palynostratigraphy and palaeoenvironments of the rævekløft ... · the neill klinter group is...

56
723 The aim of this study was to obtain a better under- standing of the palynomorph flora, the age and the depositional environment of the Neill Klinter Group in Jameson Land, East Greenland (Fig. 1). Although the sedimentology, fossil faunas, ichnofaunas, lithostrati- graphy and sequence stratigraphy of this succession have been studied in detail (Rosenkrantz 1934; Sykes 1974; Dam 1990a, b, 1991; Dam & Surlyk 1995, 1998), there are few published papers on the palynology of the Neill Klinter Group. The group has recently been divided into four formations and nine members (Fig. 2) and a detailed sequence stratigraphic correlation between East Greenland and Norway has been established (Dam & Surlyk 1995, 1998). Lithostratigraphic units of the group that are precisely dated by macrofossils are re- stricted to the Rævekløft Formation and the Lepidopteriselv, Palynostratigraphy and palaeoenvironments of the Rævekløft, Gule Horn and Ostreaelv Formations (Lower–Middle Jurassic), Neill Klinter Group, Jameson Land, East Greenland Eva B. Koppelhus and Gregers Dam The Neill Klinter Group of Jameson Land, East Greenland contains rich and diverse palynomorph assemblages. Spores, pollen and freshwater algae dominate most of the samples, but dinofla- gellate cysts and acritarchs also form important components. The ages suggested by the paly- nomorphs from the Rævekløft, Gule Horn and Ostreaelv Formations span the period from the Early Pliensbachian to the early Aalenian. The number of palynomorphs identified totals 136, including 83 miospore and 53 microplankton species; they are grouped into seven palynologi- cal assemblage zones. In general, there is good agreement between the palynological and sedimentological data, and the palynological data has refined the understanding of the depositional palaeoenvironments of the Neill Klinter Group. In some cases, the boundaries of the palynological assemblage zones are congruent with major sequence stratigraphic surfaces and the palynological data thus sup- port the sequence stratigraphic interpretation. In other cases, however, regional correlation indi- cates that the zone boundaries cross important sequence stratigraphic surfaces, such as sequence boundaries; such behaviour is thought to reflect the facies-dependent nature of certain of the palynological assemblage zones. The pattern of palynological events in East Greenland has also been recognised on the mid-Norwegian shelf. Keywords: East Greenland, Jameson Land Basin, Lower–Middle Jurassic, Early Pliensbachian – early Aalenian, palynostratigraphy, sedimentology, sequence stratigraphic implications, regional correlation E.B.K.* & G.D. , Geological Survey of Denmark and Greenland, Geocenter Copenhagen, Øster Voldgade 10, DK- 1350 Copenhagen K, Denmark. Present addresses: *Royal Tyrrell Museum of Palaeontology, Box 7500, Drumheller T0J 0Y0, Alberta, Canada. E- mail: [email protected] DONG A/S, Agern Allé 24–26, DK-2970 Hørsholm, Denmark. Geological Survey of Denmark and Greenland Bulletin 1, 723–775 (2003) © GEUS, 2003

Upload: others

Post on 07-Nov-2019

2 views

Category:

Documents


0 download

TRANSCRIPT

723

The aim of this study was to obtain a better under-standing of the palynomorph flora, the age and thedepositional environment of the Neill Klinter Group inJameson Land, East Greenland (Fig. 1). Although thesedimentology, fossil faunas, ichnofaunas, lithostrati-graphy and sequence stratigraphy of this successionhave been studied in detail (Rosenkrantz 1934; Sykes1974; Dam 1990a, b, 1991; Dam & Surlyk 1995, 1998),

there are few published papers on the palynology of theNeill Klinter Group. The group has recently been dividedinto four formations and nine members (Fig. 2) and adetailed sequence stratigraphic correlation betweenEast Greenland and Norway has been established (Dam& Surlyk 1995, 1998). Lithostratigraphic units of thegroup that are precisely dated by macrofossils are re-stricted to the Rævekløft Formation and the Lepidopteriselv,

Palynostratigraphy and palaeoenvironments of theRævekløft, Gule Horn and Ostreaelv Formations(Lower–Middle Jurassic), Neill Klinter Group, JamesonLand, East Greenland

Eva B. Koppelhus and Gregers Dam

The Neill Klinter Group of Jameson Land, East Greenland contains rich and diverse palynomorphassemblages. Spores, pollen and freshwater algae dominate most of the samples, but dinofla-gellate cysts and acritarchs also form important components. The ages suggested by the paly-nomorphs from the Rævekløft, Gule Horn and Ostreaelv Formations span the period from theEarly Pliensbachian to the early Aalenian. The number of palynomorphs identified totals 136,including 83 miospore and 53 microplankton species; they are grouped into seven palynologi-cal assemblage zones.

In general, there is good agreement between the palynological and sedimentological data, andthe palynological data has refined the understanding of the depositional palaeoenvironments ofthe Neill Klinter Group. In some cases, the boundaries of the palynological assemblage zonesare congruent with major sequence stratigraphic surfaces and the palynological data thus sup-port the sequence stratigraphic interpretation. In other cases, however, regional correlation indi-cates that the zone boundaries cross important sequence stratigraphic surfaces, such as sequenceboundaries; such behaviour is thought to reflect the facies-dependent nature of certain of thepalynological assemblage zones. The pattern of palynological events in East Greenland has alsobeen recognised on the mid-Norwegian shelf.

Keywords: East Greenland, Jameson Land Basin, Lower–Middle Jurassic, Early Pliensbachian – early Aalenian,

palynostratigraphy, sedimentology, sequence stratigraphic implications, regional correlation

E.B.K.* & G.D.‡, Geological Survey of Denmark and Greenland, Geocenter Copenhagen, Øster Voldgade 10, DK-

1350 Copenhagen K, Denmark.

Present addresses: *Royal Tyrrell Museum of Palaeontology, Box 7500, Drumheller T0J 0Y0, Alberta, Canada. E-

mail: [email protected]

‡DONG A/S, Agern Allé 24–26, DK-2970 Hørsholm, Denmark.

Geological Survey of Denmark and Greenland Bulletin 1, 723–775 (2003) © GEUS, 2003

724

Nathorst Fjeld and Skævdal Members of the OstreaelvFormation. The Neill Klinter Group was sampled inten-sively for palynological analysis at a number of differentlocalities in Jameson Land (Fig. 1). This paper onlyincludes data from the lowermost three formations of theNeill Klinter Group (Rævekløft, Gule Horn and Ostrea-elv Formations). The uppermost formation, the SortehatFormation, is treated in an accompanying paper (Koppel-hus & Hansen 2003, this volume). Seven palynomorphassemblage zones have been established from the mostcomplete section, at Albuen (Figs 3, 4). Data from otherlocalities have been correlated with this section.

Geological settingThe Upper Palaeozoic – Mesozoic Jameson Land Basinis located in the present-day land areas of JamesonLand and Scoresby Land, at the southern end of the EastGreenland rift system (Fig. 1; Surlyk 1978). This systemis part of a larger rift complex separating Greenland fromNorway before the opening of the North Atlantic Ocean(Ziegler 1988). The Jameson Land Basin is bounded tothe east and west by major N–S-trending faults, and tothe north by a NW–SE cross-fault in Kong Oscar Fjord(Surlyk 1977a, 1978, 1990a). The southern boundary is

25 km

Illoqqortoormiut

24°W

72°N

71°N

N

Neill Klinter GroupStudied localities

Normal fault

?

?

Scoresby Sund

?

JamesonLand

ScoresbyLand

KongOscar Fjord

Liaselv

Rhætelv

Lepidopteriselv

Ranunkeldal

EnhjørningenDal

Horsedal

MoskusoksekløftAstartekløft

GoniomyakløftAlbuen

Rævekløft

Harris Fjeld

Nathorst Fjeld

ElisBjerg

DusénBjerg

Sortehat

Primulaelv

QupaulakajikSkævdal

Vardekløft

Tancrediakløft

?

22°W

LiverpoolLand

Greenland

Fig. 1. Map of the Jameson Landregion showing the outcrop of theNeill Klinter Group, the location ofsections forming the basis of thisstudy and additional localitiesmentioned in the text.

725

unknown, but the basin probably extended south ofScoresby Sund, an area that is now covered byPalaeogene plateau basalts. The basin was initiated inthe Devonian due to extensional collapse of theover-thickened crust of the Caledonian mountain belt.The Devonian phase was probably associated withstrike-slip or oblique-slip deformation resulting in thedevelopment of NW–SE-trending transverse faults inthe north-eastern part of the basin. During LateCarboniferous – Early Permian times, the oblique-slipregime changed to a more orthogonal extensionalregime, resulting in the development of basin marginhalf-grabens (Surlyk et al. 1984, 1986; Surlyk 1990a;Larsen & Marcussen 1992). The period of extensionaltectonics was followed by a long period of subsidencelasting from the Late Permian to the Cretaceous, inter-rupted by minor episodes of rifting and faulting (Surlyk1977a, b, 1990a; Clemmensen 1980a; Surlyk et al. 1981,1986; Larsen & Marcussen 1992).

Triassic – Early Jurassic sedimentation in the JamesonLand Basin was, in addition to tectonic subsidence, also

influenced by climate, drainage patterns and eustasy.During the Triassic – earliest Jurassic, a major lacustrinecomplex was situated in the Jameson Land Basin. Thelacustrine deposits record a long-term change from awarm arid to a more temperate humid climate (Clem-mensen 1978a, b, 1979, 1980a, b; Bromley & Asgaard1979; Dam & Surlyk 1992, 1993). This long-term climaticchange was mainly governed by a gradual northwardsdrift of the Laurasian continent and was accompaniedby a long-term eustatic sea-level rise during the EarlyJurassic. In the Pliensbachian, the lacustrine complexwas transformed into a shallow marine embaymentmarking the first fully-marine inundation of the basinsince Late Permian – Early Triassic times (Surlyk 1990b).

The sandstones and mudstones of the Neill KlinterGroup were deposited in a wide, shallow tide- andstorm-influenced marine embayment, during a periodof relative tectonic quiescence. The facies pattern wascontrolled mainly by relative sea-level fluctuations, sed-iment influx and basinal currents (Sykes 1974; Dam &Surlyk 1995, 1998).

Sortehat

Ostreaelv

Gule Horn

Elis Bjerg

Skævdal

HarrisFjeld

NathorstFjeld

Lepidopteriselv

Trefjord Bjerg

MemberFormation

Albuen

Astartekløft Horsedal

Rævekløft

Rhaetian

Hettangian

Sinemurian

Pliensbachian

Toarcian

Low

erM

iddl

e

Jura

ssic

Tria

s.

Upp

er

Aalenian

Bajocian

Bathonian

Callovian

Oxfordian

Kimmeridgian

Volgian

GroupChronostratigraphy Formation

Sortehat

Ostreaelv

Gule Horn

Rævekløft

Kap Stewart

Jam

eson

Lan

d

Super-group

Scoresby Sund

HallBredning

Vardekløft

Neill Klinter

Raukelv

Hareelv

Olympen

Fossil-bjerget

Pelion

Rhæ

telvPrimulaelv

Innakajik

Fig. 2. Jurassic lithostratigraphy of Jameson Landshowing the detailed subdivision of the Neill KlinterGroup formalised by Dam & Surlyk (1998). Modifiedfrom Surlyk (2003, this volume, fig. 5).

Stratigraphy The Pliensbachian – lower Aalenian succession nowreferred to the Neill Klinter Group was initially describedby Rosenkrantz (1929), but was first formally estab-lished as a formation by Surlyk et al. (1973). The NeillKlinter Formation (sensu Surlyk et al. 1973) has subse-quently been raised to group status (Dam & Surlyk1998) and the Rævekløft, Gule Horn and OstreaelvMembers of Surlyk et al. (1973) have been elevated toformation status. Moreover, the former Sortehat Memberof the Vardekløft Formation (Surlyk et al. 1973) hasbeen promoted to formation and transferred to the NeillKlinter Group (Dam & Surlyk 1998). These authorsdivided the Gule Horn Formation into two new mem-bers and the Ostreaelv Formation into seven new mem-bers (Fig. 2).

The Neill Klinter Group is exposed in Jameson Landand Scoresby Land, and in a small fault-bounded out-lier in the southern part of Liverpool Land (Fig. 1); it is300–450 m thick. The boundary between the Kap StewartGroup and the succeeding Neill Klinter Group is an ero-sional unconformity along the south-eastern basin mar-gin, representing a major hiatus corresponding to theSinemurian Stage (Harris 1931; Surlyk 1991; Dam &Surlyk 1995, 1998). The unconformity passes basin-wards into a conformity and the contact between thelacustrine mudstones of the Kap Stewart Group andthe shallow marine sandstones of the Neill Klinter Groupis gradational (Fig. 5; Surlyk 1991; Dam & Surlyk 1995,1998). The upper boundary of the Neill Klinter Groupis placed at a sharp unconformity between the mud-stones of the Sortehat Formation and the sandstones ofthe Vardekløft Group (Surlyk et al. 1973; Surlyk 1990a;Engkilde 1994; Koppelhus & Hansen 2003, this vol-ume). The Neill Klinter Group and most of its con-stituent formations and members show an overall sheetgeometry, although the thicknesses of the units aregreatest in the basin centre and thin towards the mar-gins (Dam & Surlyk 1995, 1998).

A rich marine fauna is present in the lower part ofthe Neill Klinter Group (Rosenkrantz 1934). It occursin the Rævekløft Formation and is restricted to certainlevels separated by largely unfossiliferous intervals.Rosenkrantz (1934) identified a lower division, with adiverse fauna (150 species) dominated by bivalves, gas-tropods, cephalopods, echinoids and crinoids, and anupper division yielding a relatively sparse fauna (c. 20molluscan species). Ammonites of the genus Uptoniaoccur in the lower division, suggesting that these bedsbelong to the Early Pliensbachian Jamesoni Zone

(Rosenkrantz 1934). In the upper division, Rosenkrantz(1934) found two ammonites, Beaniceras sp. andLytoceras fimbriatum. Rosenkrantz (1934) referred thisdivision to the Ibex Zone, although the bed also yieldedan ammonite that appears to be Aegoceras aff. capri-cornus of the maculatum group, indicative of theDavoei Zone (Callomon 1961; Surlyk et al. 1973). Allthe belemnites recovered from the Rævekløft Formationby Rosenkrantz were apparently collected from theJamesoni Zone interval. They indicate that the JamesoniZone as adopted by Rosenkrantz (1934) includes theEarly Pliensbachian Jamesoni Zone to at least the IbexZone and possibly the early Davoie Zone (Doyle 1991).

The marine macrofossils of the Lepidopteriselv,Nathorst Fjeld, Skævdal and Trefjord Bjerg Members ofthe Ostreaelv Formation and the Sortehat Formationare bivalves, brachiopods, crinoids, belemnites, am-monites, and vertebrates (Rosenkrantz 1934). Ammonitescollected on the top of Elis Bjerg from strata belongingto the Lepidopteriselv Member include Dactyliocerassemicelatum (Simpson) sensu Howarth 1992 (probablyincluding D. groenlandicum Rosenkrantz 1934) andHildaites sp. aff. murleyi (Moxon). Dactylioceras semi-celatum belongs to the Early Toarcian TenuicostatumZone, Semicelatum Subzone (J.H. Callomon, personalcommunication 1993). Hildaites sp. is an early form, rem-iniscent of Protogrammoceras. Dactylioceras sp. hasalso been collected at Nathorst Fjeld in the Nathorst FjeldMember and in the lower part of the Skævdal Member,also suggesting an Early Toarcian Tenuicostatum Zoneage (C. Bjerrum and J.H. Callomon, personal commu-nications 1996). Dactylioceras sp. and Hildaites sp.,suggestive of the Early Toarcian, have also been col-lected from the Lepidopteriselv Member in Horsedal,although they were both loose specimens. Phydoleocerassp. has been collected on Nathorst Fjeld in the TrefjordBjerg Member, just beneath the boundary of the SortehatFormation (C. Bjerrum, personal communication 1996).

The Lepidopteriselv Member has been correlated onsequence stratigraphic grounds with the Nathorst FjeldMember (Dam & Surlyk 1995, 1998). On Nathorst Fjeld,Rosenkrantz (1934) collected a specimen of the belem-nite Parapassolotheuthis polita at an altitude of 494 m,and ‘Parabrachybelus’ subaduncatus at 509 m. Thelower level probably belongs to the Nathorst FjeldMember, and the upper level to the overlying SkævdalMember. The two species have restricted ranges andare not known to be widespread in Europe. Para-passolotheuthis polita has only been recorded from theEarly Toarcian latest Falciferum Zone or earliest BifronsZone (Commune Subzone) in Britain, while ‘Para-

726

brachybelus’ subaduncatus, which so far has only beenrecorded from mainland Europe, has a range probablyrestricted to the latest Toarcian Levesquei Zone (Doyle1991). The ammonite Dactylioceras semicelatum (Simp-son) has been collected at the base of the SkævdalMember at Nathorst Fjeld (C. Bjerrum, personal com-munication 1996) and in the Lepidopteriselv Memberon top of Elis Bjerg indicating an Early ToarcianTenuicostatum Zone, Semicelatum Subzone age (J.H.Callomon, personal communication 1993). Based onthese data, the Nathorst Fjeld and LepidopteriselvMembers and the lower part of the Skævdal Memberinclude strata with an Early Toarcian TenuicostatumZone to latest Falciferum Zone or earliest Bifrons Zoneage. Belemnites suggest that the Skævdal Member mayalso include strata with a latest Toarcian Levesquei Zoneage (Doyle 1991; Dam & Surlyk 1998), suggesting eitherthat the Skævdal Member has a very long age range,that the belemnites cannot be used stratigraphically orthat the D. semicelatum at the base of the SkævdalMember is reworked.

Dam & Surlyk (1995, 1998) interpreted the Neill KlinterGroup within a sequence stratigraphic framework andattempted a sequence stratigraphic correlation with thecoeval Tilje, Ror, Ile and Not Formations on the mid-Norwegian shelf. This comparison demonstrated that theLower Jurassic in both regions consists of six sequencesand it appears feasible to directly correlate systems tractson a scale of a few tens of metres between East Greenlandand the mid-Norwegian shelf (see Fig. 17).

Previous palynological workPrevious reports on the palynology of the Neill KlinterGroup have been published by Lund & Pedersen (1985)and Underhill & Partington (1994). The former authorsstudied the Neill Klinter Group together with the over-lying Vardekløft Group (sensu Surlyk 2003, this vol-ume, fig. 5) and the lower part of the Hareelv Formation.Based on material collected from Vardekløft, in thesouth-eastern part of the basin (Fig. 1), Lund & Pedersen(1985) proposed four assemblage zones for the entiresuccession based on the miospore assemblages. Dino-flagellate cysts were used to improve the age correla-tion of the spore-pollen assemblages. The threelowermost assemblage zones A, B and C of Lund &Pedersen (1985) cover the Rævekløft, Gule Horn andOstreaelv Formations of the Neill Klinter Group.Assemblage Zone A is divided into subassemblages A1and A2; the age of the zone was suggested to be Late

Pliensbachian because of the presence of the sporeKraeuselisporites reissingeri and the dinoflagellate cystNannoceratopsis triceras. Assemblage Zone B is char-acterised by abundant Spheripollenites subgranulatusand Luehndea spinosa, and an Early Toarcian age wasproposed. Assemblage Zone C is characterised by theincoming of the pollen Callialasporites dampieri, thespores Sestrosporites pseudoalveolatus and Staplini-sporites caminus and the dinoflagellate cyst Parvocystacontracta (now Susadinium scrofoides); these specieswere considered to indicate a Late Toarcian age for thelowermost Assemblage Zone C (subassemblage (C)).

Underhill & Partington (1994) discussed the devel-opment of the Lower Jurassic in East Greenland in con-nection with a sequence stratigraphic study of the NorthSea. They included 3 sections from Jameson Land,Section 1 from Liaselv, Section 2 from Vardekløft andSection 3 from the Harris Fjeld/Primulaelv area (Fig. 1).Sections 1 and 2 cover the uppermost few metres ofthe Ostreaelv Formation and all of the Sortehat Formationand Vardekløft Group. Section 3 covers 170 m of theNeill Klinter Group. Underhill & Partington (1994)analysed 48 samples and recognised 11 events. Theysuggested a Late Pliensbachian – earliest Toarcian agefor the Gule Horn Formation and a Toarcian age forthe Ostreaelv Formation.

Materials and methodsMost of the samples used in this study are from the sec-tion at Albuen, in the fifth ravine north of Skævdal (Figs1, 3). Intervals that proved inaccessible in this ravinewere sampled at Astartekløft (see Figs 1, 9). Sampleswere also obtained from Rævekløft, Tancrediakløft, Qupa-ulakajik, Albuen, Goniomyakløft, Astartekløft, Moskus-oksekløft, Harris Fjeld, Primulaelv, Lepidopteriselv,Liaselv, Horsedal and Ranunkeldal (Fig. 1). A numberof samples collected by Claus Heinberg and Tove Birke-lund in 1974 from Lepidopteriselv were also includedin the study.

The samples were processed for their palynologicalcontent using the techniques adopted at the formerGeological Survey of Greenland, as described byNøhr-Hansen (1993). Over 210 samples were analysedfor their palynological content by means of a trans-mission light microscope. Two hundred specimens werecounted in each sample and all species were registeredin the range chart programme SIS and on the videodatabase at the Geological Survey of Denmark andGreenland, where the slides are stored.

