i=1

∥∥YYTw(µi)∥∥2

2

= argmaxYT Y=Ik

∥∥YTW∥∥2

F

= argmaxYT Y=Ik

trace(YTWWTY

)• Solution: V is the matrix of eigenvectors φ1, · · · ,φk associated with

the k largest eigenvalues of K = WWT

David Amsallem Parameterized Partial Differential Equations and the Proper Orthogonal Decomposition

Page 19: Parameterized Partial Differential Equations and the …matperso.mines-paristech.fr/Donnees/data12/1282-POD_doc...Parameterized Partial Differential Equations and the Proper Orthogonal

The method of snapshots

• POD: V is the matrix of eigenvectors φ1, · · · ,φk associated with the klargest eigenvalues of K = WWT

• K ∈ RNw×Nw is a large, dense matrix• Its rank is at most m Nw

• In 1987, Sirovich developed the method of snapshots by noticing thatR = WTW ∈ Rm×m has the same non-zero eigenvalues λiri=1 as K

• r = rank(R) ≤ m ≤ Nw and

Rψi = λψi, i = 1, · · · , r

• Exercise: relationship between φ1, · · · ,φr and ψ1, · · · ,ψr?

David Amsallem Parameterized Partial Differential Equations and the Proper Orthogonal Decomposition

Page 20: Parameterized Partial Differential Equations and the …matperso.mines-paristech.fr/Donnees/data12/1282-POD_doc...Parameterized Partial Differential Equations and the Proper Orthogonal

The method of snapshots

• Step 1: compute the eigenpairs λi,ψiri=1 associated with R

Rψi = λψi, i = 1, · · · , r

• Step 2: compute φi = 1√λi

Wψi, i = 1, · · · , r

• In matrix form Φ = WΨΛ−12

• POD reduced basis of dimension k ≤ r:

V = [φ1, · · · ,φk]

David Amsallem Parameterized Partial Differential Equations and the Proper Orthogonal Decomposition

Page 21: Parameterized Partial Differential Equations and the …matperso.mines-paristech.fr/Donnees/data12/1282-POD_doc...Parameterized Partial Differential Equations and the Proper Orthogonal

POD by singular value decomposition

• The POD basis V can also be computed by singular value decomposition(SVD)

• SVD of W:W = UrΣrZTr

• Ur = [u1, · · · ,ur] ∈ RNw×r: left singular vectors (UTr Ur = Ir)

• Σr = diag(σ1, · · · , σr) ∈ Rr×r: singular values• Zr = [z1, · · · , zr] ∈ Rm×r: right singular vectors (ZT

r Zr = Ir)

• POD reduced basis of dimension k ≤ r

V = [u1, · · · ,uk]

David Amsallem Parameterized Partial Differential Equations and the Proper Orthogonal Decomposition

Page 22: Parameterized Partial Differential Equations and the …matperso.mines-paristech.fr/Donnees/data12/1282-POD_doc...Parameterized Partial Differential Equations and the Proper Orthogonal

POD basis size selection

• The POD basis V can also be computed by singular value decomposition(SVD)

• SVD of W:W = UrΣrZTr

• POD reduced basis of dimension k ≤ r

Vk = [u1, · · · ,uk]

• Relative projection error

e(k) =‖W −VkVT

k W‖F‖W‖F

=

√∑ri=k+1 σ

2i∑r

i=1 σ2i

• Typically k is chosen so that e(k) < 0.1

David Amsallem Parameterized Partial Differential Equations and the Proper Orthogonal Decomposition

Page 23: Parameterized Partial Differential Equations and the …matperso.mines-paristech.fr/Donnees/data12/1282-POD_doc...Parameterized Partial Differential Equations and the Proper Orthogonal

Projection-based model reduction

• High-dimensional model (HDM)

A(µ)w = b(µ)

• Reduced-order modeling assumption using a reduced basis V

w(µ) ≈ Vq(µ)

• q(µ): reduced (generalized) coordinates

• Inserting in the HDM equation

AVq ≈ b

• Nw equations in terms of k unknowns q• Associated residual

r(q) = A(µ)Vq− b(µ)

David Amsallem Parameterized Partial Differential Equations and the Proper Orthogonal Decomposition

Page 24: Parameterized Partial Differential Equations and the …matperso.mines-paristech.fr/Donnees/data12/1282-POD_doc...Parameterized Partial Differential Equations and the Proper Orthogonal

Galerkin projection

• Residual equationr(q) = A(µ)Vq− b(µ)

• Nw equations with k unknowns• Galerkin projection enforces the orthogonality of r(q) to range(V):

VT r(q) = 0

• Reduced equations:VTA(µ)Vq = VTb(µ)

• k equations in terms of k unknowns

Ak(µ)q = bk(µ)

David Amsallem Parameterized Partial Differential Equations and the Proper Orthogonal Decomposition

Page 25: Parameterized Partial Differential Equations and the …matperso.mines-paristech.fr/Donnees/data12/1282-POD_doc...Parameterized Partial Differential Equations and the Proper Orthogonal

Application to the steady advection diffusion equation

• m = 5 snapshots µi5i=1

David Amsallem Parameterized Partial Differential Equations and the Proper Orthogonal Decomposition

Page 26: Parameterized Partial Differential Equations and the …matperso.mines-paristech.fr/Donnees/data12/1282-POD_doc...Parameterized Partial Differential Equations and the Proper Orthogonal

Application to the steady advection diffusion equation

• m = 5 snapshots µi5i=1 ⇒ POD basis of dimension k = 5

David Amsallem Parameterized Partial Differential Equations and the Proper Orthogonal Decomposition

Page 27: Parameterized Partial Differential Equations and the …matperso.mines-paristech.fr/Donnees/data12/1282-POD_doc...Parameterized Partial Differential Equations and the Proper Orthogonal

Application to the steady advection diffusion equation

• Projection error

1 2 3 4 50

0.1

0.2

0.3

0.4

0.5

k

e(k

)

David Amsallem Parameterized Partial Differential Equations and the Proper Orthogonal Decomposition

Page 28: Parameterized Partial Differential Equations and the …matperso.mines-paristech.fr/Donnees/data12/1282-POD_doc...Parameterized Partial Differential Equations and the Proper Orthogonal

Application to the steady advection diffusion equation

• µ5 = (U1,U2, κ,µD) = (1, 10, 3× 10−4, 850)

David Amsallem Parameterized Partial Differential Equations and the Proper Orthogonal Decomposition

Page 29: Parameterized Partial Differential Equations and the …matperso.mines-paristech.fr/Donnees/data12/1282-POD_doc...Parameterized Partial Differential Equations and the Proper Orthogonal

Exercise: Petrov-Galerkin projection

• Other approach to get a unique solution to

A(µ)Vq ≈ b(µ)

• Least-squares approach

q = argminy‖A(µ)Vy − b(µ)‖2

• Exercise: give the equivalent set of equations satisfied by y• Solution:

VTA(µ)TA(µ)Vq = VTA(µ)Tb(µ)

David Amsallem Parameterized Partial Differential Equations and the Proper Orthogonal Decomposition

Page 30: Parameterized Partial Differential Equations and the …matperso.mines-paristech.fr/Donnees/data12/1282-POD_doc...Parameterized Partial Differential Equations and the Proper Orthogonal

Offline/online decomposition for parametric systems

• Offline phase: computation of V from snapshots w(µ1), · · · ,w(µm)• Online phase: construction and solution of VTA(µ)Vq = VTb(µ)• Issue: constructing Ak(µ) = VTA(µ)V and bk(µ) = VTb(µ) is

expensive• Exception in the case of affine parameter dependence: qA Nw andqb Nw

A(µ) =qA∑i=1

f(i)A (µ)A(i), b(µ) =

qb∑i=1

f(i)b (µ)b(i)

• Then

Ak(µ) =qA∑i=1

f(i)A (µ)VTA(i)V, b(µ) =

qb∑i=1

f(i)b (µ)VTb(i)

• The following small dimensional matrices can be computed offline

A(i)k = VTA(i)V ∈ Rk×k, i = 1, · · · , qA

b(i)k = VTb(i) ∈ Rk, i = 1, · · · , qb

David Amsallem Parameterized Partial Differential Equations and the Proper Orthogonal Decomposition

Page 31: Parameterized Partial Differential Equations and the …matperso.mines-paristech.fr/Donnees/data12/1282-POD_doc...Parameterized Partial Differential Equations and the Proper Orthogonal

Snapshot selection

• For a given number of snapshots m, what are the best snapshotparameter locations

µ1, · · · ,µm ∈ D?