727

728

285

280

275

405427

405426

265

270

405425

405424

341235

260

255

405423

341234

405422

MSi Pb

Sand

290

m 405430Bisaccate pollendominate405429

341236

405428

Stac

ked

tidal

cha

nnel

sSt

acke

d tid

al c

hann

els

Elis

Bje

rg M

embe

rA

lbue

n M

embe

r

AZ

4A

ssem

blag

e Z

one

3

Lat

e Pl

iens

bach

ian

SB4

Wav

e- a

ndst

orm

-dom

.sh

oref

ace

Cerebropollenitesthiergartii becomesrare

MSi Pb

Sand

210

215

220

405403

405402

405401

225

230

405410

405405

405404

405406341232405408

235

240

405417

405416

405414405413

405411

250

m

245

405421

405420

405419

405418

341233

Res

tric

ted

she

lfSu

btid

al s

and

shee

tSu

btid

al s

and

shee

tSt

acke

dtid

al c

hann

els

Wav

e- a

ndst

orm

-dom

.sh

oref

ace

Elis

Bje

rg M

embe

r

Ass

embl

age

Zon

e 1

?Ear

ly P

liens

bach

ian

Ass

embl

age

Zon

e 2

Ass

embl

age

Zon

e 3

Late

Plie

nsba

chia

n

SB3

Dinoflagellatecysts disappear

Kekryphalospora distincta

Nannoceratopsis senexand Limbicysta bjaerkei

Abundant Botryococcus andbisaccate pollen

Common Lycopodiacidites rugulatus

Mancodinium semitabulatum

Parvocysta barbata

Albuen (A)

729

Mudstone

Sandstone

Pebbly sandstone

Coal

Volcanic intrusive

Concretion

Siderised rip-up mudstoneclasts/conglomerate

Sharp/erosive or irregular

Sharp/planar

Gradational

Parallel lamination

Lenticular bedding

Wavy bedding

Sedimentary features

Bed contacts

Flaser bedding

Planar cross-bedding

Trough cross-bedding

Cross-lamination

Incipient wave ripple lamination

Wave ripple cross-lamination

Hummocky and swaleycross-stratification

Coarse-grained ripples

Biota

Structureless

Structureless(with quartzite pebbles)

Rootlets

Plant fragments

Drifted plant stems/logs

Bivalves

Echinoderms

Belemnites

Weak

Moderate bioturbation

Intense

Arenicolites isp.

Diplocraterion parallelum

Gyrochorte comosa

Ophiomorpha nodosa

Phoebichnus trochoides

Monocraterion isp.

Helminthopsis isp.

Planolites beverleyensis

Taenidium serpentinum

Trace fossils

Cone-in-cone structures

Thalassinoides isp.

Unidentified sinuoushorizontal burrow

Teichichnus isp.

Legend to sedimentary logs

Lithology

Conglomerate (qz, quartzite clasts)

Slumping

Cross-bedding withpebbles along foresets

Gastropods

Ammonites

Brachiopods

Crinoids

Curvolithos multiplex

Fig. 3A–C. Sedimentological logs through the Gule Horn (A, B) andOstreaelv (B, C) Formations, Neill Klinter Group, at Albuen (forlocation, see Fig. 1); the Gule Horn Formation comprises the Elis Bjergand Albuen Members, the Ostreaelv Formation is composed of theAstartekløft, Nathorst Fjeld, Skævdal and Trefjord Bjerg Members.Sequence boundaries (SB3–7), palynomorph assemblage zones (AZ)and sample numbers are indicated. The legend accompanying thisfigure is also applicable to Figs 5, 7, 9 and 15.

730

MSi Pb

Sand

315

320

SB5

325

330

335

340

345

350

355

360

m

Ast

arte

kløf

t M

embe

r

Earl

y T

oarc

ian

Nat

hors

t Fj

eld

Mem

ber

Tid

al c

hann

elT

idal

cha

nnel

Subt

idal

san

d sh

eet

Stor

m-d

omin

ated

sand

y sh

oal

MSi Pb

Sand

287

290

295

305

310

315

m

405434 Few palynomorphs

405433

341239Poor assemblage –only bisaccate pollen

405432

405431

405430

405429

341236

405428

Alb

uen

Mem

ber

Ass

embl

age

Zon

e 4

Late

Plie

nsba

chia

n

Stor

m-d

omin

ated

offs

hore

tra

nsiti

on

SB5

Bisaccate pollenabundant

Botryococcus

disappears

IntrusionA

Z5

405466

Albuen (B)

731

Skæ

vdal

Mem

ber

Ass

embl

age

Zon

e 6

AZ

7

Late

Toa

rcia

nEa

rly

Aal

enia

nT

refjo

rd B

jerg

Mem

ber

Sort

ehat

Fm

Drowning surface

440

m

430

435

420

425

410

415

400

405

390

395

MSi Pb

Sand

Subt

idal

san

d sh

eet

Biot

urba

ted

shel

f

SB6

SB7

341248397452

405449

341247

405450

405451

405452

405453

405454

405455

405456

Nannoceratopsis gracilisabundant

P. halosa common

Botryococcus reappear

Callialasporites dampieri

Pareodinia halosa

?

MSi Pb

Sand

390

m

380

375

385

370

365

360

Res

tric

ted

shel

fSh

oref

ace

Nat

hors

t Fj

eld

Mem

ber

Earl

y T

oarc

ian

Ass

embl

age

Zon

e 5

Ass

embl

age

Zon

e 6

Ast

arte

kløf

tM

embe

r

405457

341243

405458

405459

341245

405460

405462

405464

405466

341241

Perinopolleniteselatoides acme

Drowning surface

K. reissingerii

S. subgranulatus rare

S. subgranulatus abundant

Cerebropollenites macroverrucosusbecomes abundant

Dinoflagellates reappearN. senex

Luehndea spinosaSpheripollenitessubgranulatusabundant

qz

Albuen (C)

Palynological zones: definitionNine assemblage zones have been recognised in theNeill Klinter Group. The zones are based on the com-position of the entire assemblage of spores, pollen,dinoflagellate cysts, acritarchs and freshwater algae. Theassemblage zones are numbered 1–9 and named afterthe species which dominate the assemblages. AssemblageZones 1–6 are defined and described in detail in thispaper, together with a brief description of AssemblageZone 7. Assemblage Zones 7–9 are formally defined inthe accompanying paper on the Sortehat Formation(Koppelhus & Hansen 2003, this volume). The recordedtaxa are listed in full in Appendix 1 and the importantspecies are illustrated in Plates 1–7.

The most complete section was sampled at Albuen(Figs 1, 3); approximately 70 samples were analysed forpalynomorphs from this section (Fig. 4, facing page744). These samples yielded rich though not very well-preserved palynomorph assemblages (Plates 1–7), withthe exception of samples taken close to the Palaeogenesills and dykes that penetrate the sedimentary succes-sion. These samples were either barren or the paly-nomorphs present were so dark as to be indeterminate.From the productive samples, approximately 150 speciesof spores, pollen, dinoflagellate cysts, acritarchs andfreshwater algae were identified (Appendix 1). Theintensively sampled Albuen section forms the referencesection for Assemblage Zones 1–6 defined in this paper;Assemblage Zones 7–9 are defined from the boreholeat Sortehat (Fig. 1; Koppelhus & Hansen 2003, this vol-ume). In addition to the Albuen reference section,important data for the definition of the assemblagezones were obtained from Ranunkeldal, Goniomyakløftand Astartekløft (Fig. 1).

In addition to the formal assemblage zones definedhere, a distinctive palynological assemblage was iden-tified in samples from the Horsedal Member of theOstreaelv Formation at Horsedal. This assemblage isdefined as the Deltoidospora Assemblage (see belowunder the Horsedal locality).

Assemblage Zone 1:Cerebropollenites thiergartii – Pinuspollenitesminimus – Botryococcus

new assemblage zone

Occurrence. Albuen 211–222.5 mGoniomyakløft 226.5 m (single sample)

Primulaelv 310 m (single sample) Rævekløft 118–122 mRanunkeldal 306–352.5 m

This assemblage zone was recorded from the RævekløftFormation at Rævekløft and Goniomyakløft and fromthe Elis Bjerg Member (Gule Horn Formation) at Albuen,Primulaelv and Ranunkeldal. Relative to the sequencestratigraphic scheme of Dam & Surlyk (1995, 1998), theassemblage occurs within sequences SQ1 and SQ2 (seeFig. 17).

Reference section. Albuen, 211 m (sample 405401) –222.5 m (sample 405404; Figs 1–4).

Additional section. Ranunkeldal, 306 m (sample 341171)– 352.5 m (sample 341173; Figs 5, 6).

Base. The base is not seen in the reference section atAlbuen (Figs 3A, 4). At Ranunkeldal, the base of thezone is placed at sample 341171, immediately abovethe base of the Neill Klinter Group (Figs 5, 6); samplesfrom the underlying Kap Stewart Group are consideredto represent a different assemblage but further work isrequired to precisely define the base of AssemblageZone 1.

Top. The top of the zone is defined by the last sampleshowing this assemblage (sample 405404 at 222.5 m atAlbuen) beneath the first appearance of Nannoceratopsissenex and N. sp. (Figs 3A, 4).

Characteristics. Terrestrial palynomorphs (spores andpollen) dominate together with Botryococcus sp. Themost common spores are Deltoidospora sp. andBaculatisporites sp., and the pollen is dominated byCerebropollenites thiergartii and Pinuspollenites min-imus and other bisaccates. Other characteristic speciesare Cerebropollenites macroverrucosus, Chasmatosporiteshians and C. major. No dinoflagellate cysts have beendetermined with certainty, but a few acritarchs were iden-tified. The freshwater alga Botryococcus sp. occurs inabundance.

Suggested age. An Early Pliensbachian age is proposedbased on the presence of abundant Cerebropollenitesthiergartii.

Palaeoenvironment. The assemblage records a strongterrestrial signal, most components being indicative offreshwater to brackish conditions. Botryococcus, for

732

733

MPbSi

SandM

PbSiSand

285

290

295

341168

341167

341169

300

305

310

315

320

325

m

341171

341170

341172

330

335

340

345

350

355

360

m

341173

Ope

n la

cust

rine

Stor

m-d

omin

ated

offs

hore

tra

nsiti

on

Kap

Ste

war

t G

roup

Wav

e- a

nd s

torm

-dom

inat

ed s

hore

face

Elis

Bje

rg M

embe

r (G

ule

Hor

n Fm

)

Elis

Bje

rg M

embe

r

Ass

embl

age

Zon

e 1

Ass

embl

age

not

defin

ed

Ass

embl

age

Zon

e 1

Tid

al c

hann

elRanunkeldal

SB1

qz

Fig. 5. Sedimentological log through theuppermost part of the Kap StewartGroup and the Elis Bjerg Member (GuleHorn Formation) of the Neill KlinterGroup in Ranunkeldal (for location, seeFig. 1). Sequence boundary (SB1),palynomorph Assemblage Zone 1 andsample numbers are indicated. Forlegend, see Fig. 3; arrows denote grain-size trends.

734

Ran

unke

ldal

System Lower Jurassic

Stage

Lithostratigraphy Kap Stewart Group

Not defined

Lower Pliensbachian

Gule Horn FormationElis Bjerg Member

Sinemurian

Palynological Assembl. Zones

(m)

350

340

300

290

310

320

Sample height

352.

50

311.

00

306.

00

299.

00

293.

00

289.

00

285.

00

Sample number

3411

73

3411

72

3411

71

3411

70

3411

69

3411

68

3411

67

1Trilete sp.2Ischyosporites variegatus

3Striatella parva

4Retitriletes clavatoides

5Retitriletes sp.6Deltoidospora spp.7Baculatisporites sp.8Tripartina variabilis

9Ischyosporites sp.10Conbaculatisporites mesozoicus

11Retitriletes semimuris

12Lycopodiacidites rugulatus

13Rogalskaisporites cicatricosus

14Manumia delcourtii

15Calamospora tener

16Retitriletes austroclavatoides

17Cibotiumsporites jurienensis

18Megaspore spp.19Densoisporites scanicus

20Striatella jurassica

21Densosporites variabilis

22Kekryphalospora distincta

23Sestrosporites pseudoalveolatus

24Chasmatosporites major

25Bisaccate spp.26Cerebropollenites thiergartii

27Pinuspollenites minimus

28Chasmatosporites apertus

29Corollina torosus

30Chasmatosporites hians

31Perinopollenites elatoides

32Quadraeculina anellaeformis

33Cerebropollenites macroverrucosus

34Ricciisporites tuberculatus

35Vesicaspora fuscus

36Vittatina sp.37Araucariacites australis

38Ovalipollis ovalis

39Dinocyst sp.40Nannoceratopsis gracilis

41Veryhachium spp.42Veryhachium reductum

43Acritarch spp.44Leiofusa jurassica

45Micrhystridium exilium

46Leiosphaeridia spp.47Micrhystridium lymensis

48Botryococcus spp.49Tasmanites sp.50Foraminifera spp.

R?

?

R?

R

?

Alp

habe

tical

spe

cies

list

43A

crita

rch

spp.

37Ara

uca

riaci

tes

aust

ralis

7Bacu

latisp

orites

sp.

25Bi

sacc

ate

spp.

48Bot

ryoc

occu

s sp

p.15

Cala

mos

por

a t

ener

33Cer

ebro

pol

lenites

macr

over

ruco

sus

26Cer

ebro

pol

lenites

thie

rgart

ii

28Chasm

ato

spor

ites

aper

tus

30Chasm

ato

spor

ites

hia

ns

24Chasm

ato

spor

ites

majo

r

17Cib

otiu

msp

orites

jurien

ensis

10Con

bacu

latisp

orites

mes

ozoi

cus

29Cor

ollin

a t

oros

us

6D

elto

idos

por

a s

pp.

19D

enso

ispor

ites

sca

nic

us

21D

enso

spor

ites

variabili

s

39D

inoc

yst

sp.

50Fo

ram

inife

ra s

pp.

9Is

chyo

spor

ites

sp.

2Is

chyo

spor

ites

varieg

atu

s

22Kek

ryphalo

spor

a d

istinct

a

44Le

iofu

sa jura

ssic

a

46Le

iosp

haer

idia

spp

.12

Lyco

pod

iaci

dites

rugu

latu

s

14M

anum

ia d

elco

urt

ii

18M

egas

pore

spp

.45

Mic

rhys

trid

ium

exi

lium

47M

icrh

ystr

idiu

m lym

ensis

40N

annoc

erato

psis

graci

lis

38O

valip

ollis

ova

lis

31Pe

rinop

olle

nites

ela

toid

es

27Pi

nusp

olle

nites

min

imus

32Q

uadra

eculin

a a

nel

laef

orm

is

16Ret

itrile

tes

aust

rocl

ava

toid

es

4Ret

itrile

tes

clava

toid

es

11Ret

itrile

tes

sem

imuris

5Ret

itrile

tes

sp.

34Ric

ciispor

ites

tuber

cula

tus

13Rog

alskaispor

ites

cic

atr

icos

us

23Ses

tros

por

ites

pse

udoa

lveo

latu

s

20Str

iate

lla jura

ssic

a

3Str

iate

lla p

arv

a

49Ta

smanites

sp.

1Tr

ilete

sp.

8Tr

ipart

ina v

ariabili

s

42Ve

ryhach

ium

red

uct

um

41Ve

ryhach

ium

spp

.35

Vesica

spor

a fusc

us

36Vitta

tina s

p.

Inte

rval

not

sam

pled

1

Fig.

6. Pal

ynom

orp

h d

istrib

utio

n c

har

t fo

r th

e upper

most

par

t of th

e K

ap S

tew

art G

roup a

nd the

Elis

Bje

rg M

ember

(G

ule

Horn

Form

atio

n)

of th

e N

eill

Klin

ter G

roup in R

anunke

ldal

(for

loca

tion, se

e Fi

g. 1

). F

or

lege

nd, se

e Fi

g. 4

.

example, is a planktonic green alga that occurs incolonies. It is known to adapt to different aquatic envi-ronments (fresh to brackish water), has been recordedfrom tropical to subarctic regions and has a stratigraphicrange from the Precambrian to the present day(Guy-Ohlson 1992). When large numbers of Botry-ococcus are recorded, it indicates that the depositionalenvironment was strongly influenced by fresh or brack-ish waters (Guy-Ohlson 1992).

Remarks. Assemblage Zone 1 is equivalent to As-semblage Zone A of Lund & Pedersen (1985), and prob-ably to the lower part of section 3 of Underhill &Partington (1994). The assemblage is similar but notidentical to that described from the ChasmatosporitesZone (miospore) and the Mendicodinium reticulatumZone (dinoflagellate) from the successions of Bornholmand the Øresund area (Koppelhus & Nielsen 1994;Koppelhus & Batten 1996).

Assemblage Zone 2:Nannoceratopsis–Botryococcus

new assemblage zone

Occurrence. Albuen 229–241 mGoniomyakløft 229.8–235 mLepidopteriselv 638–654 mLiaselv 293–325 mRævekløft 208–210 m

This assemblage zone is characteristic of the Elis BjergMember of the Gule Horn Formation where it typicallyoccurs within sequence SQ3 of Dam & Surlyk (1995,1998), for example at Albuen (Figs 3A, 4), Lepidopteris-elv, Liaselv and Rævekløft. At Goniomyakløft, however,Assemblage Zone 2 was identified in the uppermostRævekløft Formation and the lowermost Elis BjergMember (Figs 7, 8), within sequence SQ2 of Dam &Surlyk (1995, 1998).

Reference section. Albuen, 229 m (sample 405405) –241 m (sample 405417; Figs 3A, 4).

Additional section. Goniomyakløft, 229.8 m (sample405469) – 235 m (sample 405471; Figs 7, 8).

Base. The base of the zone is defined by the sampleshowing the first appearance of Nannoceratopsis senexand N. sp.

Top. The top of the zone is defined by the last sampleshowing this palynomorph assemblage, above whichNannoceratopsis disappears together with most otherdinoflagellate cysts.

735

240

245

m

MSi Pb

Sand

225

230

235 405471

405470

405469

405468

405467

Drowning surface

Goniomyakløft

Stor

m-d

omin

ated

sand

y sh

oal

Subt

idal

san

d sh

eet

Res

tric

ted

shel

fU

pper

sho

refa

ce

vekl

øft

Form

atio

nEl

is B

jerg

Mem

ber

Ass

embl

age

Zon

e 2

Gul

e H

orn

Form

atio

n

SB3

AZ1

Fig. 7. Sedimentological log through the uppermost part of theRævekløft Formation and the Elis Bjerg Member (Gule HornFormation) at Goniomyakløft (for location, see Fig. 1). Sequenceboundary (SB3), palynomorph assemblage zones (AZ) and sam-ple numbers are indicated. For legend, see Fig. 3. Note that theexact location of sample 405467 is uncertain due to imprecisefield records; although here placed immediately beneath the non-exposed interval (226.5–227.8 m), it is possible that it derives fromimmediately above this interval. For legend, see Fig. 3.

736

Gon

iom

yakl

øft

Lower Pliensbachian

Rævekløft Formation

Lower Jurassic

235.

0023

4.50

232.

40

229.

80

226.

50

4054

7140

5470

4054

69

4054

68

4054

671Kekryphalospora distincta

2Retitriletes semimuris

3Retitriletes austroclavatoides

4Stereisporites stereoides

5Lycopodiacidites rugulatus

6Baculatisporites sp.

7Deltoidospora spp.

8Densoisporites velatus

9Staplinisporites caminus

10Retitriletes clavatoides

11Striatella seebergensis

12Leptolepidites sp.

13Densoisporites scanicus

14Retitriletes sp.

15Foraminisporis jurassicus

16Tigrisporites microrugulatus

17Striatella scanica

18Rogalskaisporites cicatricosus

19Neoraistrickia gristhorpensis

20Megaspore spp.

21Striatella jurassica

22Todisporites major

23Cibotiumsporites jurienensis

24Neoraistrickia sp.

25Corollina torosus

26Quadraeculina anellaeformis

27Chasmatosporites apertus

28Perinopollenites elatoides

29Bisaccate spp.

30Cerebropollenites thiergartii

31Chasmatosporites hians

32Cerebropollenites macroverrucosus

33Chasmatosporites minor

34Pinuspollenites minimus

35Chasmatosporites major

36Corollina sp.

37Callialasporites sp.

38Dapcodinium sp.

39Mancodinium semitabulatum

40Dinocyst spp.

41Nannoceratopsis sp.

42Crassosphaera spp.

43Acritarch spp.

44Tasmanites sp.

45Botryococcus spp.

46Foraminiferal linings

47Foraminifera spp.

?

?

? ?

?

?

??

Alp

habe

tical

spe

cies

list

43A

crita

rch

spp.

6Bacu

latisp

orites

sp.

29Bi

sacc

ate

spp.

45Bot

ryoc

occu

s sp

p.37

Calli

ala

spor

ites

sp.

32Cer

ebro

pol

lenites

macr

over

ruco

sus

30Cer

ebro

pol

lenites

thie

rgart

ii27

Chasm

ato

spor

ites

aper

tus

31Chasm

ato

spor

ites

hia

ns

35Chasm

ato

spor

ites

majo

r33

Chasm

ato

spor

ites

min

or23

Cib

otiu

msp

orites

jurien

ensis

36Cor

ollin

a s

p.25

Cor

ollin

a t

oros

us

42Cra

ssos

phaer

a s

p.38

Dapco

din

ium

sp.

7D

elto

idos

por

a s

pp.

8D

enso

ispor

ites

vel

atu

s13

Den

soispor

ites

sca

nic

us

40D

inoc

yst

spp.