• The snapshots w(µ1), · · · ,w(µm) should be optimally placed so thatthey capture the physics over the parameter space D

• Difficult problem⇒ use a heuristic approach (Greedy algorithm)

David Amsallem Parameterized Partial Differential Equations and the Proper Orthogonal Decomposition

Page 32: Parameterized Partial Differential Equations and the …matperso.mines-paristech.fr/Donnees/data12/1282-POD_doc...Parameterized Partial Differential Equations and the Proper Orthogonal

Greedy approach

• Start by randomly selecting a parameter value µ1 and compute w(µ1)• For i = 1, · · ·m, find the parameter µi which presents the highest error

between the ROM solution Vq(µ) and the HDM solution w(µ)• This however requires knowing the HDM solution (unknown)• Instead, for i = 1, · · ·m, find the parameter µi for which the residual

r(q(µ)) = AVq(µ)− b(µ) is the highest

µi = argminµ∈D

‖A(µ)Vq(µ)− b(µ)‖2

where VTA(µ)Vq(µ) = VTb(µ)• The parameter domain µ ∈ D can be in practice replaced by a search

over a finite setµ ∈ µ(1), · · · ,µ(N) ⊂ D

David Amsallem Parameterized Partial Differential Equations and the Proper Orthogonal Decomposition

Page 33: Parameterized Partial Differential Equations and the …matperso.mines-paristech.fr/Donnees/data12/1282-POD_doc...Parameterized Partial Differential Equations and the Proper Orthogonal

Application to the steady advection diffusion equation

• Parameter domain (U1,U2) ∈ [0, 10]× [0, 10]

0 2 4 6 8 100

2

4

6

8

10

U1

U2 initial

1

2

3

4

5

6

7

8

David Amsallem Parameterized Partial Differential Equations and the Proper Orthogonal Decomposition

Page 34: Parameterized Partial Differential Equations and the …matperso.mines-paristech.fr/Donnees/data12/1282-POD_doc...Parameterized Partial Differential Equations and the Proper Orthogonal

Application to the steady advection diffusion equation

David Amsallem Parameterized Partial Differential Equations and the Proper Orthogonal Decomposition

Page 35: Parameterized Partial Differential Equations and the …matperso.mines-paristech.fr/Donnees/data12/1282-POD_doc...Parameterized Partial Differential Equations and the Proper Orthogonal

Application to the steady advection diffusion equation

1 2 3 4 5 6 7 80.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iteration

Norm

alizedquantity

Maximum ResidualMaximum Error

David Amsallem Parameterized Partial Differential Equations and the Proper Orthogonal Decomposition

Page 36: Parameterized Partial Differential Equations and the …matperso.mines-paristech.fr/Donnees/data12/1282-POD_doc...Parameterized Partial Differential Equations and the Proper Orthogonal

Application to the steady advection diffusion equation

5 10 15 20

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iteration

Norm

alizedquantity

Maximum ResidualMaximum Error

David Amsallem Parameterized Partial Differential Equations and the Proper Orthogonal Decomposition

Page 37: Parameterized Partial Differential Equations and the …matperso.mines-paristech.fr/Donnees/data12/1282-POD_doc...Parameterized Partial Differential Equations and the Proper Orthogonal

POD in time

• Consider an unsteady linear parametric problem

dwdt

(t) = A(µ)w(t)− b(µ)u(t)

where u(t) is given for a time interval t ∈ [t0, tNt]