46Fo

ram

inife

ral l

inin

gs47

Fora

min

ifera

spp

.15

Fora

min

ispor

is jura

ssic

us

1Kek

ryphalo

spor

a d

istinct

a12

Lepto

lepid

ites

sp.

5Ly

copod

iaci

dites

rugu

latu

s39

Manco

din

ium

sem

itabula

tum

20M

egas

pore

spp

.41

Nannoc

erato

psis

sp.

19N

eora

istr

ickia

gris t

hor

pen

sis

24N

eora

istr

ickia

sp.

28Pe

rinop

olle

nites

ela

toid

es34

Pinusp

olle

nites

min

imus

26Q

uadra

eculin

a a

nel

laef

orm

is3

Ret

itrile

tes

aust

rocl

ava

toid

es10

Ret

itrile

tes

clava

toid

es2

Ret

itrile

tes

sem

imuris

14Ret

itrile

tes

sp.

18Rog

alskaispor

ites

cic

atr

icos

us

9Sta

plin

ispor

ites

cam

inus

4Ste

reispor

ites

ste

reoi

des

21Str

iate

lla jura

ssic

a17

Str

iate

lla s

canic

a11

Str

iate

lla s

eeber

gensis

44Ta

smanites

sp.

16Tig

risp

orites

mic

roru

gula

tus

22To

dispor

ites

majo

r

System

Stage

Palynological Assembl. Zones

Lithostratigraphy Elis BjergMb

UpperPliensbach.

(m)

Sample height

Sample number

225

235

215

205

12

Fig.

8. Pal

ynom

orp

h d

istrib

utio

n c

har

t fo

r th

e upper

most

par

t of th

e Ræ

vekl

øft F

orm

atio

n a

nd the

Elis

Bje

rg M

ember

(G

ule

Horn

Form

atio

n)

at G

onio

mya

kløft (

for lo

catio

n, se

e Fi

g. 1

).Fo

r le

gend, se

e Fi

g. 4

.

Characteristics. Terrestrial palynomorphs dominate theassemblage together with Botryococcus sp., as inAssemblage Zone 1; the spore Kekryphalospora dis-tincta appears for the first time. The difference betweenthis assemblage and that of Assemblage Zone 1 is theappearance of dinoflagellate cysts, including Manco-dinium semitabulatum, Nannoceratopsis senex, N. gra-cilis, N. plegas, N. triangulata and Parvocysta barbataand the presence of more acritarchs, including Limbicystabjaerkei.

Suggested age. A Late Pliensbachian age is suggestedbased on the first appearance of the spore Kekry-phalospora distincta in sample 405411 (236.50 m) in theAlbuen section (Fig. 3A); this species is known to havea range from Late Pliensbachian to Early Bajocian (Fenton& Riding 1987).

Palaeoenvironment. Although influenced by brackish tomarine waters, there is still a strong terrestrial signal.

Remarks. The spore Kekryphalospora distincta is alsoknown from assemblages of Pliensbachian age fromthe Danish area (Anholt borehole, Øresund borehole15 and the Korsodde section on Bornholm; Seidenkrantzet al. 1993; Koppelhus & Nielsen 1994; Koppelhus &Batten 1996). The appearance of Nannoceratopsis tri-angulata is particularly noteworthy as this species haspreviously only been recorded from NW Germanywhere it occurs in the uppermost Toarcian (Prauss1987). The appearance of Limbicysta bjaerkei andParvocysta barbata is unexpected at this level, as theyare known to have their first appearance in the BifronsZone (late Early Toarcian) in the North Sea and Svalbardand on the mid-Norwegian shelf (Bjærke 1980a; Riding& Thomas 1992; I. Throndsen, personal communication1996). However, these anomalous occurrences werealso recognised at this level in the Neill Klinter Groupby Underhill & Partington (1994); L. bjaerkei wasrecorded in their section 3 between 360 m and 370 m.Two explanations are possible: either P. barbata andL. bjaerkei have a longer range than recently reportedor the sediments are younger than expected.

In Assemblage Zone 2, acritarchs are more commonthan in the underlying zone and in the succeedingzones; this pattern is known from the Lower Jurassicin England and Wales (Wall 1965).

Assemblage Zone 3:Chasmatosporites – Cerebropollenites thiergartii– Botryococcus

new assemblage zone

Occurrence. Albuen 246–284.7 mAstartekløft 266–328 mLepidopteriselv 674–700 m

Assemblage Zone 3 is confined to the uppermost partof the Elis Bjerg Member (Gule Horn Formation) in theAlbuen and Lepidopteriselv sections; relative to thesequence stratigraphic scheme of Dam & Surlyk (1995,1998), the assemblage occurs within the upper levelsof sequence SQ3, below sequence boundary SB4 inthese sections (Fig. 3A). At Astartekløft, however, theassemblage spans the boundary between the Elis BjergMember and the succeeding Albuen Member, thus strad-dling the sequence boundary (SB4) between sequencesSQ3 and SQ4 (Fig. 10). It should be noted, however,that recognition of assemblage Zone 3 is based on onlytwo widely spaced samples at the Astartekløft locality(Fig. 10).

Reference section. Albuen, 246 m (sample 405418) –284.7 m (sample 405427; Figs 3A, 4).

Additional section. Astartekløft, 266 m (sample 346614)– 328 m (sample 346627; Fig. 10)

Base. The base is placed at the first sample in whichdinoflagellate cysts are absent or rare, succeeding sam-ples of Assemblage Zone 2 characterised by a numberof dinoflagellate species.

Top. The top of the assemblage is placed at the last sam-ple showing the assemblage described below; abovethis level, the palynomorph assemblage is dominatedby bisaccate pollen.

Characteristics. This zone is also dominated by terres-trial material. A number of spores have their first appear-ance, such as Striatella jurassica, Kraeuselisporitesreissingeri, Taurocusporites verrucatus and Densoi-sporites velatus. The pollen species and Botryococcussp. are very consistent; only few dinoflagellate cystsand acritarchs were recorded.

Suggested age. A Late Pliensbachian age is proposedbased on the absence of marker species indicative of

737

a younger age. The miospore assemblage is a contin-uation of Assemblage Zone 2.

Palaeoenvironment. The palynology displays an over-whelmingly terrestrial signal; there is very little evi-dence of marine influence.

Remarks. Cerebropollenites thiergartii is commonthrough much of the zone but becomes rare towardsthe top of the zone and in succeeding zones.

Assemblage Zone 4: Bisaccates

new assemblage zone

Occurrence. Albuen 287–297.8 mAstartekløft 339–340 m

This assemblage zone is restricted to the Albuen Member(Gule Horn Formation) at both Albuen and Astartekløft(Figs 3A, 3B, 4, 9, 10); it thus falls within sequence SQ4of Dam & Surlyk (1995, 1998).

Reference section. Albuen, 287 m (sample 405428) –297.8 m (sample 405434; Figs 3A, 3B, 4).

Additional section. Astartekløft, 339 m (sample 405472)– 340 m (sample 405473; Figs 9, 10).

Base. The base is defined by the first sample domi-nated overwhelmingly by bisaccate pollen, to the exclu-sion of most other palynomorphs.

Top. The top of the zone is defined by the last samplecomposed predominantly of bisaccate pollen; the suc-ceeding sample, defining the base of the overlyingAssemblage Zone 5, is characterised by the first appear-ance of Spheripollenites subgranulatus.

Characteristics. This assemblage zone is characterised byvery poor preservation of the few palynomorphs presentand by the absence of marine palynomorphs. Bisaccatepollen are common in most of the samples. The spores,pollen and Botryococcus sp. that were abundant in theAssemblage Zones 1–3 are absent in this zone.

Suggested age. A Late Pliensbachian age is assigned tothis zone, as for Assemblage Zone 3 (see above).

Palaeoenvironment. Taken at face value, the palyno-morph data suggest that the sediments of the AlbuenMember were deposited in a more distal position rel-ative to the source than that suggested by the previousassemblage zones. Amongst all palynomorphs, bisac-cate pollen are known to be found farthest away fromthe source, because of their ability to be transportedby air. However, bisaccate pollen are also known to havea thick wall and therefore may be preferentially pre-served. Thus, although lack of marine palynomorphscould be interpreted in terms of a non-marine envi-ronment, it could also have resulted from selectivedestruction of the more thin-walled marine paly-nomorphs during intrusion of Palaeogene igneous sillsand dykes in the Albuen Member.

Remarks. This interval was not recognised in previousstudies by Lund & Pedersen (1985) and Underhill &Partington (1994).

Assemblage Zone 5:Spheripollenites subgranulatus – Cerebropollenitesmacroverrucosus – Luehndea spinosa

new assemblage zone

Occurrence. Albuen 359–375.5 mAstartekløft 341–383 mMoskusoksekløft 359 m (single sample)Primulaelv 451 m (single sample)

In the Albuen reference section, Assemblage Zone 5 wasonly recorded from the lower Nathorst Fjeld Memberof the Ostreaelv Formation; it should be noted that theunderlying Astartekløft Member (also Ostreaelv For-mation) was not sampled in this section so the potentialdownwards range of the assemblage is poorly con-strained (Figs 3B, 3C, 4). At Astartekløft itself, however,Assemblage Zone 5 extends from the lowermostAstartekløft Member up into the Nathorst Fjeld Member(Figs 9, 10). Relative to the sequence stratigraphicscheme of Dam & Surlyk (1995, 1998), AssemblageZone 5 occurs within sequence SQ5, beginning imme-diately above the sequence boundary (SB5) in theAstartekløft section (Fig. 9) and extending up to some10 m beneath the flooding surface at Albuen (Fig. 3C).

Reference section. Albuen, 359 m (sample 405466) –375.5 m (sample 405458; Figs 3B, 3C, 4).

738

739

M

Si Pb

Sand

335

345

355

365

m

375

Drowning surface

SB5

M

Si Pb

Sand

385

m

qzqz

Res

tric

ted

shel

fSh

oref

ace

AstartekløftSu

btid

al s

and

shee

t

Nat

hors

t Fj

eld

Mem

ber

Ast

arte

kløf

t M

embe

r

Ass

embl

age

Zon

e 5

AZ

4 Ass

embl

age

Zon

e 5

Alb

uen

Mem

ber

341270

341269

405472

405473

405474

405475

405476

405477

405478

405483

405479

Fig. 9. Sedimentological log through the upper-most Albuen Member (Gule Horn Formation)and the Astartekløft and Nathorst Fjeld Members(Ostreaelv Formation) at Astartekløft (forlocation, see Fig. 1). Sequence boundary (SB5),palynomorph assemblage zones (AZ) andsample numbers are indicated. For legend, seeFig. 3.

740

Ast

arte

kløft

Lower Jurassic

Toarcian

Ostreaelv FormationAstartekløft MemberNathorst Fjeld Member

Upper Pliensbachian

Gule Horn FormationElis Bjerg MemberAlbuen Member

383.

00

372.

00

349.

00

345.

00

342.

0034

1.50

341.

0034

0.00

339.

00

328.

00

266.

00

3412

70

3412

69

4054

79

4054

77

4054

7640

5475

4054

7440

5473

4054

72

3466

27

3466

14

1Stereisporites stereoides

2Densoisporites velatus

3Retitriletes austroclavatoides

4Conbaculatisporites mesozoicus

5Calamospora tener

6Lycopodiacidites rugulatus

7Baculatisporites sp.8Deltoidospora spp.9Chomotriletes sp.10Rogalskaisporites cicatricosus

11Kraeuselisporites reissingerii

12Retitriletes sp.13Triletes sp.14Striatella jurassica

15Ischyosporites variegatus

16Foraminisporis jurassicus

17Kekryphalospora distincta

18Manumiadel courtii

19Leptolepidites sp.20Striatella seebergensis

21Cingulizonates inequalis

22Cerebropollenites thiergartii

23Chasmatosporites hians

24Quadraeculina anellaeformis

25Corollina torosus

26Chasmatosporites major

27Perinopollenites elatoides

28Bisaccate spp.29Pinuspollenites minimus

30Chasmatosporites apertus

31Vesicaspora fuscus

32Spheripollenites subgranulatus

33Cerebropollenites macroverrucosus

34Chasmatosporites sp.35Corollina meyeriana

36Striate spp.37Taeniasporites rhaeticus

38Nannoceratopsis senex

39Nannoceratopsis plegas

40Mancodinium semitabulatum

41Nannoceratopsis gracilis

42Nannoceratopsis triangulata

43Mendicodinium reticulatum

44Kallosphaeridium sp.45Nannoceratopsis triceras

46Leiosphaeridia spp.47Micrhystridium spp.48Botryococcus spp.

?

R RR

Alp

habe

tical

spe

cies

list

7Bacu

latisp

orites

sp.

28Bi

sacc

ate

spp.

48Bot

ryoc

occu

s sp

p.5

Cala

mos

por

a t

ener

33Cer

ebro

pol

lenites

macr

over

ruco

sus

22Cer

ebro

pol

lenites

thie

rgart

ii30

Chasm

ato

spor

ites

aper

tus

23Chasm

ato

spor

ites

hia

ns

26Chasm

ato

spor

ites

majo

r34

Chasm

ato

spor

ites

sp.

9Chom

otrile

tes

sp.

21Cin

guliz

onate

s in

equalis

4Con

bacu

latisp

orites

mes

ozoi

cus

35Cor

ollin

a m

eyer

iana

25Cor

ollin

a t

oros

us

8D

elto

idos

por

a s

pp.

2D

enso

ispor

ites

vel

atu

s16

Fora

min

ispor

is jura

ssic

us

15Is

chyo

spor

ites

varieg

atu

s44

Kallo

sphaer

idiu

m s

p.17

Kek

ryphalo

spor

a d

istinct

a11

Kra

euse

lispor

ites

rei

ssin

gerii

46Le

iosp

haer

idia

spp

.19

Lepto

lepid

ites

sp.

6Ly

copod

iaci

dites

rugu

latu

s40

Manco

din

ium

sem

itabula

tum

18M

anum

ia d

elco

urt

ii43

Men

dic

odin

ium

ret

icula

tum

47M

icrh

ystr

idiu

m s

pp.

39N

annoc

erato

psis

ple

gas

41N

annoc

erato

psis

graci

lis38

Nannoc

erato

psis

senex

42N

annoc

erato

psis

tria

ngu

lata

45N

annoc

erato

psis

tric

eras

27Pe

rinop

olle

nites

ela

toid

es29

Pinusp

olle

nites

min

imus

24Q

uadra

eculin

a a

nel

laef

orm

is3

Ret

itrile

tes

aust

rocl

ava

toid

es12

Ret

itrile

tes

sp.

10Rog

alskaispor

ites

cic

atr

icos

us

32Spher

ipol

lenites

subgr

anula

tus

1Ste

reispor

ites

ste

reoi

des

36St

riat

e sp

p.14

Str

iate

lla jura

ssic

a20

Str

iate

lla s

eeber

gensis

37Ta

enia

spor

ites

rhaet

icus

13Tr

ilete

s sp

.31

Vesica

spor

a fusc

us

Inte

rval

not

sam

pled

Inte

rval

not

sam

pled

System

Stage

Palynological Assembl. Zones

Stratigraphy

(m)

Sample height

Sample number

265

270

325

330

335

340

345

350

375

380

370

45 3

Unc

erta

inde

term

inat

ion

Very

rar

e

Rar

e

Few

Com

mon

Abu

ndan

t

? R

Fig.

10.

Pal

ynom

orp

h d

istrib

utio

n c

har

t fo

r th

e Elis

Bje

rg a

nd A

lbuen

Mem

ber

s (G

ule

Horn

Form

atio

n)

and the

Ast

arte

kløft a

nd N

athors

t Fj

eld M

ember

s (O

stre

aelv

Form

atio

n)

atAst

arte

kløft (

for

loca

tion, se

e Fi

g. 1

).

Additional section. Astartekløft, 341 m (sample 405474)– 383 m (sample 341270; Figs 9, 10).

Base. The base of the assemblage is defined by the firstappearance, in abundance, of Spheripollenites sub-granulatus; at Albuen, this coincides with the firstappearance of Luehndea spinosa, although this specieswas not recorded in the Astartekløft section.

Top. This is defined by the uppermost sample showingthe palynomorph assemblage characteristic of the zone(i.e. sample 405458 at Albuen). The succeeding sampleshows an acme of Perinopollenites elatoides, defining thebase of Assemblage Zone 6. The top of the assemblageis not seen in the Astartekløft section (Fig. 9).

Characteristics. In Assemblage Zone 5, the pollenSpheripollenites subgranulatus appears in abundancefor the first time; this species was only recorded in onesample below this level, in sample 346627 at 328 m inthe Astartekløft section (Figs 9, 10). The assemblage isalso marked by the reappearance of abundant Nanno-ceratopsis senex and N. gracilis. The pollen Cerebro-pollenites macroverrucosus and to a lesser degreeCorollina torosus are more common than in the under-lying assemblage. Spherical bodies of uncertain affin-ity are also abundant (on the distribution chart they areregistered under micromiscellanea).

Suggested age. An Early–Late Toarcian age is proposedbased on the presence and acme of Spheripollenitessubgranulatus which is known to be abundant inToarcian strata in the Danish Basin and the North Sea(Dybkjær 1991; Batten et al. 1994; Koppelhus & Nielsen1994; Koppelhus & Batten 1996). Palaeoenvironment. This assemblage contains elementsindicative of both brackish and marine conditions.

Remarks. In Germany, the North Sea area and the DanishBasin, the dinoflagellate cyst Luehndea spinosa is knownto appear within the Margaritatus, Spinatus andTenuicostatum Zones which span the Late Pliensbachianto Early Toarcian (Morgenroth 1970; Riding & Thomas1992; Poulsen 1996). The abundant spherical bodies ofunknown affinity are also known from Svalbard, theNorth Sea and the Baltic Sea in upper Pliensbachianand Toarcian strata (Bjærke 1980b; Dybkjær 1991;Koppelhus & Nielsen 1994); on the mid-Norway shelf,these forms are known to occur in Lower Toarcian strata(I. Throndsen, personal communication 1996).

This zone correlates with Assemblage Zone B ofLund & Pedersen (1985). It has not been possible torecognise this assemblage in the data presented byUnderhill & Partington (1994). Comparison with theMicrocysta erugata taxa range-zone of Smelror & Below(1992) has been attempted, but the two zones havevery few species in common.

Assemblage Zone 6: Perinopollenites elatoides

new assemblage zone

Occurrence. Albuen 377.5–434 mEnhjørningen Dal 414–424.67 mSortehat (core) 12.65–26.28 m

In the Albuen section, Assemblage Zone 6 extends fromthe upper Nathorst Fjeld Member through the SkævdalMember and much of the Trefjord Bjerg Member (allOstreaelv Formation; Figs 3C, 4). Relative to the sequencestratigraphic scheme of Dam & Surlyk (1995, 1998), theassemblage occurs within sequences SQ5 and SQ6,spanning the sequence boundary SB6 (Figs 3C, 4). Datafor the Enhjørningen Dal and Sortehat sections is pre-sented in the companion paper by Koppelhus & Hansen(2003, this volume). In the Sortehat core, AssemblageZone 6 is confined to the upper Ostreaelv Formation(Trefjord Bjerg Member); the top of the assemblage liesimmediately beneath the boundary between theOstreaelv and Sortehat Formations. At EnhjørningenDal, however, Assemblage Zone 6 spans the boundarybetween these two formations, extending some 6 m upinto the Sortehat Formation (Koppelhus & Hansen 2003,this volume).

Reference section. Albuen, 377.5 m (sample 341243) –434 m (sample 405449; Figs 3C, 4).

Base. The base of the zone is placed at the sample inwhich Perinopollenites elatoides reaches its acme; it isaccompanied by abundant Chasmatosporites hians andC. major.

Top. The upper boundary of Assemblage Zone 6 isplaced at the last sample showing the palynomorphassemblage described here; above this level, Botry-ococcus sp. becomes very dominant, defining the baseof Assemblage Zone 7.

741

Characteristics. The zone is characterised particularlyby the acme of Perinopollenites elatoides. The sporesStaplinisporites caminus and Sestrosporites pseudoalveo-latus have their first appearance within the zone togetherwith the dinoflagellate cysts Phallocysta eumekes,Wallodinium laganum, Scriniocassis sp. and Dissilio-dinium sp. The dinoflagellate cysts Nannoceratopsisgracilis and N. senex continue to be common in mostof the samples. Botryococcus sp. re-appears at 392 m(sample 405456; Fig. 3C) and continues to be commonto the top of this zone.

Suggested age. A Late Toarcian – early Aalenian age issuggested based on the first appearances of the sporesStaplinisporites caminus and Sestrosporites pseudoalveo-latus together with the dinoflagellate cysts Phallocystaeumekes, Wallodinium laganum, Scriniocassis sp. andDissiliodinium sp. The occurrence of abundant Perino-pollenites elatoides is a feature of Aalenian sedimentsin the Danish Basin and on Bornholm (Dybkjær 1991;Koppelhus & Nielsen 1994).

Palaeoenvironment. The palynomorphs indicate thatthe palaeoenvironment was influenced by both fresh,brackish and marine waters, suggesting a nearshoreenvironment.

Remarks. The two species Chasmatosporites hians andC. major are very abundant in the lowermost samplein this interval, higher up they become rare. In offshoremid-Norway, C. hians has a maximum appearance afterthe Spheripollenites acme (I. Throndsen, personal com-munication 1996). The pollen Callialasporites dampieriis known to appear in the uppermost Toarcian andlowermost Aalenian in north-west Scotland (Riding etal. 1991). This zone correlates with Assemblage ZoneC in Lund & Pedersen (1985) and the assemblage foundin sample B2/57 at approximately 460 m in Primulaelvby Underhill & Partington (1994). The dinoflagellatecyst Wallodinium laganum appears for the first timein this zone and is only known from the Late ToarcianLevesquei Zone in northern Germany and England(Feist-Burkhardt & Monteil 1994). The ammoniteDactylioceras sp. occurs at the base of the SkævdalMember at Nathorst Fjeld, suggesting an Early ToarcianTenuicostatum Zone age for the lower part of the assem-blage zone.

Assemblage Zone 7: Botryococcus

This assemblage is formally defined in the companionpaper by Koppelhus & Hansen (2003, this volume); asummary is given here.

Occurrence. Albuen 438.5–443.5 mEnhjørningen Dal 424.86–445 mPelion 550–567 mSortehat (core) 27.82–36.36 m

At Albuen, this assemblage is represented in the upper-most few metres of the Trefjord Member (OstreaelvFormation) and extends up into the Sortehat Formation(Figs 3C, 4); additional data for the uppermost TrefjordMember and the overlying Sortehat Formation in theAlbuen section are given in Koppelhus & Hansen (2003,this volume). In the cored section from Sortehat, theassemblage occurs in the lower levels of the SortehatFormation, the base of the zone being immediatelyabove the base of the formation (Koppelhus & Hansen2003, this volume). At Enhjørningen Dal, AssemblageZone 7 is also restricted to the lower Sortehat Formationalthough here the base is some 6 m above the lowerboundary of the Sortehat Formation. Detailed discus-sion and the full dataset are given in Koppelhus &Hansen (2003, this volume). Assemblage Zone 7 occurswithin the lower levels of sequence SQ7 of Dam &Surlyk (1995, 1998).

Reference section. Sortehat (core), 27.82 m (sample303143-73) – 36.36 m (sample 303143-62).

Additional sections. See Koppelhus & Hansen (2003, thisvolume).

Base. The base of the assemblage is placed at the firstsample in which Botryococcus sp. overwhelmingly dom-inates the assemblage. In the Albuen section (Figs 3C,4), this event coincides with the first co-occurrence ofCallialasporites dampieri (pollen) and Mendicodiniumgroenlandicum (dinoflagellate cyst) although in othersections (e.g. Enhjørningen Dal, Sortehat; Koppelhus &Hansen 2003, this volume) these species first occurtogether some metres below the Botryococcus sp. influx.

Top. The upper boundary is defined by the uppermostsample showing the Botryococcus-dominated assem-blage. Above this level, Botryococcus sp. disappear andNannoceratopsis gracilis and N. senex become abundantonce more.

742

Characteristics. The assemblage is characterised by theoverwhelming dominance of Botryococcus sp. and thescarcity of dinoflagellates.

Suggested age. An Aalenian age is proposed based onthe abundance of Callialasporites dampieri. Pollen fromthe genus Callialasporites are known to appear first insediments of Late Toarcian and Aalenian age in Swedenand the Danish area (Guy-Ohlson 1988; Koppelhus &Nielsen 1994).

Palaeoenvironment. The fresh and brackish water algaBotryococcus is known from recent environments toproduce blooms at certain times of the year. The coloniesfloat at the water surface under calm conditions and sub-sequently sink when the water is disturbed. When theydie, they float within the surface waters and can betransported by wind far from the area where they wereproduced. Palaeoenvironmental interpretation basedsolely on the presence of Botryococcus is therefore dan-gerous; the degree to which the Botryococcus in thissuccession is allochthonous is unknown. Further dis-cussion of the environmental implications of this assem-blage is given by Koppelhus & Hansen (2003, thisvolume).

Additional palynological resultsAs noted earlier, definition of the six assemblage zonesdescribed here is based primarily on the section atAlbuen, the palynostratigraphy of which is thus pre-sented in detail above. In addition to this reference sec-tion, however, a series of other sections were includedin the study, some of which yield important supple-mentary data for the definition of the assemblage zones(see above). The palynostratigraphic results from theseadditional localities, spread widely in the Jameson LandBasin (Fig. 1), are described below, broadly from southto north.

Rævekløft At Rævekløft, nine samples were collected, six fromthe Rævekløft Formation (405435–405440) and threefrom the Elis Bjerg Member (Gule Horn Formation,405441–405443; Fig. 11). The samples collected fromthe Rævekløft Formation are separated by a gap ofc. 100 m from those collected in the Elis Bjerg Memberand the boundary between the two units was not

exposed. All the samples yielded abundant poorly pre-served palynomorphs. Terrestrial material dominatestogether with the freshwater alga Botryococcus sp.Bisaccate pollen are the most abundant palynomorphsin all the samples. A few acritarchs and questionabledinoflagellate cysts were found. Based on the presenceof the spores Deltoidospora and Baculatisporites, thepollen Cerebropollenites thiergartii and Pinuspollenitesminimus and the lack of dinoflagellate cysts, the sam-ples 405435–405440 (?upper Rævekløft Formation) areassigned to Assemblage Zone 1. In the samples405441–405443 (Elis Bjerg Member), the dinoflagellatecysts Nannoceratopsis senex and Mancodinium semi-tabulatum appear for the first time, indicating that theassemblage belongs to Assemblage Zone 2.

Suggested age. An Early Pliensbachian age is suggestedfor Assemblage Zone 1, based on the presence of Cere-bropollenites thiergartii together with Pinuspollenitesminimus; a Late Pliensbachian age is proposed forAssemblage Zone 2 based on the occurrences of Nanno-ceratopsis senex and Mancodinium semitabulatum.

Tancrediakløft Only one sample (341229; Rævekløft Formation) wasstudied from this locality. The sample contained onlyblack material which was not identifiable.

Qupaulakajik Only one sample (341254; Albuen Member, Gule HornFormation) was studied from this locality. The paly-nomorphs were black and indeterminate.

GoniomyakløftFive samples were studied (Figs 7, 8). The sample 405467,from the uppermost part of Rævekløft Formation, yieldedan assemblage rich in poorly preserved palynomorphs,dominated by terrestrial material. However, several spec-imens of the dinoflagellate cyst genus Dapcodiniumwere found together with a single specimen of Tas-manites. The former are similar to Dapcodinium priscum,but not identical to specimens of this species describedfrom Northwest Europe. The assemblage is suggestedto belong to Assemblage Zone 1.

743

744

Lower Jurassic

Upper Pliensbachian

Gule Horn Formation

12

Elis Bjerg Member

Lower Pliensbachian

Rævekløft Fm

210.

0020

9.00

208.

00

122.

0012

1.00

120.

0011

9.00

118.

5011

8.00

4054

4340

5442

4054

41

4054

4040

5439

4054

3840

5437

4054

3640

5435

1Rogalskaisporites cicatricosus

2Conbaculatisporites mesozoicus

3Lycopodiacidites rugulatus

4Deltoidospora spp.

5Retitriletes clavatoides

6Retitriletes semimuris

7Retitriletes sp.

8Baculatisporites sp.

9Tigrisporites microrugulatus

10Foraminisporis jurassicus

11Kraeuselisporites reissingeri

12Tripartina variabilis

13Stereisporites stereoides

14Densoisporites scanicus

15Retitriletes austroclavatoides

16Todisporites minor

17Kekryphalospora distincta

18Cibotiumsporites jurienensis

19Striatella parva

20Todisporites major

21Striatella jurassica

22Chasmatosporites hians

23Cerebropollenites thiergartii

24Vesicaspora fuscus

25Quadraeculina anellaeformis

26Perinopollenites elatoides

27Pinuspollenites minimus

28Bisaccate spp.

29Cerebropollenites macroverrucosus

30Chasmatosporites major

31Chasmatosporites apertus

32Corollina torosus

33Monosulcites punctatus

34Taeniasporites rhaeticus

35Nannoceratopsis senex

36Acritarch spp.

37Veryhachium sp.

38Leiofusa jurassica

39Leiosphaeridia spp.

40Botryococcus spp.

41Tasmanites sp.

R

Alp

habe

tical

spe

cies

list

36A

crita

rch

spp.

8Bacu

latisp

orites

sp.

28Bi

sacc

ate

spp.

40Bot

ryoc

occu

s sp

p.29

Cer

ebro

pol

lenites

macr

over

ruco

sus

23Cer

ebro

pol

lenites

thie

rgart

ii31

Chasm

ato

spor

ites

aper

tus

22Chasm

ato

spor

ites

hia

ns

30Chasm

ato

spor

ites

majo

r18

Cib

otiu

msp

orites

jurien

ensis

2Con

bacu

latisp

orites

mes

ozoi

cus

32Cor

ollin

a t

oros

us

4D

elto

idos

por

a s

pp.

14D

enso

ispor

ites

sca

nic

us

10Fo

ram

inispor

is jura

ssic

us

17Kek

ryphalo

spor

a d

istinct

a11

Kra

euse

lispor

ites

rei

ssin

geri

38Le

iofu

sa jura

ssic

a39

Leio

sphaer

idia

spp

.3

Lyco

pod

iaci

dites

rugu

latu

s33

Mon

osulc

ites

punct

atu

s35

Nannoc

erato

psis

senex

26Pe

rinop

olle

nites

ela

toid

es27

Pinusp

olle

nites

min

imus

25Q

uadra

eculin

a a

nel

laef

orm

is15

Ret

itrile

tes

aust

rocl

ava

toid

es5

Ret

itrile

tes

clava

toid

es6

Ret

itrile

tes

sem

imuris

7Ret

itrile

tes

sp.

1Rog

alskaispor

ites

cic

atr

icos

us

13Ste

reispor

ites

ste

reoi

des

21Str

iate

lla jura

ssic

a19

Str

iate

lla p

arv

a34

Taen

iasp

orites

rhaet

icus

41Ta

smanites

sp.

9Tig

risp

orites

mic

roru

gula

tus

20To

dispor

ites

majo

r16

Todispor

ites

min

or12

Trip

art

ina v

ariabili

s37

Very

hach

ium

sp.

24Ve

sica

spor

a fusc

us

vekl

øft

200

205

210

125

120

115

System

Stage

Palynological Assembl. Zones

Lithostratigraphy

(m)

Sample height

Sample number

Inte

rval

not

sam

pled

Fig.

11.

Pal

ynom

orp

h d

istrib

utio

n c

har

t fo

r th

e Ræ

vekl

øft F

orm

atio

n a

nd G

ule

Horn

Form

atio

n (

Elis

Bje

rg M

ember

) at

vekl

øft (

for

loca

tion, se

e Fi

g. 1

). F

or

lege

nd, se

e Fi

g. 4

.

Sample 405468 was collected just beneath the bound-ary between the Rævekløft Formation and the suc-ceeding Elis Bjerg Member (Gule Horn Formation). Thissample yielded a similar palynomorph assemblage tothat described above but included the first appearanceof the dinoflagellate cyst Mancodinium semitabula-tum. It is suggestive of the somewhat younger As-semblage Zone 2. The samples 405469–405471 are fromthe Elis Bjerg Member. They lack recognisable dinofla-gellate cysts although acritarchs and some question-able dinoflagellate cysts were found together withCrassosphaera sp., foraminiferal inner linings and abun-dant Botryococcus sp. This assemblage is also suggestedto belong to Assemblage Zone 2.

Suggested age. An ?Early–Late Pliensbachian age is pro-posed, based on the appearance of Mancodinium semi-tabulatum.

AstartekløftFourteen samples from the northern and southern sideof Astartekløft were investigated palynologically (Figs9, 10; note that the barren samples are not shown onFig. 10). The lowermost samples, 346614 at 266 m and346627 at 328 m, are from the lower Elis Bjerg Member(Gule Horn Formation) and the lower Albuen Member(Gule Horn Formation), respectively (Fig. 10). Thesesamples are dominated by Botryococcus sp. and bisac-cate pollen, together with common Cerebropollenitesthiergartii and Chasmatosporites hians, and are referredto Assemblage Zone 3.

The two samples 405472 and 405473 from the upperAlbuen Member (Figs 9, 10) contain abundant bisac-cate pollen; this and the lack of other palynomorphsindicate Assemblage Zone 4.

Samples 405474 and 405475 are from the lowermostbeds of the Astartekløft Member; they record the firstappearance of Spheripollenites subgranulatus, togetherwith abundant Cerebropollenites macroverrucosus andthe re-appearance of the dinoflagellate cyst Nanno-ceratopsis senex. Sample 405477, also from the Astarte-kløft Member, lacks Spheripollenites subgranulatus butNannoceratopsis senex is common. In sample 405483from the Astartekløft Member, the organic material isblack and indeterminate and thus this sample does notappear on Figure 10. In sample 341269, from the NathorstFjeld Member, Spheripollenites subgranulatus is abun-dant, and in the uppermost sample (341270), also fromthe Nathorst Fjeld Member, Spheripollenites subgranu-

latus is absent but Nannoceratopsis senex is abundanttogether with Cerebropollenites macroverrucosus. It issuggested that the assemblages recorded between sam-ple 405474, at the base of the Astartekløft Member, andthe uppermost sample 341270, in the Nathorst FjeldMember, are compatible with Assemblage Zone 5 asdefined from the Albuen section.

Suggested age. The lowermost part of the succession isreferred to the Upper Pliensbachian based on the abun-dance of Cerebropollenites thiergartii and Chasmato-sporites hians. An Early Toarcian age for the uppermostpart is based on the first appearance and abundanceof both Spheripollenites subgranulatus and Cerebro-pollenites macroverrucosus.

MoskusoksekløftOnly one sample (341260; Nathorst Fjeld Member,Ostreaelv Formation) was investigated from this local-ity; it yielded the dinoflagellate cysts Nannoceratopsissenex and N. triangulata and the pollen Spheripollenitessubgranulatus and Cerebropollenites macroverrucosus(Fig. 12A). This assemblage is referred to AssemblageZone 5.

Suggested age. An Early Toarcian age is proposed basedon the presence of Spheripollenites subgranulatus andCerebropollenites macroverrucosus together with Nanno-ceratopsis senex and N. triangulata.

Harris Fjeld One sample (346741) was studied from this locality,from the lower part of Elis Bjerg Member (Fig. 12B).The palynological assemblage is dominated by poorlypreserved bisaccate pollen and the assemblage wasdeemed too poor to determine to which assemblagezone it belongs.

Primulaelv Three samples (346746, 346745, 346753) were analysedfrom this locality (Fig. 12C), the first two from the ElisBjerg Member and the third from the lowermost mud-stones of the Skævdal Member. The lowermost sampleis tentatively referred to Assemblage Zone 1, based ona very poor assemblage of bisaccates, Pinuspollenites

745

746

Syst

emLo

wer

Jura

ssic

Stag

eTo

arci

an

Paly

nolo

gica

l Ass

embl

. Zon

es

Lith

ostr

atig

raph

yN

atho

rst

Fjel

d M

b

Ost

reae

lv F

orm

atio

n

Sam

ple

heig

ht

359.00Sa

mpl

e nu

mbe

r341260

1D

elto

idos

por

a sp

p.

2St

riat

ella

jura

ssic

a

3Is

chyo

spor

ites

varieg

atus

4Bac

ulat

ispor

ites

sp.

5Sp

heripol

leni

tes

subg

ranu

latu

s

6Cer

ebro

pol

leni

tes

mac

rove

rruc

osus

7Cor

ollin

a to

rosu

s

8Bi

sacc

ate

spp.

9Cor

ollin

a m

eyer

iana

10Cha

smat

ospor

ites

maj

or

11Cer

ebro

pol

leni

tes

thie

rgar

tii

12N

anno

cera

topsis

sene

x

13N

anno

cera

topsis

tria

ngul

ata

14Cym

atio

spha

era

sp.

15Fo

ram

inife

ra s

pp.

16Bot

ryoc

occu

s sp

p.

Alphabetical species list4 Baculatisporites sp.8 Bisaccate spp.

16 Botryococcus spp.6 Cerebropollenites macroverrucosus

11 Cerebropollenites thiergartii

10 Chasmatosporites major

9 Corollina meyeriana

7 Corollina torosus

14 Cymatiosphaera sp.1 Deltoidospora spp.

15 Foraminifera spp.3 Ischyosporites variegatus

12 Nannoceratopsis senex

13 Nannoceratopsis triangulata

5 Spheripollenites subgranulatus

2 Striatella jurassica

A: Moskusoksekløft

5

B: Harris Fjeld

Syst

em?

Stag

e

Lith

ostr

atig

raph

y

?

Paly

nolo

gica

l Ass

embl

. Zon

es

?

Elis

Bje

rg M

b

Gul

e H

orn

Fm

Sam

ple

heig

ht

269.00

Sam

ple

num

ber

346741

1Bacu

latisp

orites

sp.

2Ly

copod

iaci

dites

rugu

latu

s

3D

elto

idos

por

a s

pp

4Rog

alskaispor

ites

cic

atr

icos

us

5Bi

sacc

ate

polle

n

6Chasm

ato

spor

ites

hia

ns

7Pe

rinop

olle

nites

ela

toid

es

8Pi

nusp

olle

nites

min

imus

9Cer

ebro

pol

lenties

thie

rgart

ii

10Ve

sica

spor

a fusc

us

Alphabetical species list1 Baculatisporites sp.5 Bisaccate pollen9 Cerebropollenites thiergartii6 Chasmatosporites hians3 Deltoidospora spp.2 Lycopodiacidites rugulatus7 Perinopollenites elatoides8 Pinuspollenites minimus4 Rogalskaisporites cicatricosus

10 Vesicaspora fuscus

C: Primulaelv

451.00

310.00

346753

346746

1D

elto

idos

por

a s

pp.

2Bacu

latisp

orites

sp.

3Str

iate

lla jura

ssic

a

4M

egas

pore

spp

.

5Ret

itrile

tes

sp.

6Kek

ryphalo

spor

a d

istinct

a

7K

raeu

selis

por

ites

rei

ssin

gerii

8Is

chyo

spor

ites

varieg

atu

s

9M

anum

ia d

elco

urt

ii

10Bi

sacc

ate

spp.

11Cer

ebro

pol

lenites

thie

rgart

ii

12Cor

ollin

a t

oros

us

13Chasm

ato

spor

ites

hia

ns

14Pi

nusp

olle

nites

min

imus

15Spher

ipol

lenites

subgr

anula

tus

16Cer

ebro

pol

lenites

macr

over

ruco

sus

17Chasm

ato

spor

ites

aper

tus

18Chasm

ato

spor

ites

majo

r

19N

annoc

erato

psis

sp.

20N

annoc

erato

psis

senex

21M

anco

din

ium

sem

itabula

tum

22N

annoc

erato

psis

graci

lis

23Bot

ryoc

occu

s sp

p.

Alphabetical species list2 Baculatisporites sp.

10 Bisaccate spp.23 Botryococcus spp.16 Cerebropollenites macroverrucosus11 Cerebropollenites thiergartii17 Chasmatosporites apertus13 Chasmatosporites hians18 Chasmatosporites major12 Corollina torosus1 Deltoidospora spp.8 Ischyosporites variegatus6 Kekryphalospora distincta7 Kraeuselisporites reissingerii

21 Mancodinium semitabulatum9 Manumia delcourtii4 Megaspore spp.

22 Nannoceratopsis gracilis20 Nannoceratopsis senex19 Nannoceratopsis sp.14 Pinuspollenites minimus5 Retitriletes sp.

15 Spheripollenites subgranulatus3 Striatella jurassica

Syst

em

Stag

e

Paly

nolo

gica

l Ass

embl

. Zon

es

Lith

ostr

atig

raph

y

L. P

liens

bach

ian

Gul

e H

orn

FmEl

is B

jerg

Mb

Toar

cian

Ost

reae

lv F

mN

ath.

F. M

bSk

æv.

Mb

Low

er Ju

rass

ic

(m)

Sam

ple

heig

ht

Sam

ple

num

ber

Interval not sampled

450

445

315

3101

5

Rare

Few

Common

Abundant

Fig. 12. Palynomorph distribution charts (for locations, see Fig. 1). A, Ostreaelv Formation (Nathorst Fjeld Member) at Moskusoksekløft.B, Gule Horn Formation (Elis Bjerg Member) at Harris Fjeld. C, Gule Horn Formation (Elis Bjerg Member) and Ostreaelv Formation(Nathorst Fjeld (Nath. F.) and Skævdal (Skæv.) Members) at Primulaelv.

minimus and common Botryococcus sp. The secondsample (346745) was barren and thus does not appearon the distribution chart (Fig. 12C). The uppermostsample is referred to Assemblage Zone 5 on the basisof abundant Spheripollenites subgranulatus, Cerebro-pollenites macroverrucosus and Nannoceratopsis senex.

Suggested age. A Late Pliensbachian age is tentativelysuggested for the lowermost sample (346746) based ona very poor assemblage in which only bisaccates andPinuspollenites minimus are common. An Early Toarcianage is suggested for the uppermost sample (346753)based on abundant Spheripollenites subgranulatus,Cerebropollenites macroverrucosus and Nannoceratopsissenex.

Lepidopteriselv Ten samples (139137–139146) were studied from thissection and all of them are rich in palynomorphs (Fig.13, following page 744). These samples were collected

by Claus Heinberg and Tove Birkelund in 1974, and theywere thus not assigned to the recently-defined mem-bers. However, comparing their field notes with oursedimentological logs, it has been possible to assign thesamples to the Elis Bjerg Member.

The samples 139237–139240 are rich in the sporesDeltoidospora and Baculatisporites, the pollen Pinus-pollenites minimus and Cerebropollenites thiergartii,bisaccate pollen and Botryococcus sp. In sample 139141,the dinoflagellate cyst Nannoceratopsis senex is veryabundant and Botryococcus sp. is rare. Samples139142–139146 are again rich in spores and pollen andBotryococcus sp. whereas dinoflagellate cysts are rare.