• For a given parameter µ, POD can also provide an optimal reduced basisassociated with the minimization problem

minVT V=Ik

∫ tNt

t0

∥∥w(t,µ)−VVTw(t,µ)∥∥2

2dt

• Solution by the method of snapshots: consider the solutions in timew(t0,µ), · · · ,w(tNt ,µ). An approximation of the minimization problem is

minVT V=Ik

Nt∑i=0

δi∥∥w(ti,µ)−VVTw(ti,µ)

∥∥2

2

where δ0, · · · , δNt are appropriate quadrature weights

David Amsallem Parameterized Partial Differential Equations and the Proper Orthogonal Decomposition

Page 38: Parameterized Partial Differential Equations and the …matperso.mines-paristech.fr/Donnees/data12/1282-POD_doc...Parameterized Partial Differential Equations and the Proper Orthogonal

POD in time (continued)

• Equivalent maximization problem

maxVT V=Ik

Nt∑i=0

δi∥∥VTw(ti,µ)

∥∥2

2

• Solution by POD by the method of snapshots with the associatedsnapshot matrix

W = [√δ0w(t0,µ), · · · ,

√δNt

w(tNt,µ)]

David Amsallem Parameterized Partial Differential Equations and the Proper Orthogonal Decomposition

Page 39: Parameterized Partial Differential Equations and the …matperso.mines-paristech.fr/Donnees/data12/1282-POD_doc...Parameterized Partial Differential Equations and the Proper Orthogonal

POD: Application to linearized aeroelasticity

• M∞ = 0.99• Nw = 2, 188, 394, m = 99 snapshots, k = 60 retained POD vectors

-2000!

-1000!0!

1000!

2000!3000!

4000!

5000!6000!

0.00! 0.10! 0.20! 0.30! 0.40! 0.50!Time (s)!

Lift

(lb)!

HDM (2,188,394)!

ROM (69)!

David Amsallem Parameterized Partial Differential Equations and the Proper Orthogonal Decomposition

Page 40: Parameterized Partial Differential Equations and the …matperso.mines-paristech.fr/Donnees/data12/1282-POD_doc...Parameterized Partial Differential Equations and the Proper Orthogonal

Global vs. local strategies

• Global strategy• build a ROB V that captures the behavior of unsteady systems for all µ ∈ D• POD based on snapshots

w(t0,µ1), · · · ,w(tNt ,µ1),w(t0,µ2), · · · ,w(tNt ,µm)

• not optimal for a given µi

• Local strategy• build a separate ROB V(µ) for every value of µ ∈ D• database approach: build offline a set of ROBs V(µi)mi=1 and use them

online to build V(µ) for µ ∈ D• each ROB V(µi) is optimal at µ = µi

• requires an adaptation approach online (see Lecture 3)

David Amsallem Parameterized Partial Differential Equations and the Proper Orthogonal Decomposition

Page 41: Parameterized Partial Differential Equations and the …matperso.mines-paristech.fr/Donnees/data12/1282-POD_doc...Parameterized Partial Differential Equations and the Proper Orthogonal

References

• Lecture notes on projection-based model reduction:http://www.stanford.edu/∼amsallem/CA-CME345-Ch3.pdf

• Lecture notes on POD:http://www.stanford.edu/∼amsallem/CA-CME345-Ch4.pdf

• Holmes, P., Lumley, J., and Berkooz, G., Turbulence, CoherentStructures, Dynamical Systems and Symmetry, Cambridge Univ. Press,Cambridge, England, U.K., 1996.

• Sirovich, L.: Turbulence and the dynamics of coherent structures. Part I:coherent structures. Quarterly of applied mathematics 45(3), 561-571(1987).

• Patera A. and Rozza G., Reduced Basis Approximation and a PosterioriError Estimation for Parametrized Partial Differential Equations, Version1.0, Copyright MIT 2006, to appear in (tentative rubric) MIT PappalardoGraduate Monographs in Mechanical Engineering.

• Haasdonk, B., Ohlberger, M.: Efficient reduced models and a-posteriorierror estimation for parametrized dynamical systems by offline/onlinedecomposition. Stuttgart Research Centre for Simulation Technology(SRC SimTech) Preprint Series 23 (2009)

David Amsallem Parameterized Partial Differential Equations and the Proper Orthogonal Decomposition