The palynological results allow us to suggest thatthe lowermost five samples (139137–139141) belongto Assemblage Zone 2. This is based on the commonoccurrence of Cerebropollenites thiergartii and Nanno-ceratopsis senex. The next five samples (139142–139146)are referred to Assemblage Zone 3 based on the pres-ence of Cerebropollenites thiergartii, Pinuspollenitesminimus and bisaccate pollen and the fact that dinofla-gellate cysts are rare.

747

LiaselvSy

stem

Low

er Ju

rass

ic

Stag

eU

pper

Plie

nsba

chia

n

Paly

nolo

gica

l Ass

embl

. Zon

es

Lith

ostr

atig

raph

yG

ule

Hor

n Fo

rmat

ion

Elis

Bje

rg M

embe

r

(m)

325

315

305

295

Sam

ple

heig

ht325.00

299.00

293.00

Sam

ple

num

ber

346665

346662

346667

1Bacu

latisp

orites

sp.

2D

elto

idos

por

a s

pp.

3Ly

copod

iaci

dites

rugu

latu

s

4Ret

itrile

tes

sem

imuris

5N

eora

istr

ickia

sp.

6Str

iate

lla s

eeber

gensis

7D

enso

ispor

ites

sca

nic

us

8Ret

itrile

tes

sp.

9Bi

sacc

ate

spp.

10Pi

nusp

olle

nites

min

imus

11Pe

rinop

olle

nites

ela

toid

es

12Cer

ebro

pol

lenites

thie

rgart

ii

13Chasm

ato

spor

ites

hia

ns

14Cer

ebro

pol

lenites

macr

over

ruco

sus

15Q

uadra

eculin

a a

nel

laef

orm

is

16Chasm

ato

spor

ites

majo

r

17Ve

sica

spor

a fusc

us

18Cor

ollin

a t

oros

us

19N

annoc

erato

psis

senex

20M

endic

odin

ium

sp.

21M

anco

din

ium

sem

itabula

tum

22D

inoc

yst

spp.

23A

crita

rch

spp.

24Bot

ryoc

occu

s sp

p.

?

Alphabetical species list23 Acritarch spp.1 Baculatisporites sp.9 Bisaccate spp.

24 Botryococcus spp.14 Cerebropollenites macroverrucosus

12 Cerebropollenites thiergartii

13 Chasmatosporites hians

16 Chasmatosporites major

18 Corollina torosus

2 Deltoidospora spp.7 Densoisporites scanicus

22 Dinocyst spp.3 Lycopodiacidites rugulatus

21 Mancodinium semitabulatum

20 Mendicodinium sp.19 Nannoceratopsis senex

5 Neoraistrickia sp.11 Perinopollenites elatoides

10 Pinuspollenites minimus

15 Quadraeculina anellaeformis

4 Retitriletes semimuris

8 Retitriletes sp.6 Striatella seebergensis

17 Vesicaspora fuscus

2

Uncertaindetermination

Very rare

Rare

Few

Common

Abundant

?

R

Fig. 14. Palynomorph distribution chart for the Gule Horn Formation (Elis Bjerg Member) at Liaselv (for location, see Fig. 1).

Suggested age. A Late Pliensbachian age is proposed forthe samples 139137–139146 based on the presence ofCerebropollenites thiergartii, Pinuspollenites minimus,Nannoceratopsis species and Mancodinium semitabu-latum.

LiaselvThree samples (346662, 346665, 346667) were analysedfrom the Elis Bjerg Member (Fig. 14); in general, preser-vation of the palynomorphs is very poor. All three sam-ples are dominated by bisaccate pollen and Botryococcussp. and it is suggested that they belong to AssemblageZone 2.

Suggested age. A Late Pliensbachian age has been sug-gested because of the abundance of Pinuspollenitesminimus and bisaccates.

Horsedal and the Deltoidospora Assemblage Four samples (346696, 346700, 346701, 346703) wereanalysed from the Horsedal Member at Horsedal (Figs15, 16). Sample 346696 was barren. Sample 346700,from a coal bed, yielded an assemblage composed pre-dominantly of laevigate spores (pteridophyte spores)of the genus Deltoidospora. Such an assemblage has notbeen recorded before in samples from the Neill KlinterGroup at Albuen or at any other locality in Jameson Landand Scoresby Land. The assemblage totally lacksmicroplankton. Sample 346701 yielded a more diverseassemblage, but is dominated by bisaccate pollen andBotryococcus sp. The uppermost sample, 346703, yieldedonly bisaccate pollen.

It has not, based on the present material, been pos-sible to place this assemblage within any of the assem-blage zones defined above from the Albuen succession.The assemblage is thus defined as a new assemblage,named the Deltoidospora Assemblage, which is presentlyonly recognised at Horsedal in the Horsedal Memberof the Ostreaelv Formation.

Suggested age. This assemblage is not age specific; itcould occur within any stage of the Jurassic.

Palaeoenvironment. This assemblage is indicative ofan enclosed swamp area (lagoon, pond, small lake)with a dense vegetation of ferns.

Ranunkeldal Seven samples were analysed from this section (Figs 5,6). Samples 341167–341170 were sampled in the upper-most part of the Kap Stewart Group and samples

748

M

Si Pb

Sand

815

820

346700

825

346703

346701

830

m

Horsedal

Wav

e- a

nd s

torm

-dom

inat

ed la

goon

Del

toid

ospor

a A

ssem

blag

eO

stre

aelv

For

mat

ion

Hor

seda

l Mem

ber

Fig. 15. Sedimentological log through part of the Horsedal Member(Ostreaelv Formation) in Horsedal (for location, see Fig. 1).Sample numbers are indicated; arrows denote grain-size trends.For legend, see Fig. 3.

341171–341173 are from the Elis Bjerg Member of theGule Horn Formation. Preservation of the palynomorphsfrom all these samples is very poor. However, the paly-nomorph assemblages are dominated by the laevigatespore Deltoidospora sp., bisaccate pollen, Chasmato-sporites hians, Cerebropollenites thiergartii and Quadrae-culina anellaeformis. Botryococcus sp. is present in allsamples, but is only abundant in the uppermost sam-ple. In sample 341168, a dinoflagellate cyst has beenfound; it is similar to Mendicodinium reticulatum, butshows some anomalous features. The occurrence ofthis dinoflagellate cyst suggests that the environmentwas influenced by brackish waters, at least for a shorttime. A single Nannoceratopsis gracilis cyst was observedin sample 341171 from 306 m. In this sample, aTasmanites was found together with a poorly preservedforaminiferal inner-lining. In the uppermost sample,several Leiofusa jurassica were recorded.

The palynomorph assemblages from the Kap StewartGroup in Ranunkeldal are suggested to belong to aseparate assemblage zone. The samples from the ElisBjerg Member are referred to Assemblage Zone 1.

Suggested age. A ?Late Sinemurian age is suggested forthe Kap Stewart Group samples because of the occur-rence of the dinoflagellate comparable to Mendico-dinium reticulatum. This species has been found onBornholm, Denmark in sediments of latest Sinemurianand earliest Pliensbachian age (Batten et al. 1994;Koppelhus & Nielsen 1994). A Pliensbachian age is sug-

gested for the Elis Bjerg Member samples because ofthe presence of Nannoceratopsis gracilis.

Palaeoenvironment. A non-marine, freshwater envi-ronment is indicated for the Kap Stewart Group sam-ples, although the presence of a dinoflagellate cyst insample 341168 suggests the influence of brackish water,albeit only temporarily. The samples from the Elis BjergMember indicate marine influence.

Depositional environments and assemblage zonesThe palynological results presented above provide anadditional dataset with which to constrain palaeoenvi-ronmental and sequence stratigraphic interpretations.In the following section, the individual palynologicalassemblage zones, together with the DeltoidosporaAssemblage, are discussed in relation to the sedimen-tological and stratigraphic data.

Assemblage Zone 1:Cerebropollenites thiergartii – Pinuspollenitesminimus – Botryococcus

This assemblage zone is characteristic of the sedimen-tary succession referred to sequence SQ2 of Dam &Surlyk (1995, 1998) at Qupaulakajik, Albuen and

749

HorsedalSy

stem

Stag

e

Lith

ostr

atig

raph

yO

stre

aelv

For

mat

ion

Hor

seda

l Mem

ber

Paly

nolo

gica

l Ass

embl

age

? ?

Del

toid

ospor

a

(m)

825

815

Sam

ple

heig

ht828.00

823.00

813.00

Sam

ple

num

ber

346703

346701

346700

1D

elto

idos

por

a s

pp.

2Bacu

latisp

orites

sp.

3Cala

mos

por

a t

ener

4Ret

itrile

tes

sp.

5N

eora

istr

ickia

sp.

6Ret

itrile

tes

aust

rocl

ava

toid

es

7Ly

copod

iaci

dites

rugu

latu

s

8D

enso

ispor

ites

sca

nic

us

9Chasm

ato

spor

ites

majo

r

10Pe

rinop

olle

nites

ela

toid

es

11Cer

ebro

pol

lenites

thie

rgart

ii

12Spher

ipol

lenites

psila

tus

13Cer

ebro

pol

lenites

macr

over

ruco

sus

14Chasm

ato

spor

ites

hia

ns

15Pi

nusp

olle

nites

min

imus

16Bi

sacc

ate

spp.

17Ve

sica

spor

a fusc

us

18Q

uadra

eculin

a a

nel

laef

orm

is

19Pa

reod

inia

halo

sa

20M

endic

odin

ium

sp.

21N

annoc

erato

psis

sp.

22Bot

ryoc

occu

s sp

p.

?

Alphabetical Species List2 Baculatisporites sp.

16 Bisaccate spp.22 Botryococcus spp.3 Calamospora tener

13 Cerebropollenites macroverrucosus

11 Cerebropollenites thiergartii

14 Chasmatosporites hians

9 Chasmatosporites major

1 Deltoidospora spp.8 Densoisporites scanicus

7 Lycopodiacidites rugulatus

20 Mendicodinium sp.21 Nannoceratopsis sp.5 Neoraistrickia sp.

19 Pareodinia halosa

10 Perinopollenites elatoides

15 Pinuspollenites minimus

18 Quadraeculina anellaeformis

6 Retitriletes austroclavatoides

4 Retitriletes sp.12 Spheripollenites psilatus

17 Vesicaspora fuscus

Uncertaindetermination

Rare

Few

Common

Abundant

?

Fig. 16. Palynomorph distribution chart for the Horsedal Member (Ostreaelv Formation) in Horsedal (for location, see Fig. 1).

Goniomyakløft, which consists of the upper part of theRævekløft Formation and the lowermost part of the ElisBjerg Member (Fig. 17). It is also present in the lowerpart of sequence SQ3 at Primulaelv, however, and inthe lowermost part of the Elis Bjerg Member in Ranunkel-dal, just above the Kap Stewart Formation. The base ofthe assemblage zone thus coincides with the base ofsequence SQ1 (i.e. SB1) and the zone extends up intothe lowermost part of sequence SQ3 of Dam & Surlyk(1995, 1998). At the studied locations, the upper partof the Rævekløft Formation consists of cross-bedded,fossiliferous medium- to very coarse-grained sandstones(Fig. 7), interpreted to represent fields of dunes orshoreface ridges on the shoreface (Dam & Surlyk 1995,1998). In the Elis Bjerg Member, the assemblage is pre-sent in subtidal sand sheet, shoreface and offshore tran-sition deposits (Figs 3A, 5). The Rævekløft Formationis capped by an important drowning surface that definesthe base of the Elis Bjerg Member (Figs 7, 17; Dam &Surlyk 1995, 1998).

The palynological assemblage is uniform, being dom-inated by bisaccate pollen and the freshwater to brack-ish alga Botryococcus sp. Spores include commonDeltoidospora and Baculatisporites sp., and locallyLycopodiacidites rugulatus. Among the pollen, Pinus-pollenites minimus and Cerebropollenites thiergartii arecommon. Acritarchs are rare and dinoflagellate cysts areabsent with the exception of one Nannoceratopsis gra-cilis cyst and the undetermined dinoflagellate cyst (cf.Mendicodinium reticulatum) from the Ranunkeldalsection. The assemblage probably reflects a vegetationwith few fern species and several gymnosperm species.These grew close to a fresh or brackish water envi-ronment, where the Botryococcus algae lived. Whenseen in the light of the strong marine indicators pro-vided by the macrofossils, sedimentary structures andichnology, it is suggested that this palynomorph assem-blage is dominantly allochthonous, having been trans-ported from a terrestrial to a shallow marine environ-ment. Similar palynomorph assemblages are knownfrom other areas, for example in the uppermostSinemurian and lowermost Pliensbachian of Bornholmin the Baltic Sea (Koppelhus & Nielsen 1994).

Assemblage Zone 2:Nannoceratopsis–Botryococcus

The assemblage zone is characteristic of the middlepart of the Elis Bjerg Member at Albuen, Lepidopteriselvand Liaselv in subtidal sand sheet and storm-dominated

shoreface deposits, but also occurs in similar depositsin the lower part of the member at Goniomyakløft andthe upper part of the member at Qupaulakajik (Figs 2,17). The assemblage zone is most characteristic of thelower part of sequence SQ3 of Dam & Surlyk (1995,1998), but is also locally present in the uppermost partof sequence SQ2 (Fig. 17). The top is placed below thetransition from subtidal sand sheet deposits to tidalchannel deposits of the Elis Bjerg Member (Fig. 3A).

The palynomorph assemblage is dominated by thesame spores, pollen and Botryococcus sp. that charac-terise Assemblage Zone 1, but the incoming of Nanno-ceratopsis senex, N. gracilis, Parvocysta barbata andMancodinium semitabulatum together with Limbicystabjaerkei and a few more acritarchs indicates an increasein marine influence. In most of the samples, there arebetween three and seven different dinoflagellate cystspecies and between one and five acritarch species.

The marine interpretation of this palynomorph assem-blage zone is in agreement with the sedimentologicaland ichnological data, which also indicate a shallowmarine environment (Dam & Surlyk 1995, 1998).

Assemblage Zone 3:Chasmatosporites – Cerebropollenites thiergartii– Botryococcus

The assemblage is characterised by rare dinoflagellatecysts such as Mendicodinium reticulatum and Nanno-ceratopsis spp. A few acritarchs are present, togetherwith abundant pollen and Botryococcus. The assemblageis present in the upper part of the Elis Bjerg Member,but may extend into the lowermost part of the AlbuenMember (Fig. 17). Assemblage Zone 3 is dominantly pre-sent in stacked tidal channel and wave- and storm-dom-inated shoreface deposits (Fig. 3A; Dam & Surlyk 1995,1998), whereas the sample from the Albuen Memberwas from heterolithic lower shoreface deposits. Thebase of the assemblage zone is placed just below thetransition from subtidal sand sheet deposits to tidalchannel deposits. At Albuen, the top of the zone occursjust beneath the boundary between tidal channeldeposits of the Elis Bjerg Member and storm-dominatedoffshore transition deposits of the Albuen Member; thisboundary has been interpreted as a coalesced sequenceboundary and transgressive surface (Dam & Surlyk1995, 1998). At Astartekløft, however, the lowermost sam-ple in the Albuen Member is also referred to AssemblageZone 3 (Fig. 10).

750

751

050

100

150

km

50 m

HST

HST

HST

HST

HST

TST

TST

SQ6

SQ5

SQ7

SQ4

SQ3

SQ2

SQ1

Tre

fjord

Bje

rg

Qupaulakajik/Rævekløft

Albuen

Goniomyakløft

Astartekløft

Moskusoksekløft

Harris Fjeld (N)

Nathorst Fjeld

Dusén BjergT

idal

cha

nnel

s an

dsu

btid

al s

hoal

s

Rhætelv

Horsedal

Halten Terrace,Norway

Lepidopteriselv/Liaselv

Primulaelv

Harris Fjeld (S)

Ast

arte

kløf

t/H

orse

dal

Skæ

vdal

Mb

Fm

Sortehat Ostreaelv Gule Horn

Alb

uen

Elis

Bje

rg

vekl

øft

TST

TST

TST

HST

TST

TSTLST

Nat

hors

t Fj

eld/

Har

ris

Fjel

d/Le

pido

pter

isel

v

Sout

hN

orth

Shor

efac

e

Ter

min

al lo

be

Lago

on

Offs

hore

tra

nsiti

on

Faci

es a

ssoc

iatio

n bo

unda

ry

Sequ

ence

bou

ndar

y

Maj

or fl

oodi

ng s

urfa

ce

Not Ile Ror

Tilj

e

Åre

Ass

embl

age

Zon

e 4

Ass

embl

age

Zon

e 3

Ass

embl

age

Zon

e 2

Ass

embl

age

Zon

e 1

Del

toid

ospor

a A

ssem

blag

e

Ass

embl

age

Zon

e 7

Ass

embl

age

Zon

e 6

Ass

embl

age

Zon

e 5

Fig.

17.

North–s

outh

corr

elat

ion p

anel

of th

e Lo

wer

– lo

wer

Mid

dle

Jura

ssic

Nei

ll K

linte

r G

roup o

f Ja

mes

on L

and, E

ast G

reen

land s

how

ing

the

dis

trib

utio

n o

f th

e pal

ynolo

gica

l ass

em-

bla

ge z

ones

rep

orted

her

e re

lativ

e to

the

mai

n s

equen

ce s

trat

igra

phic

ele

men

ts a

nd th

e dep

osi

tional

envi

ronm

ents

. The

corr

elat

ive

form

atio

ns

of th

e H

alte

n T

erra

ce, o

ffsh

ore

Norw

ay,

are

show

n o

n the

righ

t-han

d s

ide

of th

e figu

re. N

ote

that

pal

ynolo

gica

l dat

a ar

e sc

arce

north o

f Ast

arte

kløft. The

dotted

ver

tical

lin

es indic

ate

the

loca

litie

s on w

hic

h the

sequen

cest

ratig

raphic

inte

rpre

tatio

n o

f D

am &

Surlyk

(19

98)

is b

ased

. Ass

embla

ge Z

ones

8 a

nd 9

in the

Sorteh

at F

orm

atio

n a

re n

ot in

dic

ated

; th

e re

ader

is

refe

rred

to K

oppel

hus

& H

anse

n(2

003,

this

volu

me)

. Fi

gure

modifie

d fro

m D

am &

Surlyk

(19

98). S

Q, se

quen

ce;

LST, lo

wst

and s

yste

ms

trac

t; T

ST, tran

sgre

ssiv

e sy

stem

s trac

t; H

ST, hig

hst

and s

yste

ms

trac

t.

The shift from Assemblage Zone 2 to AssemblageZone 3 records a change from a marine setting to anenvironment with a strongly terrestrial character, albeitwith evidence of periodic marine influence. This flo-ral/faunal change is compatible with the sedimento-logical record (Dam & Surlyk 1995, 1998), whichindicates a change from subtidal sand sheet depositionin a shallow marine environment to a tidal channelenvironment, where a larger degree of terrestrial influ-ence is to be expected.

Assemblage Zone 4: BisaccatesThis palynomorph assemblage is very uniform, beingdominated overwhelmingly by bisaccate pollen. Thecombined data from the Albuen and Astartekløft sec-tions suggest that the assemblage characterises muchof the Albuen Member of the Gule Horn Formation. AtAlbuen, the base of the assemblage zone occurs imme-diately above the coalesced sequence boundary andtransgressive surface that separates the Elis Bjerg andAlbuen Members (Fig. 3B; SB4 of Dam & Surlyk 1995,1998); at Astartekløft, in contrast, Assemblage Zone 3straddles this sequence boundary, Assemblage Zone 4being recognised only in the uppermost levels of theAlbuen Member (Fig. 10).

The upper levels of the Albuen Member proved inac-cessible at Albuen and were not sampled; the top ofthe zone is placed at the uppermost sample, some 12 mbelow the top of the member. At Astartekløft, however,detailed sampling across the boundary between theAlbuen and Astartekløft Members demonstrated thatthe boundary between Assemblage Zones 4 and 5 coin-cides closely with this surface which is interpreted asa sequence boundary (Figs 9, 10, 17; SB5 of Dam &Surlyk 1995, 1998).

The Albuen Member is heterolithic, being composedof alternating mudstones and well-sorted fine-grainedsandstones deposited in a storm-dominated lowershoreface environment (Dam & Surlyk 1995, 1998). Afew coarse-grained pebbly sheets, moulded into largesymmetrical ripples, and massive sandy mudstonesdeposited from debris flows are commonly interbed-ded with the heterolithic deposits.

It is well-known that bisaccate pollen is commonlyconcentrated in distal marine settings, beyond the reachof other terrestrial palynomorphs. On this basis, thisassemblage could therefore be interpreted to reflect anoffshore marine environment, beyond the depositionalrange of other land-derived elements. The sedimento-

logical data, however, testify to a lower shoreface envi-ronment (Dam & Surlyk 1998), and other land-derivedelements should therefore be present. The absence ofmarine palynomorphs is also difficult to explain. Asdiscussed earlier, such thin-walled forms may have beenselectively destroyed by thermal effects caused by theintrusion of volcanics into the sediments. Alternatively,the lack of marine palynomorphs could reflect partial iso-lation of the embayment resulting in the developmentof a fresh to brackish water environment; this could alsoexplain the lack of tidal indicators in this member.

Assemblage Zone 5:Spheripollenites subgranulatus – Cerebropollenitesmacroverrucosus – Luehndea spinosa

The base of Assemblage Zone 5 in the Albuen sectionis characterised by the sudden incoming of Spheri-pollenites subgranulatus and the reappearance of dinofla-gellate cysts together with a more diverse pollen floraand the freshwater alga Botryococcus sp. In sample405466 at 259 m in the Albuen section (Figs 3B, 4A),Luehndea spinosa appears for the first time together withcommon spherical dinocysts that are of unknown affin-ity, but have been recorded from Spitsbergen, the DanishSubbasin and Bornholm, Denmark (Bjærke 1980a;Dybkjær 1991; Koppelhus & Nielsen 1994).

At Astartekløft, the lower zone boundary is placedjust above the sequence boundary between the Albuenand Astartekløft Members (Figs 9, 17; SB5 of Dam &Surlyk 1995); the upwards extent of the zone is poorlyconstrained at this locality. At Albuen, the upper bound-ary of the zone is placed approximately 10 m belowthe drowning surface that separates the heavily bio-turbated shoreface sandstones of the Nathorst FjeldMember from bioturbated shelf deposits of the SkævdalMember (Fig. 3C). At Primulaelv, a single sample showsthat this assemblage is also present just above the drown-ing surface (Fig. 17). Along Neill Klinter, the AstartekløftMember includes three facies associations, tidal chan-nel, subtidal sand sheet and storm-dominated sandyshoal associations (Fig. 3B). The tidal channel and sub-tidal sand sheet deposits are similar to those of the ElisBjerg Member, discussed above under AssemblageZones 2 and 3. The storm-dominated sandy shoaldeposits form a laterally continuous succession, com-posed of well-sorted fine- to medium-grained sand-stone beds (Dam & Surlyk 1995, 1998). The NathorstFjeld Member forms a single coarsening-upwardssuccession consisting of alternating silty mudstones and

752

thin laminae of very fine- to fine-grained sandstones,grading upwards into fine- to coarse-grained sand-stones. The sandstones are cross-bedded, wave ripplecross-laminated, hummocky cross-stratified and bio-turbated. The coarsening-upwards succession reflectsan increase in energy with time and is interpreted torecord progressive shallowing from an offshore transi-tion setting to a shoreface environment.

The Spheripollenites subgranulatus – Cerebropollenitesmacroverrucosus – Luehndea spinosa assemblage com-prises a mixture of spores, pollen, a few dinoflagellatecyst species and acritarchs and the freshwater algaBotryococcus. The assemblage zone indicates a brack-ish to marine environment with a large input of terres-trial material. This is in accordance with the sedi-mentological data indicating various environments in amarginal shallow marine setting.

Assemblage Zone 6: Perinopollenites elatoides

Assemblage Zone 6, which is typical of the Skævdal andthe Trefjord Bjerg Members (Fig. 17) is characterised bythe abundance of the pollen Perinopollenites elatoidesand the absence or scarcity of Spheripollenites sub-granulatus. Overall, the palynomorph assemblage isdominated by different pollen species but dinoflagel-late cysts are also significant, including Dissiliodiniumsp., Phallocysta eumekes, Pareodinia halosa, andKallospharidium sp.; acritarchs are also present.

At Albuen, in the south-eastern part of the basin, thelower boundary is placed some 10 m below the drown-ing surface that defines the top of the Nathorst FjeldMember (Figs 3C, 17). The upper boundary of theassemblage zone at Albuen is placed at 434 m in theupper Trefjord Bjerg Member. Succeeding samples, justbelow the boundary between the Trefjord Bjerg Memberand the Sortehat Formation, are referred to AssemblageZone 7, which is characteristic of the lower SortehatFormation (Figs 3C, 17). At 437 m, between these twosampled levels, is an erosional surface that is drapedby well-rounded quartzite pebbles up to 3 cm across;this surface is defined as a sequence boundary (SB7 ofDam & Surlyk 1998).

The Skævdal Member consists of bioturbated muddysandstones and deposition probably took place in alow-energy shelf environment (Dam & Surlyk 1995,1998). Primary physical structures only occur locallyand include wave ripple cross-lamination, cross-lami-nation and cross-bedding. Stratigraphic variations inthe mud content suggests that the heavily bioturbated

muddy sandstones were originally deposited as het-eroliths (Dam & Surlyk 1995, 1998).

The Skævdal Member is truncated by a prominentbasinwide erosional unconformity, in places draped bya lag conglomerate. The unconformity marks a basin-wide seawards shift in facies and is interpreted as asequence boundary (SB6 of Dam & Surlyk 1995, 1998).At Albuen, the sequence boundary is overlain by sub-tidal cross-bedded sandstones of the Trefjord BjergMember deposited in an extensive subtidal dune field.

The palynomorph Assemblage Zone 6 is indicativeof deposition in a marine environment with a largeinput of terrigenous material. This is in accordance withthe sedimentological data that indicate a shallow marineenvironment (Dam & Surlyk 1995, 1998).

Assemblage Zone 7: Botryococcus

This assemblage is characterised by abundant Botry-ococcus. In a few samples near the lower boundary ofthe zone, both Botryococcus and dinoflagellate cystsoccur in abundance, but the latter become rare upwardswithin the zone; the top of the zone is marked by there-appearance of dinoflagellate cysts and the disap-pearance of Botryococcus. The depositional environmentof this assemblage zone is discussed in detail in an accom-panying paper (Koppelhus & Hansen 2003, this volume).

Deltoidospora Assemblage This assemblage is restricted to the Horsedal Memberin the northern part of the basin (Figs 15–17). Thismember is made up of minor coarsening-upwards suc-cessions, 1–6 m thick, deposited in wave-dominatedbeaches or delta systems that prograded into an exten-sive lagoonal environment (Dam & Surlyk 1995, 1998).

The palynomorph assemblage is overwhelminglydominated by laevigate spores (pteridophyte spores) ofthe genus Deltoidospora and is suggestive of an enclosedswamp area (lagoon, pond, small lake) with a densevegetation of ferns. This is in close agreement with thedepositional environment suggested by sedimentaryfacies analysis (Dam & Surlyk 1995, 1998).

Discussion and conclusionsSeven palynological assemblage zones have been recog-nised in the Rævekløft, Gule Horn and Ostreaelv

753

Formations of the Neill Klinter Group (Fig. 17). Six ofthese are defined in this paper; the uppermost zone isdefined by Koppelhus & Hansen (2003, this volume)in an accompanying paper as it is most characteristicof the overlying Sortehat Formation, the uppermost for-mation of the Neill Klinter Group (Koppelhus & Hansen2003, this volume). In addition, an assemblage termedthe Deltoidospora Assemblage is defined here from theHorsedal section.

The seven palynological assemblage zones were allrecognised primarily on the basis of data from theAlbuen section but additional data from other localitiessuggest that the zones may have a basinwide distri-bution (Figs 17, 18). The palynological assemblagescontain a diverse palynoflora, including 136 species. Theassemblages indicate that the Neill Klinter Group spansthe Early Pliensbachian to early Aalenian, without anymajor breaks in the stratigraphic record. The study

754

AZ7

AZ6

AZ5

AZ4

AZ5

AZ3

AZ3

AZ2

AZ1

SB7

SB6

SB5

SB4

SB3

SB2

SB1

Aal

enia

nTo

arci

anLa

te P

liens

bach

ian

Sort

ehat

Fm

Ost

reae

lv F

mN

eil K

linte

r G

roup

Gul

e H

orn

FmR

æve

kløf

t Fm

KS

Sin.

Earl

y Pl

iens

-ba

chia

n

Skæ

vdal

Mb

Nat

hors

t Fj

eld

Mb

Ast

arte

kløf

t M

bEl

is B

jerg

Mb

Alb

uen

Mb

Tref

jord

Bjer

g M

b

?

AZ2

AZ5

AZ3

AZ2 AZ2

AZ1 AZ1

AZ2

AZ4

AZ1

AZ5

Alb

uen

Ast

arte

kløf

t

vekl

øft

Gon

iom

yakl

øft

Lepi

dopt

eris

elv

Lias

elv

Ran

unke

ldal

Har

ris

Fjel

dPr

imul

aelv

Mos

kuso

ksek

løft

AZ1

Fig. 18. Correlation diagram showing thestratigraphic distribution of the palyno-logical assemblage zones (AZ1–7) at thestudied locations (see Fig. 1). Note thatthe boundaries between AssemblageZones 1 and 2 and between AssemblageZones 3 and 4 are ‘diachronous’ relativeto sequence boundaries SB3 and SB4respectively. KS, Kap Stewart Group;Sin., Sinemurian.

755

shows that the palynomorph flora of the Neill KlinterGroup is strongly influenced by the amount of organicmatter derived from land plants and freshwater envi-ronments, yet the brackish and marine microplanktonplay a very important role in the interpretation of theenvironment and in establishing a palynostratigraphyfor the group.

Comparing the sequence stratigraphic frameworkdeveloped by Dam & Surlyk (1995, 1998) with the dis-

tribution of the palynological assemblages, it is clear thatsome of the major sequence stratigraphic and litho-logical boundaries are reflected by changes in the assem-blages. Assemblage Zones 1–3 are characteristic ofsequences SQ1–3. Figures 17 and 18 illustrate that theboundary between Assemblages 1 and 2 is diachro-nous on a regional scale with respect to the importantsequence stratigraphic surfaces (e.g. SB3). Given thatthe sole difference between these two zones is the pres-

Boreal ammonitezones

Palyno-events inEast Greenland

Palyno-events onthe mid-Norwegian shelf

OpalinumAal

enia

nPl

iens

bach

ian

Low

erLo

wer

Upp

erU

pper

Toa

rcia

n

Levesquei

Thouarsense

Variabilis

Bifrons

Falciferum

Tenuicostatum

Spinatum

Margaritatus

Davoei

Ibex

Jamesoni

Pareodinia halosa commonBotryococcus spp. acme

Callialasporites dampieri FADWallodinium laganum FAD

Pareodinia halosa FAD

Perinopollenites elatoides acme

AbundantCerebropollenites macroverrucosus

Luehndea spinosa FADCerebropollenites thiergartii

becomes rareSpheripollenites acme

Only bisaccate pollenCerebropollenites thiergartii

dinoflagellate cysts

Parvocysta sp. FADMancodinium semitabulatum

Nannoceratopsis senex/gracilis FAD

Abundant Botryococcus spp.

Wallodinium laganum acme

Callialasporites dampieri FAD

Increasing Parvocysta sp.Comparodinium sp. FADabundant Perinopollenites elatoides

Nannoceratopsis gracilis/senex acme

Sphaeromorph clusters acmeChasmatosporites sp.N. gracilis/senex acme

Sphaeromorph clusters acmeChasmatosporites sp.N. gracilis/senex acme

Sphaeromorph clusters acmeChasmatosporites sp.N. gracilis/senex acmeSpheripollenites acmeAbundant–common L. spinosa

Luehndea spinosa FADC. thiergartii present but becomesrare in younger sediments

Mancodinium semitabulatum

N. senex/gracilis FADAbundant–common Botryococcus spp.

Common acritarchs

Fig. 19. Diagram showing major palyno-events in the Neill Klinter Groupcompared to the Early Jurassic palyno-events recorded from the Halten Terrace,mid-Norwegian shelf (I. Throndsen,personal communication 1996). FAD, firstappearance datum.

756

ence/absence of marine dinoflagellates, such diachrone-ity is not surprising. It can be attributed to variations interrestrial input and the dominance of the freshwaterplume laterally along the basin margin.

The transition from Assemblage Zone 2 to AssemblageZone 3 is marked by a decrease in dinoflagellate cystswhich coincides with a gradual overall change from adominance of subtidal sand sheet deposits to a domi-nance of tidal channel deposits in the upper part of theElis Bjerg Member (Figs 3A, 17; Dam & Surlyk 1998).The strengthening of the terrestrial signal recorded bythe change in the palynological assemblage is thus inaccordance with the sedimentological record.

At Albuen, sequence boundary SB4 separatesAssemblage Zones 3 and 4; at Astartekløft, however, asample from a few metres above the sequence bound-ary is referred to Assemblage Zone 3. This may be dueto reworking of the uppermost sediments of the Elis BjergMember in the underlying sequence. Palynological datafrom the Astartekløft section suggest that SB5 separatesAssemblage Zones 4 and 5, whereas the transition fromAssemblage Zone 5 to 6 appears to be diachronous(Fig. 17).

Sequence boundary SB7 separates Assemblage Zones6 and 7 (Fig. 17). With respect to the sequence strati-graphic interpretation given by Dam & Surlyk (1995),an important conclusion of this study is that AssemblageZone 7, characteristic of the lower part of the overly-ing Sortehat Formation (Koppelhus & Hansen 2003,this volume), also occurs in the uppermost few metresof the Trefjord Bjerg Member at Albuen, above a later-ally persistent erosional surface with a conglomerate lag(Figs 3C, 17). At other localities, a thin conglomeratelayer separates the Trefjord Bjerg Member and theSortehat Formation. Dam & Surlyk (1995) interpretedthe Trefjord Bjerg Member – Sortehat Formation bound-ary as a coalesced sequence boundary and transgres-sive surface. However, the palynological data suggestthat at Albuen the sequence boundary should be placedbeneath this boundary, at the conglomerate-draped ero-sional surface, and thus that the uppermost sandstones(c. 3 m thick) of the Trefjord Bjerg Member representa thin lowstand or transgressive package (Figs 3C, 17).Moreover, the palynological data suggest that the inferredmajor flooding surfaces in the sequence stratigraphicanalysis (i.e. base Albuen Member and base SortehatFormation), may in fact record partial isolation of theembayment from the seaway between Norway andGreenland causing a freshwater to brackish environmentto develop. This would also explain the lack of tidalindicators in the Albuen Member. If this is the case, the

Albuen Member does not represent transgressive andhighstand deposits in a sequence stratigraphic sense,but rather a period of physical isolation of the basin fromthe sea.

The palynostratigraphy has proven to be an impor-tant tool in confirming the high-resolution sequencestratigraphic correlation between East Greenland andthe Halten Terrace of the mid-Norwegian shelf pro-posed by Dam & Surlyk (1995). This detailed palyno-logical study should make it possible to correlate to otherlocalities in the North Atlantic and to the mid-Norwegianarea and the northern part of the North Sea. The pat-tern of events seen in the East Greenland material ismirrored by data from the Halten Terrace. Thus, accord-ing to I. Throndsen (personal communication 1996), thePliensbachian is characterised by common to abundantBotryococcus; this is followed by the incoming of thedinoflagellate cysts Nannoceratopsis gracilis, N. senexand Mancodinium semitabulatum together with com-mon to abundant Cerebropollenites thiergartii pollen andabundant bisaccate pollen in the Upper Pliensbachian(Fig. 19). The dinoflagellate cyst Luehndea spinosaoccurs in the uppermost Pliensbachian and lowermostToarcian together with Nannoceratopsis gracilis and N.senex followed by an acme of Spheripollenites sub-granulatus together with the sphaeromorph clusters. Inthe Upper Toarcian, the dinoflagellate cyst Parvocystacomplex appears together with abundant Perinopolleniteselatoides pollen and the first Callialasporites dampieriappear together with the dinoflagellate cyst Wallodiniumin the lowermost Aalenian.

AcknowledgementsThe work carried out in connection with this projectby E.B.K. was supported by a grant from the EFP-93Projects 1313/93-0010 and 0017. The work of G.D. hasbeen supported by BP Exploration Operating CompanyLimited, London, and the Carlsberg Foundation. Themanuscript was read by Karen Dybkjær, James B. Riding,Jon R. Ineson and Finn Surlyk who offered many help-ful suggestions. In particular, we thank Ingar Throndsenwho placed unpublished data from the Halten Terraceat our disposal, Henrik Nøhr-Hansen for patient assis-tance with the range charts and Jon R. Ineson for care-ful editing of the manuscript.

ReferencesBatten, D.J., Koppelhus, E.B. & Nielsen, L.H. 1994: Uppermost

Triassic to Middle Jurassic palynofacies and palynomiscel-lanea in the Danish Basin and Fennoscandian Border Zone.Cahiers de Micropaléontologie 9, 21–45.

Bjærke, T. 1980a: Mesozoic palynology of Svalbard V. Dino-flagellates from the Agardhfjellet Member (Middle and UpperJurassic) in Spitsbergen. Norsk Polarinstitutt Skrifter 172,145–167.

Bjærke, T. 1980b: Mesozoic palynology of Svalbard IV. Toarciandinoflagellates from Spitsbergen. Palynology 4, 57–77.

Bromley, R.G. & Asgaard, U. 1979: Triassic freshwater ichno-coenoses from Carlsberg Fjord, East Greenland. Palaeo-geography, Palaeoclimatology, Palaeoecology 28, 39–80.

Callomon, J.H. 1961: The Jurassic system in East Greenland. In:Raasch, G.O. (ed.): Geology of the Arctic 1, 258–268. Toronto:University of Toronto Press.

Clemmensen, L.B. 1978a: Alternating aeolian, sabkha and shal-low-lake deposits from the Middle Triassic Gipsdalen Formation,Scoresby Land, East Greenland. Palaeogeography, Palaeo-climatology, Palaeoecology 24, 111–135.

Clemmensen, L.B. 1978b: Lacustrine facies and stromatolites fromthe Middle Triassic of East Greenland. Journal of SedimentaryPetrology 48, 1111–1128.

Clemmensen, L.B. 1979: Triassic lacustrine red-beds and palaeo-climate: the ‘Buntsandstein’ of Helgoland and the Malmros KlintMember of East Greenland. Geologische Rundschau 68,748–774.

Clemmensen, L.B. 1980a: Triassic rift sedimentation and palaeo-geography of central East Greenland. Bulletin GrønlandsGeologiske Undersøgelse 136, 72 pp.

Clemmensen, L.B. 1980b: Triassic lithostratigraphy of East Green-land between Scoresby Sund and Kejser Franz Josephs Fjord.Bulletin Grønlands Geologiske Undersøgelse 139, 56 pp.

Dam, G. 1990a: Taxonomy of trace fossils from the shallow marineLower Jurassic Neill Klinter Formation, East Greenland. Bulletinof the Geological Society of Denmark 38, 119–144.

Dam, G. 1990b: Palaeoenvironmental significance of trace fos-sils from the shallow marine Lower Jurassic Neill KlinterFormation, East Greenland. Palaeogeography, Palaeoclima-tology, Palaeoecology 79, 221–248.

Dam, G. 1991: A sedimentological analysis of the continental andshallow marine Upper Triassic to Lower Jurassic successionin Jameson Land, East Greenland, 243 pp. Unpublished Ph.D.thesis, University of Copenhagen, Denmark.

Dam, G. & Surlyk, F. 1992: Forced regressions in a large wave-and storm-dominated anoxic lake, Rhaetian–Sinemurian KapStewart Formation, East Greenland. Geology 20, 749–752.

Dam, G. & Surlyk, F. 1993: Cyclic sedimentation in a large wave-and storm-dominated anoxic lake; Kap Stewart Formation(Rhaetian–Sinemurian), Jameson Land, East Greenland. In:Posamentier, H.W. et al. (eds): Sequence stratigraphy andfacies associations. International Association of Sedimentolo-gists Special Publication 18, 419–448.

Dam, G. & Surlyk, F. 1995: Sequence stratigraphic correlation ofLower Jurassic shallow marine and paralic successions across

the Greenland–Norway seaway. In: Steel, R.J. et al. (eds):Sequence stratigraphy on the Northwest European margin.Norwegian Petroleum Society (NPF) Special Publication 5,483–509.

Dam, G. & Surlyk, F. 1998: Stratigraphy of the Neill Klinter Group;a Lower – lower Middle Jurassic tidal embayment succession,Jameson Land, East Greenland. Geology of Greenland SurveyBulletin 175, 80 pp.

Doyle, P. 1991: Belemnites from the Lower Jurassic of East Green-land and their biostratigraphical and biogeographical signi-ficance. Bulletin of the Geological Society of Denmark 39,123–141.

Dybkjær, K. 1991: Palynological zonation and palynofacies inves-tigation of the Fjerritslev Formation (Lower Jurassic – basalMiddle Jurassic) in the Danish Subbasin. Danmarks GeologiskeUndersøgelse Serie A 30, 150 pp.

Engkilde, M. 1994: The Middle Jurassic Vardekløft Formation,East Greenland: depositional environments and sequencestratigraphy of shallow marine sandstones deposited in a low-gradient epeiric seaway, 207 pp. Unpublished Ph.D. thesis,University of Copenhagen, Denmark.

Feist-Burkhardt, S. & Monteil, E. 1994: Wallodinium cylindricumand ‘Wallodinium elongatum’: stratigraphic problem and tax-onomical solution. Cahiers de Micropaléontologie 9, 5–15.

Fenton, J. & Riding, J.B. 1987: Kekryphalospora distincta gen. etsp. nov., a trilete spore from the Lower and Middle Jurassicof North-West Europe. Pollen et Spores 19, 427–434.

Guy-Ohlson, D. 1988: Toarcian palynostratigraphical correlationswithin and between different biogeographical provinces. In:Rocha, R.B. & Soares, A.F. (eds): 2nd International Symposiumon Jurassic Stratigraphy (Lisbon 1987) 1, 807–820. Lisbon:Universidade Nova de Lisboa.

Guy-Ohlson, D. 1992: Botryococcus as an aid in the interpreta-tion of palaeoenvironment and depositional processes. Reviewof Palaeobotany and Palynology 71, 1–15.

Harris, T.M. 1931: Rhaetic floras. Biological Reviews of theCambridge Philosophical Society 6, 133–162.

Koppelhus, E.B. & Batten, D.J. 1996: Applications of a paly-nomorph zonation to a series of short borehole sections,Lower to Middle Jurassic, Øresund, Denmark. In: Jansonius,J. & McGregor, D.C. (eds): Palynology: principles and appli-cations. American Association of Stratigraphic PalynologistsFoundation 2, 779–793.

Koppelhus, E.B. & Hansen, C.F. 2003: Palynostratigraphy andpalaeoenvironment of the Middle Jurassic Sortehat Formation(Neill Klinter Group), Jameson Land, East Greenland. In:Ineson, J.R. & Surlyk, F. (eds): The Jurassic of Denmark andGreenland. Geological Survey of Denmark and GreenlandBulletin 1, 777–811 (this volume).

Koppelhus, E.B. & Nielsen, L.H. 1994: Palynostratigraphy andpalaeoenvironments of the Lower to Middle Jurassic BagåFormation of Bornholm, Denmark. Palynology 18, 139–194.

Larsen, H.C. & Marcussen, C. 1992: Sill-intrusion, flood basaltemplacement and deep crustal structure of the Scoresby Sundregion, East Greenland. In: Storey, B.C., Alabaster, T. &Pankhurst, R.J. (eds): Magmatism and the causes of conti-nental break-up. Geological Society Special Publication

757

(London) 68, 365–386.Lund, J.J. & Pedersen, K.R. 1985: Palynology of the marine Jurassic

formations in the Vardekløft ravine, Jameson Land, EastGreenland. Bulletin of the Geological Society of Denmark 33,371–400.

Morgenroth, P. 1970: Dinoflagellate cysts from the Lias Delta ofLühnde/Germany. Neues Jahrbuch für Geologie und Palä-ontologie Abhandlungen 136, 345–359.

Nøhr-Hansen, H. 1993: Dinoflagellate cyst stratigraphy of theBarremian to Albian, Lower Cretaceous, North-East Greenland.Bulletin Grønlands Geologiske Undersøgelse 166, 171 pp.

Poulsen, N.E. 1996: Dinoflagellate cysts from marine Jurassicdeposits of Denmark and Poland. American Association ofStratigraphic Palynologists Contributions Series 31, 227 pp.

Prauss, M. 1987: Nannoceratopsis triangulata n.sp. – eine neueDinozysten-Spezies aus dem Obertoarcium von NW-Deutsch-land. Neues Jahrbuch für Geologie und Paläontologie Abhand-lungen 176, 129–136.

Riding, J.B. & Thomas, J.E. 1992: Dinoflagellate cysts of theJurassic System. In: Powell, A.J. (ed.): A stratigraphic index ofdinoflagellate cysts, 7–97. British Micropalaeontological SocietyPublication Series. London: Chapman & Hall.

Riding, J.B., Walton, W. & Shaw, D. 1991: Toarcian to Bathonian(Jurassic) palynology of the Inner Hebrides, Northwest Scotland.Palynology 15, 115–179.

Rosenkrantz, A. 1929: Preliminary account of the geology of theScoresby Sound District. Meddelelser om Grønland 73(2),135–154.

Rosenkrantz, A. 1934: The Lower Jurassic rocks of East Greenland,Part I. Meddelelser om Grønland 110(1), 150 pp.

Seidenkrantz, M.-S., Koppelhus, E.B. & Ravn-Sørensen, H. 1993:Biostratigraphy and palaeoenvironmental analysis of a Lowerto Middle Jurassic succession on Anholt, Denmark. Journal ofMicropalaeontology 12, 201–218.

Smelror, M. & Below, R. 1992: Dinoflagellate biostratigraphy ofthe Toarcian to Lower Oxfordian (Jurassic) of the Barents Searegion. Norwegian Petroleum Society (NPF) Special Publication2, 495–513.

Surlyk, F. 1977a: Mesozoic faulting in East Greenland. In: Frost,R.T.C. & Dikkers, A.J. (eds): Fault tectonics in NW Europe.Geologie en Mijnbouw 56, 311–327.

Surlyk, F. 1977b: Stratigraphy, tectonics and palaeogeography ofthe Jurassic sediments of the areas north of Kong Oscars Fjord,East Greenland. Bulletin Grønlands Geologiske Undersøgelse123, 56 pp.

Surlyk, F. 1978: Jurassic basin evolution of East Greenland. Nature274, 130–133.

Surlyk, F. 1990a: Timing, style and sedimentary evolution of LatePalaeozoic – Mesozoic extensional basins of East Greenland.In: Hardman, R.F.P. & Brooks, J. (eds): Tectonic events respon-

sible for Britain’s oil and gas reserves. Geological SocietySpecial Publications (London) 55, 107–125.

Surlyk, F. 1990b: A Jurassic sea-level curve for East Greenland.Palaeogeography, Palaeoclimatology, Palaeoecology 78, 71–85.

Surlyk, F. 1991: Sequence stratigraphy of the Jurassic – lowermostCretaceous of East Greenland. American Association ofPetroleum Geologists Bulletin 75, 1468–1488.

Surlyk, F. 2003: The Jurassic of East Greenland: a sedimentaryrecord of thermal subsidence, onset and culmination of rift-ing. In: Ineson, J.R. & Surlyk, F. (eds): The Jurassic of Denmarkand Greenland. Geological Survey of Denmark and GreenlandBulletin 1, 659–722 (this volume).

Surlyk, F., Callomon, J.H., Bromley, R.G. & Birkelund, T. 1973:Stratigraphy of the Jurassic – Lower Cretaceous sediments ofJameson Land and Scoresby Land, East Greenland. BulletinGrønlands Geologiske Undersøgelse 105, 76 pp. (also Med-delelser om Grønland 193(5)).

Surlyk, F., Clemmensen, L.B. & Larsen, H.C. 1981: Post-Paleozoicevolution of the East Greenland continental margin. In: Kerr,J.W., Fergusson, A.J. & Machan, L.C. (eds): Geology of the NorthAtlantic borderlands. Canadian Society of Petroleum GeologistsMemoir 7, 611–645.

Surlyk, F., Piasecki, S., Rolle, F., Thomsen, E. & Wrang, P. 1984:The Permian basin of East Greenland. In: Spencer, A. et al.(eds): Petroleum Geology of the North European Margin,303–315. London: Graham & Trotman for the NorwegianPetroleum Society (NPF).

Surlyk, F., Hurst, J.M., Piasecki, S., Rolle, F., Scholle, P.A., Stemmerik,L. & Thomsen, E. 1986: The Permian of the western marginof the Greenland Sea – a future exploration target. In: Halbouty,M.T. (ed.): Future petroleum provinces of the world. AmericanAssociation of Petroleum Geologists Memoir 40, 629–659.

Sykes, R.M. 1974: Sedimentological studies in southern JamesonLand, East Greenland. II. Offshore–estuarine regressivesequences in the Neill Klinter Formation (Pliensbachian–Toarcian). Bulletin of the Geological Society of Denmark 23,213–224.

Underhill, J.R. & Partington, M.A. 1994: Use of genetic sequencestratigraphy in defining and determining a regional tectoniccontrol on the ‘Mid-Cimmerian Unconformity’ – implicationsfor North Sea basin development and the global sea-levelchart. In: Weimer, P. & Posamentier, H.W. (eds): Siliciclasticsequence stratigraphy. Recent developments and applications.American Association of Petroleum Geologists Memoir 58,449–484.

Wall, D. 1965: Microplankton, pollen, and spores from the LowerJurassic in Britain. Micropaleontology 11, 151–190.

Ziegler, P.A. 1988: Evolution of the Arctic – North Atlantic andthe western Tethys. American Association of PetroleumGeologists Memoir 43, 198 pp.

758

Manuscript received 21 February 1997; revision accepted 1 June 2000.

759

Appendix 1:List of all recorded palynomorph taxa

Miospores:

Anapiculatisporites sp.

A. telephorus (Pautsch) Klaus 1960

Annulispora folliculosa (Rogalska) de Jersey 1959

Apiculatisporites parvispinosus (Leschik) Schulz 1963

A. sp.

Araucariacites australis Cookson 1947

Baculatisporites sp. (Plate 1, fig. 12)

B. wellmanii (Couper) Krutzsch 1959

Bisaccates indeterminate (Plate 2, fig. 9)

Callialasporites dampieri (Balme) Dev 1961 (Plate 2, fig. 5)

C. microvelatus Schulz 1966

C. minus (Tralau) Guy 1971 (Plate 2, fig. 3)

C. sp.

C. turbatus (Balme) Schulz 1967

Calamospora tener (Leschik) Mädler 1964

Camarozonozporites rudis (Leschik) Klaus 1960

C. sp.

Campenia sp.

Cerebropollenites macroverrucosus (Thiergart) Schulz 1967

(Plate 3, fig. 4)

C. sp.

C. thiergartii Schulz 1967 (Plate 3, fig. 1)

Chasmatosporites apertus Nilsson 1958 (Plate 3, fig. 5)

C. elegans Nilsson 1958

C. hians Nilsson 1958

C. major Nilsson 1958 (Plate 3, fig. 7)

C. minor Nilsson 1958

C. sp.

Chomotriletes minor (Kedves) Pocock 1970

C. sp.

Cibotiumspora jurienensis (Balme) Filatoff 1975

Cingulizonates inequalis (Mädler) Lund 1977

Conbaculatisporites mesozoicus Klaus 1960

C. sp.

Corollina meyeriana (Klaus) Venkatachala & Goczan 1964

C. sp.

C. torosus (Reissinger) Cornet & Traverse 1975 (Plate 3, fig. 2)

Deltoidospora minor (Couper) Pocock 1970

D. spp. (Plate 1, fig. 1)

Densoisporites scanicus Tralau 1968 (Plate 1, fig. 9)

D. velatus Weyland & Krieger 1953

Densosporites sp.

D. variabilis (Waltz) Potonié & Kremp 1956

Eucommiidites major Schulz 1967

E. troedsonii Erdtman 1948

Exesipollenites tumulus Balme 1957

Foraminisporis jurassicus Schulz 1967

Fungal spores

Iraquispora sp.

Ischyosporites crateris Balme 1957 (Plate 1, fig. 7)

I. sp.

I. variegatus (Couper) Schulz 1967 (Plate 2, fig. 1)

Kekryphalospora distincta Fenton & Riding 1987 (Plate 1, fig. 3)

Kraeuselisporites reissingeri (Harris) Morbey 1975 (Plate 1, fig. 5)

Leptolepidites major

L. sp. (Plate 1, fig. 4)

Limbosporites lundbladii Nilsson 1958

Lycopodiacidites rugulatus (Couper) Schulz 1967 (Plate 2, fig. 4)

Manumia delcourtii (Pocock) Dybkjær 1991 (Plate 2, fig. 2)

Marattisporites scabratus Couper 1958

Megaspore fragments

Monosaccate pollen

Monosulcites punctatus Orlowska-Zwolinska 1966 (Plate 2, fig. 6)

Murospora sp.

Neoraistrickia gristhorpensis (Couper) Tralau 1967

N. sp.

N. taylori Playford & Dettmann 1965

Ovalispollis ovalis Krutzsch 1955

Perinopollenites elatoides Couper 1958 (Plate 3, fig. 3)

Perinosporites thuringiacus Schulz 1962

Pinuspollenites minimus (Couper) Kemp 1970 (Plate 2, fig. 8)

Polycingulatisporites circulus Simoncsics & Kedves 1961

P. triangularis (Bolkhovitina) Playford & Dettmann 1965

Quadraeculina anellaeformis Malyavkina 1949 (Plate 2, fig. 7)

Retitriletes austroclavatoides (Cookson) Döring et al. 1963

R. clavatoides (Couper) Döring et al. 1963

R. semimuris (Danzé-Corsin & Laveine) McKellar 1974

R. sp. (Plate 1, fig. 8)

Ricciisporites tuberculatus Lundblad 1954

Rogalskaisporites cicatricosus (Rogalska) Danzé-Corsin & Laveine

1963 (Plate 1, fig. 10)

Sculptisporites aulosenensis (Schulz) Koppelhus 1992

Sestrosporites pseudoalveolatus (Couper) Dettmann 1963

Spheripollenites psilatus Couper 1958

S. subgranulatus Couper 1958 (Plate 3, figs 6, 8)

Staplinisporites caminus (Balme) Pocock 1970 (Plate 1, fig. 11)

Stereisporites antiquasporites (Wilson & Webster) Dettmann 1963

Stereisporites stereoides (Potonié & Venitz) H.D. Pflug in: Thomson

& Pflug 1953

S. sp.

Striatella jurassica Mädler 1964

S. parva (Li & Shang) Filatoff & Price 1988

S. scania (Nilsson) Filatoff & Price 1988

S. seebergensis Mädler 1964 (Plate 1, fig. 2)

S. spp.

Striate pollen

760

Taeniasporites rhaeticus Schulz 1967

T. sp.

Taurocusporites verrucatus Schulz 1967 (Plate 1, fig. 6)

Tigrisporites microrugulatus Schulz 1967

T. sp.

Todisporites major Couper 1958

T. minor Couper 1958

T. sp.

Triletes sp.

Tripartina variabilis Malyavkina 1949

Uvaesporites argenteaeformis (Bolkhovitina) Schulz 1967

U. sp.

Vesicaspora fuscus (Pautsch) Morbey 1975

Vitreisporites pallidus (Reissinger) Nilsson 1958

V. sp.

Vittatina sp.

Zebrasporites interscriptus (Thiergart) Klaus 1960

Phytoplankton:

Acritarch spp.

Baltisphaeridium sp.

Beaumontella caminuspina (Wall) Below 1987

B. delicata (Wall) Below 1987

B. sp.

Botryococcus spp. (Plate 6, figs 6, 7)

Celyphus rallus Batten 1985 (Plate 7, fig. 1)

C. spp.

Crassosphaera sp.

Cymatiosphaera sp.

Dapcodinium sp.

Dinocyst sp. (Plate 4, figs 8, 9)

Dissiliodinium sp. (Plate 6, figs 4, 5)

Kallosphaeridium sp.

Lecaniella foveata Singh 1971 (Plate 7, fig. 5)

L. spp.

Leiofusa jurassica Cookson & Eisenack 1958 (Plate 7, fig. 2)

Leiosphaeridia spp.

Limbicysta bjaerkei (Smelror) MacRae et al. 1996 (Plate 6, figs 1–3)

Luehndea spinosa Morgenroth 1970 (Plate 5, fig. 5)

Mancodinium semitabulatum Morgenroth 1970 (Plate 5, figs 1, 2)

M. sp.

Mendicodinium groenlandicum (Pocock & Sarjeant) Davey 1979

M. reticulatum Morgenroth 1970 (Plate 5, figs 3, 4)

M. sp.

Micrhystridium exilium Wall 1965

M. fragile Deflandre 1937

M. intromittum Wall 1965

M. lymensis Wall 1965

M. spp.

M. stellatum Deflandre 1942

M. wattonense Wall 1965

Nannoceratopsis ambonis (Drugg) Riding 1984 (Plate 4, fig. 4)

N. dictyoambonis Riding 1984

N. gracilis Alberti emend. van Helden 1977 (Plate 4, figs 1, 3)

N. plegas Drugg 1978

N. senex van Helden 1977 (Plate 4, fig. 2)

N. sp.

N. triangulata Prauss 1987

N. triceras Drugg 1978

Pareodinia halosa (Filatoff) Prauss 1989 (Plate 4, fig. 7)

Parvocysta barbata Bjærke 1980

P. nasuta Bjærke 1980

P. sp.

Phallocysta eumekes Dörhöfer & Davies 1980 (Plate 4, figs 5, 6)

P. elongata (Beju) Riding 1994

Pterospermella spp.

Scriniocassis sp.

Susadinium scrofoides (Dörhöfer & Davies) Below 1987

Tasmanites sp.

Tetraporina compressa Kondrat’ev 1963 (Plate 7, fig. 6)

Valvaeodinium armatum Morgenroth 1970

V. spp.

Veryhachium collectum Wall 1965 (Plate 7, fig. 3)

V. formosum Stockmans & Williere 1960 (Plate 7, fig. 4)

V. irregulare de Jekhowsky 1961

V. reductum (Deunff) de Jekhowsky 1961

V. sp.

V. trispinosum (Eisenack) Deunff 1954

Wallodinium laganum Feist-Burkhardt & Monteil 1994

(Plate 5, fig. 6)

W. spp.

Others:

Foraminifera spp.

Foraminiferal linings (Plate 7, fig. 7)

Haplophragmoides spp.

Miscellaneous

761

Plates 1–7

762

Plate 1

Palynomorphs from the Neill Klinter Group at the Albuen section. The scale bar is 10 microns. For each of theillustrated specimens (Plates 1–7), the England Finder Reference (EFR) is given.

Fig. 1. Deltoidospora sp. Sample 405414-3, EFR S291.

Fig. 2. Striatella seebergensis. Sample 405466-3, EFR D34.

Fig. 3. Kekryphalospora distincta. Sample 405466-3, EFR J383.

Fig. 4. Leptolepidites sp. Sample 405423-3, EFR T40.

Fig. 5. Kraeuselisporites reissingeri. Sample 405419-3, EFR D294.

Fig. 6. Taurocusporites verrucatus. Sample 405466-3, EFR H273.

Fig. 7. Ischyosporites crateris. Sample 405449-3, EFR W29.

Fig. 8. Retitriletes sp. Sample 405420-3, EFR P50.

Fig. 9. Densoisporites scanicus. Sample 405449-3, EFR P19.

Fig. 10. Rogalskaisporites cicatricosus. Sample 405419-3, EFR L513.

Fig. 11. Staplinisportes caminus. Sample 405449-3, EFR J462.

Fig. 12. Baculatisporites sp. Sample 405414-3, EFR T353.

763

1 2 3

4 5 6

10 11 12

7 8 9

764

Plate 2

Palynomorphs from the Neill Klinter Group at the Albuen section. The scale bar is 10 microns.

Fig. 1. Ischyosporites variegatus.Sample 405464-3, EFR G43.

Fig. 2. Manumia delcourti.Sample 405449-3, EFR V244.

Fig. 3. Callialasporites minus.Sample 405449-3, EFR J291.

Fig. 4. Lycopodiacidites rugulatus.Sample 405401-4, EFR Z263.

Fig. 5. Callialasporites dampieri.Sample 405449-3, EFR J203.

Fig. 6. Monosulcites punctatus.Sample 405414-3, EFR T31.

Fig. 7. Quadraeculina anellaeformis.Sample 405414-3, EFR K431.

Fig. 8. Pinuspollenites minimus.Sample 405420-2, EFR V212.

Fig. 9. Bisaccate sp., full dimensions 90 x 70 microns.Sample 405418-3, EFR P462.

765

1 2

4

7

9

8

5

6

3

766

Plate 3

Palynomorphs from the Neill Klinter Group at the Albuen section. The scale bar is 10 microns.

Fig. 1. Cerebropollenites thiergartii.Sample 405401-4, EFR U252.

Fig. 2. Corollina torosus.Sample 405466-3, EFR D171.

Fig. 3. Perinopollenites elatoides.Sample 405453-3, EFR G243.

Fig. 4. Cerebropollenites macroverrucosus.Sample 405454-3, EFR Y303.

Fig. 5. Chasmatosporites apertus.Sample 405401-4, EFR Y363.

Fig. 6. Spheripollenites subgranulatus.Sample 405459-3, EFR N293.

Fig. 7. Chasmatosporites major.Sample 405423-3, EFR F51.

Fig. 8. Spheripollenites subgranulatus.Sample 405459-3, EFR N20.

767

1

4

7

8

56

2 3

768

Plate 4

Palynomorphs from the Neill Klinter Group at the Albuen section. The scale bar is 10 microns.

Fig. 1. Nannoceratopsis gracilis.Sample 405449-3, EFR N20.

Fig. 2. N. senex.Sample 405466-3, EFR K211.

Fig. 3. N. gracilis.Sample 405414-3, EFR O404.

Fig. 4. N. ambonis.Sample 405453-3, EFR F383.

Fig. 5. Phallocysta eumekes.Sample 405426-3, EFR V47.

Fig. 6. P. eumekes.Sample 405459-3, EFR Y56.

Fig. 7. Pareodinia halosa.Sample 405454-3, EFR V314.

Fig. 8. Dinoflagellate sp.Sample 405419-3, EFR D40.

Fig. 9. Dinoflagellate sp.Sample 405453-3, EFR E272.

769

1

4

7

5

8

2 3

6

9

770

Plate 5

Palynomorphs from the Neill Klinter Group at the Albuen section. The scale bar is 10 microns.

Fig. 1. Mancodinium semitabulatum.Sample 405466-3, EFR H531.

Fig. 2. M. semitabulatum.Sample 405411-3, EFR H37.

Fig. 3. Mendicodinium reticulatum.Sample 405422-3, EFR M292.

Fig. 4. M. reticulatum.Sample 405420-3, EFR F381.

Fig. 5. Luehndea spinosa.Sample 405466-3, EFR F554.

Fig. 6. Wallodinium laganum.Sample 405452-3, EFR F573

771

1 2

3 4

5 6

772

Plate 6

Palynomorphs from the Neill Klinter Group at the Albuen section. The scale bar is 10 microns.

Fig. 1. Limbicysta bjaerkei.Sample 405456-3, EFR N244.

Fig. 2. L. bjaerkei.Sample 405449-3, EFR E221.

Fig. 3. L. bjaerkei.Sample 405405-3, EFR R484.

Fig. 4. Dissiliodinium sp.Sample 405454-3, EFR P204.

Fig. 5. Dissiliodinium sp.Sample 405456-3, EFR H304.

Fig. 6. Botryococcus sp.Sample 405401-4, EFR X334.

Fig. 7. Botryococcus sp.Sample 405401-4, EFR T242.

773

1 2

4

6 7

5

3

774

Plate 7

Palynomorphs from the Neill Klinter Group at the Albuen section. The scale bar is 10 microns; this scale bar isnot applicable to figure 7.

Fig. 1. Celyphus rallus.Sample 405466-3, EFR E21.

Fig. 2. Leiofusa jurassica.Sample 405414-3, EFR O404.

Fig. 3. Veryhachium collectum.Sample 405414-3, EFR O403.

Fig. 4. V. formosus.Sample 405408-3, EFR L353.

Fig. 5. Lecaniella foveata.Sample 405454-3, EFR W401.

Fig. 6. Tetraporina compressa.Sample 405419-3, EFR K504.

Fig. 7. Foraminiferal lining, 132 microns in diameter.Sample 405464-3, EFR P292.

775

1 2

543

6 7

Albuen (A)

Low

er Ju

rass

icM A

Toar

cian

Ost

reae

lv F

orm

atio

nG

ule

Hor

n Fo

rmat

ion

Skæ

vdal

Mem

ber

Nat

hors

t Fj

eld

Mem

ber

Alb

uen

Mb

As

Elis

Bje

rg M

embe

rTr

efjo

rd B

jerg

Mb

L. P

liens

bach

ian

Upp

er P

liens

bach

ian

439.00438.50

434.00432.00431.50428.00425.90

416.50

411.50

402.00

392.00

379.40377.50375.50

369.50367.50366.20365.00363.00361.30359.00

297.80295.40294.20292.20290.75290.20287.80287.00284.70283.40

273.80

271.00

267.40

264.27264.25

256.50

253.40

250.50249.00247.40246.00

241.00240.00238.20238.00236.80231.70229.80229.50229.40229.00222.50

215.50213.00211.00

341248397452

405449341247405450405451405452

405453

405454

405455

405456

405457341243405458

405459341245405460341241405462405464405466

405434405433405432405431405430405429341236405428405427405426

405425

341235

405424

405423405422

341234

405421

405420341233405419405418

405417405416405414405413405411405410405408341232405406405405405404

405403405402405401

1Ro

galsk

aisp

orite

s ci

catr

icos

us

2Co

nbac

ulat

ispor

ites

mes

ozoi

cus

3Ly

copo

diac

idite

s ru

gula

tus

4D

elto

idos

pora

spp

.

5Re

titril

etes

cla

vato

ides

6Re

titril

etes

sem

imur

is

7Re

titril

etes

sp.

8Ba

cula

tispo

rites

sp.

9Ti

grisp

orite

s m

icro

rugu

latu

s

10Fo

ram

inisp

oris

jura

ssic

us

11Kr

aeus

elisp

orite

s re

issin

geri

12Tr

ipar

tina

varia

bilis

13St

erei

spor

ites

ster

eoid

es

14D

enso

ispor

ites

scan

icus

15Re

titril

etes

aus

troc

lava

toid

es

16To

disp

orite

s m

inor

17Ke

kryp

halo

spor

a di

stin

cta

18Ci

botiu

msp

orite

s ju

riene

nsis

19St

riate

lla p

arva

20To

disp

orite

s m

ajor

21St

riate

lla ju

rass

ica

22Le

ptol

epid

ites

sp.

23Z

ebra

spor

ites

inte

rscr

iptu

s

24St

erei

spor

ites

antiq

uasp

orite

s

25U

vaes

porit

es a

rgen

teae

form

is

26Tr

ilete

s sp

.

27St

riate

lla s

pp.

28St

riate

lla s

eebe

rgen

sis

29Ch

omot

rilet

es s

p.

30M

egas

pore

frag

men

ts

31An

apic

ulat

ispor

ites

sp.

32An

apic

ulat

ispor

ites

tele

phor

us

33N

eora

istric

kia

sp.

34Ta

uroc

uspo

rites

ver

ruca

tus

35D

enso

ispor

ites

vela

tus

36Sc

ulpt

ispor

ites

aulo

sene

nsis

37U

vaes

porit

es s

p.

38To

disp

orite

s sp

.

39M

anum

ia d

elco

urtii

40Is

chyo

spor

ites

varie

gatu

s

41Is

chyo

spor

ites

crat

eris

42St

aplin

ispor

ites

cam

inus

43Po

lycin

gula

tispo

rites

tria

ngul

aris

44Se

stro

spor

ites

pseu

doal

veol

atus

45Po

lycin

gula

tispo

rites

circ

ulus

46N

eora

istric

kia

taylo

rii

47Le

ptol

epid

ites

maj

or

48Li

mbo

spor

ites

lund

blad

ii

49M

uros

pora

sp.

50Ch

asm

atos

porit

es h

ians

51Ce

rebr

opol

leni

tes

thie

rgar

tii

52Ve

sicas

pora

fusc

us

53Q

uadr

aecu

lina

anel

laef

orm

is

54Pe

rinop

olle

nite

s el

atoi

des

55Pi

nusp

olle

nite

s m

inim

us

56Bi

sacc

ate

spp.

57Ce

rebr

opol

leni

tes

mac

rove

rruc

osus

58Ch

asm

atos

porit

es m

ajor

59Ch

asm

atos

porit

es a

pert

us

60Co

rollin

a to

rosu

s

61M

onos

ulci

tes

punc

tatu

s

62Ch

asm

atos

porit

es s

p.

63Ch

asm

atos

porit

es e

lega

ns

64M

onos

acca

te s

pp.

65Vi

trei

spor

ites

pallid

us

66Ca

lliala

spor

ites

dam

pier

i

67Ca

lliala

spor

ites

sp.

68Ar

auca

riaci

tes

aust

ralis

69Eu

com

miid

ites

troe

dson

ii

70Ce

rebr

opol

leni

tes

sp.

71Sp

herip

olle

nite

s su

bgra

nula

tus

72Ca

mpe

nia

sp.

73Ca

lliala

spor

ites

mic

rove

latu

s

74Ca

lliala

spor

ites

min

us

75Ex

esip

olle

nite

s tu

mul

us

76Ca

lliala

spor

ites

trilo

batu

s

77Ca

lliala

spor

ites

turb

atus

78Eu

com

miid

ites

maj

or

79Ri

cciis

porit

es tu

berc

ulat

us

80Ta

enia

spor

ites

sp.

81St

riate

spp

.

?

?

?

RR

?

?R

RR

RR

RR

R

Alphabetical species list31 Anapiculatisporites sp.32 Anapiculatisporites telephorus68 Araucariacites australis8 Baculatisporites sp.

56 Bisaccate spp.66 Callialasporites dampieri73 Callialasporites microvelatus74 Callialasporites minus67 Callialasporites sp.76 Callialasporites trilobatus77 Callialasporites turbatus72 Campenia sp.57 Cerebropollenites macroverrucosus70 Cerebropollenites sp.51 Cerebropollenites thiergartii59 Chasmatosporites apertus63 Chasmatosporites elegans50 Chasmatosporites hians58 Chasmatosporites major62 Chasmatosporites sp.29 Chomotriletes sp.18 Cibotiumsporites jurienensis2 Conbaculatisporites mesozoicus

60 Corollina torosus4 Deltoidospora spp.

14 Densoisporites scanicus35 Densoisporites velatus78 Eucommiidites major69 Eucommiidites troedsonii75 Exesipollenites tumulus10 Foraminisporis jurassicus41 Ischyosporites crateris40 Ischyosporites variegatus17 Kekryphalospora distincta11 Kraeuselisporites reissingeri47 Leptolepidites major22 Leptolepidites sp.48 Limbosporites lundbladii3 Lycopodiacidites rugulatus

39 Manumiadel courtii30 Megaspore fragments64 Monosaccate spp.61 Monosulcites punctatus49 Murospora sp.33 Neoraistrickia sp.46 Neoraistrickia taylorii54 Perinopollenites elatoides55 Pinuspollenites minimus45 Polycingulatisporites circulus43 Polycingulatisporites triangularis53 Quadraeculinaanellae formis15 Retitriletes austroclavatoides5 Retitriletes clavatoides6 Retitriletes semimuris7 Retitriletes sp.

79 Ricciisporites tuberculatus1 Rogalskaisporites cicatricosus

36 Sculptisporites aulosenensis44 Sestrosporites pseudoalveolatus71 Spheripollenites subgranulatus42 Staplinisporites caminus24 Stereisporites antiquasporites13 Stereisporites stereoides81 Striate sp.21 Striatella jurassica19 Striatella parva28 Striatella seebergensis27 Striatella sp.80 Taeniasporites sp.34 Taurocusporites verrucatus9 Tigrisporites microrugulatus

20 Todisporites major16 Todisporites minor38 Todisporites sp.26 Triletes sp.12 Tripartina variabilis25 Uvaesporites argenteaeformis37 Uvaesporites sp.52 Vesicaspora fuscus65 Vitreisporites pallidus23 Zebrasporites interscriptus

400

380

360

300

280

260

240

220

420

Interval not sampled

Syst

em

Stag

e

Paly

nolo

gica

l Ass

embl

. Zon

es

Lith

ostr

atig

raph

y

(m)

Sam

ple

heig

ht

Sam

ple

num

ber

7

6

5

4

3

2

1

Uncertaindetermination

Very rare

Rare

Few

Common

Abundant

?

R

Fig. 4A. Terrestrial palynomorph distribution chart for the Gule Horn and Ostreaelv Formations at Albuen (for location, see Fig. 1). M, Middle Jurassic; A, Aalenian; As, Astartekløft Member.

Albuen (B)

439.00438.50

434.00432.00431.50428.00425.90

416.50

411.50

402.00

392.00

379.40377.50375.50

369.50367.50366.20365.00363.00361.30359.00

292.20

287.80287.00284.70283.40

273.80

271.00

267.40

264.27264.25

256.50

253.40

250.50249.00247.40246.00

241.00240.00238.20238.00236.80231.70229.80229.50229.40229.00222.50

215.50

213.00211.00

341248397452

405449341247405450405451405452

405453

405454

405455

405456

405457341243405458

405459341245405460341241405462405464405466

405431

341236405428405427405426

405425

341235

405424

405423405422

341234

405421

405420341233405419405418

405417405416405414405413405411405410405408341232405406405405405404

405403

405402405401

1N

anno

cera

tops

is se

nex

2N

anno

cera

tops

is sp

.

3N

anno

cera

tops

is gr

acilis

4M

endi

codi

nium

ret

icul

atum

5Be

aum

onte

lla c

amin

uspi

na

6N

anno

cera

tops

is tr

iang

ulat

a

7N

anno

cera

tops

is pl

egas

8M

anco

dini

um s

emita

bula

tum

9Pa

rvoc

ysta

bar

bata

10M

endi

codi

nium

gro

enla

ndic

um

11Be

aum

onte

lla d

elic

ata

12M

endi

codi

nium

sp.

13Lu

ehnd

ea s

pino

sa

14D

inoc

yst

sp.

15Va

lvaeo

dini

um a

rmat

um

16Va

lvaeo

dini

um s

pp.

17N

anno

cera

tops

is am

boni

s

18D

issilio

dini

um s

p.

19Pa

rvoc

ysta

sp.

20Ph

allo

cyst

a eu

mek

es

21N

anno

cera

tops

is tr

icer

as

22Pa

reod

inia

hal

osa

23Ka

llosp

haer

idiu

m s

p.

24Sc

rinio

cass

is sp

.

25Ph

allo

cyst

a el

onga

ta

26W

allo

dini

um s

pp.

27A

crita

rch

spp.

28Le

iofu

sa ju

rass

ica

29Le

iosp

haer

idia

spp

.

30M

icrh

ystr

idiu

m ly

men

sis

31M

icrh

ystr

idiu

m s

pp.

32Ve

ryha

chiu

m fo

rmos

um

33Li

mbi

cyst

a bj

aerk

ei

34Ve

ryha

chiu

m c

olle

ctum

35Te

trap

orin

a co

mpr

essa

36Le

cani

ella

fove

ata

37Ve

ryha

chiu

m r

educ

tum

38Ve

ryha

chiu

m ir

regu

lare

39M

icrh

ystr

idiu

m in

trom

ittum

40M

icrh

ystr

idiu

m w

atto

nens

e

41M

icrh

ystr

idiu

m fr

agile

42Ve

ryha

chiu

m tr

ispin

osum

43M

icrh

ystr

idiu

m s

tella

tum

44Cy

mat

iosp

haer

a sp

.

45Be

aum

onte

lla s

p.

46Pt

eros

perm

ella

spp

.

47Bo

tryo

cocc

us s

pp.

48Ta

sman

ites

sp.

49Le

cani

ella

spp

.

50Fu

ngal

spo

res

51Ce

lyphu

s sp

p.

52H

aplo

phra

gmoi

des

spp.

53M

isce

llane

ous

spp.

??

?

? ?

?

?

Alphabetical species list27 Acritarch spp.5 Beaumontella caminuspina

11 Beaumontella delicata45 Beaumontella sp.47 Botryococcus spp.51 Celyphus spp.44 Cymatiosphaera sp.14 Dinocyst sp.18 Dissiliodinium sp.50 Fungal spores52 Haplophragmoides spp.23 Kallosphaeridium sp.36 Lecaniella foveata49 Lecaniella spp.28 Leiofusa jurassica29 Leiosphaeridia spp.33 Limbicysta bjaerkei13 Luehndea spinosa53 Miscellaneous spp.8 Mancodinium semitabulatum

10 Mendicodinium groenlandicum4 Mendicodinium reticulatum

12 Mendicodinium sp.41 Micrhystridium fragile39 Micrhystridium intromittum30 Micrhystridium lymensis31 Micrhystridium spp.43 Micrhystridium stellatum40 Micrhystridium wattonense17 Nannoceratopsis ambonis3 Nannoceratopsis gracilis7 Nannoceratopsis plegas1 Nannoceratopsis senex2 Nannoceratopsis sp.6 Nannoceratopsis triangulata

21 Nannoceratopsis triceras22 Pareodinia halosa9 Parvocysta barbata

19 Parvocysta sp.25 Phallocysta elongata20 Phallocysta eumekes46 Pterospermella spp.24 Scriniocassis sp.48 Tasmanites sp.35 Tetraporina compressa15 Valvaeodinium armatum16 Valvaeodinium spp.34 Veryhachium collectum32 Veryhachium formosum38 Veryhachium irregulare37 Veryhachium reductum42 Veryhachium trispinosum26 Wallodinium spp.

Syst

em

Stag

e

Paly

nolo

gica

l Ass

embl

. Zon

es

Lith

ostr

atig

raph

y

(m)

Sam

ple

heig

ht

Sam

ple

num

ber

Interval not sampled

1

2

3

4

5

6

7

Low

er Ju

rass

icM A

Toar

cian

Ost

reae

lv F

orm

atio

nG

ule

Hor

n Fo

rmat

ion

Skæ

vdal

Mem

ber

Nat

hors

t Fj

eld

Mem

ber

Alb

uen

Mb

As

Elis

Bje

rg M

embe

rTr

efjo

rd B

jerg

Mb

L. P

liens

bach

ian

Upp

er P

liens

bach

ian

400

380

360

300

280

260

240

220

420

Uncertaindetermination

Very rare

Rare

Few

Common

Abundant

?

R

Fig. 4B. Marine palynomorph distribution chart for the Gule Horn and Ostreaelv Formations at Albuen (for location, see Fig. 1). M, Middle Jurassic; A, Aalenian; As, Astartekløft Member.

Lepidopteriselv

Low

er Ju

rass

ic

Upp

er P

liens

bach

ian

Gul

e H

orn

Form

atio

nEl

is B

jerg

Mem

ber

700.00

695.00

685.00

679.00

674.00

654.00653.00

648.00

642.00

638.00

139146

139145

139144

139143

139142

139141139140

139139

139138

139137

1Ba

cula

tispo

rites

sp.

2D

elto

idos

pora

spp

.

3Ca

lam

ospo

ra te

ner

4To

disp

orite

s m

ajor

5Ro

galsk

aisp

orite

s ci

catr

icos

us

6St

riate

lla p

arva

7Re

titril

etes

aus

troc

lava

toid

es

8Re

titril

etes

cla

vato

ides

9N

eora

istric

kia

sp.

10St

erei

spor

ites

ster

eoid

es

11Re

titril

etes

sem

imur

is

12Kr

aeus

elisp

orite

s re

issin

gerii

13Re

titril

etes

sp.

14Ti

grisp

orite

s m

icro

rugu

latu

s

15Ap

icul

atisp

orite

s pa

rvisp

inos

us

16Co

nbac

ulat

ispor

ites

mes

ozoi

cus

17D

enso

ispor

ites

scan

icus

18Ly

copo

diac

idite

s ru

gula

tus

19Ira

quisp

ora

sp.

20Ti

grisp

orite

s sp

.

21Tr

ipar

tina

varia

bilis

22Ke

kryp

halo

spor

a di

stin

cta

23An

apic

ulat

ispor

ites

sp.

24M

arat

tiisp

orite

s sc

abra

tus

25D

elto

idos

pora

min

or

26An

nulis

pora

follic

ulos

a

27Ap

icul

atisp

orite

s sp

.

28St

riate

lla ju

rass

ica

29D

enso

spor

ites

sp.

30D

enso

spor

ites

varia

bilis

31Ca

mar

ozon

ospo

rites

rud

is

32M

uros

pora

sp.

33Q

uadr

aecu

lina

anel

laef

orm

is

34Bi

sacc

ate

spp.

35Pe

rinop

olle

nite

s el

atoi

des

36Ch

asm

atos

porit

es h

ians

37Pi

nusp

olle

nite

s m

inim

us

38Ch

asm

atos

porit

es a

pert

us

39Ce

rebr

opol

leni

tes

thie

rgar

tii

40Co

rollin

a to

rosu

s

41M

onos

ulci

tes

punc

tatu

s

42Ce

rebr

opol

leni

tes

mac

rove

rruc

osus

43Ve

sicas

pora

fusc

us

44Ch

asm

atos

porit

es m

ajor

45Ar

auca

riaci

tes

aust

ralis

46Sp

herip

olle

nite

s ps

ilatu

s

47Ca

lliala

spor

ites

turb

atus

48Ca

lliala

spor

ites

min

us

49Eu

com

miid

ites

troe

dson

ii

50M

onos

acca

te s

pp.

51Co

rollin

a sp

p.

52Vi

ttatin

a sp

.

53M

endi

codi

nium

ret

icul

atum

54M

anco

dini

um s

emita

bula

tum

55N

anno

cera

tops

is se

nex

56N

anno

cera

tops

is tr

iang

ulat

a

57N

anno

cera

tops

is gr

acilis

58N

anno

cera

tops

is sp

.

59M

icrh

ystr

idiu

m in

trom

ittum

60Ve

ryha

chiu

m tr

isulc

um

61M

icrh

ystr

idiu

m fr

agile

62Le

cani

ella

spp

.

63M

icrh

ystr

idiu

m ly

men

sis

64Ve

ryha

chiu

m s

p.

65Bo

tryo

cocc

us s

pp.

66Ta

sman

ites

sp.

?

RR

?R ?

R

?

Alphabetical species list23 Anapiculatisporites sp.26 Annulispora folliculosa15 Apiculatisporites parvispinosus27 Apiculatisporites sp.45 Araucariacites australis1 Baculatisporites sp.

34 Bisaccate spp.65 Botryococcus spp.3 Calamospora tener

48 Callialasporites minus47 Callialasporites turbatus31 Camarozonosporites rudis42 Cerebropollenites macroverrucosus39 Cerebropollenites thiergartii38 Chasmatosporites apertus36 Chasmatosporites hians44 Chasmatosporites major16 Conbaculatisporites mesozoicus51 Corollina sp.40 Corollina torosus25 Deltoidospora minor2 Deltoidospora spp.

17 Densoisporites scanicus29 Densosporites sp.30 Densosporites variabilis49 Eucommiidites troedsonii19 Iraquispora sp.22 Kekryphalospora distincta12 Kraeuselisporites reissingerii62 Lecaniella spp.18 Lycopodiacidites rugulatus54 Mancodinium semitabulatum24 Marattiisporites scabratus53 Mendicodinium reticulatum61 Micrhystridium fragile59 Micrhystridium intromittum63 Micrhystridium lymensis50 Monosaccate spp.41 Monosulcites punctatus32 Murospora sp.57 Nannoceratopsis gracilis55 Nannoceratopsis senex58 Nannoceratopsis sp.56 Nannoceratopsis triangulata9 Neoraistrickia sp.

35 Perinopollenites elatoides37 Pinuspollenites minimus33 Quadraeculina anellaeformis7 Retitriletes austroclavatoides8 Retitriletes clavatoides

11 Retitriletes semimuris13 Retitriletes sp.5 Rogalskaisporites cicatricosus

46 Spheripollenites psilatus10 Stereisporites stereoides28 Striatella jurassica6 Striatella parva

66 Tasmanites sp.14 Tigrisporites microrugulatus20 Tigrisporites sp.4 Todisporites major

21 Tripartina variabilis64 Veryhachium sp.60 Veryhachium trisulcum43 Vesicaspora fuscus52 Vittatina sp.

Syst

em

Stag

e

Paly

nolo

gica

l Ass

embl

. Zon

es

Lith

ostr

atig

raph

y

(m)

Sam

ple

heig

ht

Sam

ple

num

ber

700

675

650

3

2

Uncertaindetermination

Very rare

Rare

Few

Common

Abundant

?

R

Fig. 13. Palynomorph distribution chart for the Gule Horn Formation (Elis Bjerg Member) at Lepidopteriselv (for location, see Fig. 1).