p01-05 特集 宇都宮氏 - jst

5
( ) At-sea Experiment of a Spar-type Floating Wind Turbine (Behavior during Typhoon Attack) 宇都宮 智昭 *1 佐藤 郁 *2 吉田 茂雄 *3 白石 崇 *4 石田 茂資 *5 Tomoaki UTSUNOMIYA, Iku SATO, Shigeo YOSHIDA, Takashi SHIRAISHI, Shigesuke ISHIDA *1 Professor, Kyushu Univ., Dept. of Ocean Energy Resources, Nishi-ku, Fukuoka, 819-0395, Japan Fax:+81-92-802-3447, E-mail: [email protected] *2 Energy Unit, Toda Corporation, Chuo-ku, Tokyo, 104-8388, Japan *3 Professor, Kyushu Univ., Research Institute for Applied Mechanics, Kasuga, 816-8580, Japan *4 Power Systems Company, Hitachi, Ltd., Hitachi, 317-0056, Japan *5 Offshore Renewable Energy Exploitation Dept., National Maritime Res. Inst., Mitaka, 181-0004, Japan Abstract Dynamic response of a Floating Offshore Wind Turbine (FOWT) with Spar-type floating foundation is presented. The FOWT mounts a 100kW down-wind turbine, and is grid-connected. It was installed on June 11th, 2012 for the purpose of the demonstration experiment. During the experiment, the FOWT was attacked by Sanba (international designation: 1216), the strongest tropical typhoon worldwide in 2012. The central atmospheric pressure was 940 hPa when it was close to the FOWT, and the maximum significant wave height of 9.5m was recorded at the site. In this paper, the dynamic responses of the platform motion, the stresses at the tower sections and the chain tensions during the typhoon event, Sanba (1216), have been analyzed, and compared with the measured data. キーワード:洋上風力,浮体式洋上風車,スパー,台風,動的応答 Key Words:Offshore wind, Floating wind turbine, Spar, Typhoon, Dynamic response 1.はじめに 地球温暖化対策のひとつとして,環境省は浮体式洋 上風力発電に関する実証事業を2010 年度より6 年間の 計画で実施してきている.実証事業の成果のひとつと して,スパー型浮体式基礎をもつ浮体式洋上風力発電 施設が成功裏に設置された.本施設は,喫水 37.05 m最大直径(外径)3.8 m,ハブ高さ 23.3 m であり,ロ ータ直径が 22 m の出力 100 kW のダウンウィンド型風 車を搭載している.本施設は, 2012 6 9 日に進水 し, 2012 6 11 日に長崎県五島市椛島の約 1 km の海域に係留された.本施設は,わが国初の系統連系 した浮体式洋上風車となっている.設置以来, 2013 6 月の撤去まで,実海域計測が実施された 1) この実海域計測期間中,本施設は非常に強い台風の 襲来を何度か受けた.なかでも Sanba(1216)は,本施設 に最接近したときの中心気圧が 940 hPa と記録的な台 風であり,最大有義波高 9.5 m が当該海域において記 録された.有義波高 9.5 m は,再現期間 50 年に相当す る設計有義波高 8.4 m を超えるものであったが,本施 設はこの台風の襲来によっても無被害であった.本台 風通過時において,風速,波高,浮体動揺,タワーお よび浮体のひずみ,係留ライン張力等,いくつかのデ ータが取得された.本稿では,本台風(Sanba(1216)通過時における動的応答を解析し,実海域で取得され たデータとの比較をおこなう. 2.実海域実験 2.1 設置場所 Fig. 1 に,本実海域実験における浮体式洋上風力発 電施設の設置場所を示す.本サイトは長崎県五島市椛 島の約 1 km 沖合の海域となっている.平均水深は 97.2 m である(平均潮位時).本サイトは,北西側におい て椛島により囲まれているが,南東側において沖合に 開けている.海底ケーブルが系統接続のために布設さ *1 九州大学大学院工学研究院教授(〒819-0395 福岡市西区元 岡 744)E-mail:[email protected] *2 戸田建設(株)価値創造推進室開発センターエネルギーユニ ット次長(〒104-8388 東京都中央区京橋 1-7-1) *3 九州大学応用力学研究所教授(〒816-8580 春日市春日公園 6-1) *4 (株)日立製作所電力システム社風力発電システム部風力発 電開発グループ主任技師(〒317-0056 日立市白銀町 1-1-1) *5 (独)海上技術安全研究所洋上再生エネルギー開発系グルー プ長(〒181-0004 三鷹市新川 6-38-1) (原稿受付:2014 年 12 月 16 日) 日本風力エネルギー学会 論文集 Vol.39, No.1 1 特集: Grand RE2014 国際会議「風力分野」での推薦論文その2

Upload: others

Post on 03-Oct-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

p01-05 _.indd(Behavior during Typhoon Attack)
*1 *2 *3 *4 *5
Tomoaki UTSUNOMIYA, Iku SATO, Shigeo YOSHIDA, Takashi SHIRAISHI, Shigesuke ISHIDA
*1 Professor, Kyushu Univ., Dept. of Ocean Energy Resources, Nishi-ku, Fukuoka, 819-0395, Japan Fax:+81-92-802-3447, E-mail: [email protected]
*2 Energy Unit, Toda Corporation, Chuo-ku, Tokyo, 104-8388, Japan *3 Professor, Kyushu Univ., Research Institute for Applied Mechanics, Kasuga, 816-8580, Japan *4 Power Systems Company, Hitachi, Ltd., Hitachi, 317-0056, Japan *5 Offshore Renewable Energy Exploitation Dept., National Maritime Res. Inst., Mitaka, 181-0004, Japan
Abstract Dynamic response of a Floating Offshore Wind Turbine (FOWT) with Spar-type floating
foundation is presented. The FOWT mounts a 100kW down-wind turbine, and is grid-connected. It was installed on June 11th, 2012 for the purpose of the demonstration experiment. During the experiment, the FOWT was attacked by Sanba (international designation: 1216), the strongest tropical typhoon worldwide in 2012. The central atmospheric pressure was 940 hPa when it was close to the FOWT, and the maximum significant wave height of 9.5m was recorded at the site. In this paper, the dynamic responses of the platform motion, the stresses at the tower sections and the chain tensions during the typhoon event, Sanba (1216), have been analyzed, and compared with the measured data.
Key WordsOffshore wind, Floating wind turbine, Spar, Typhoon, Dynamic response


3.8 m 23.3 m
22 m100 kW
2012 6 11 1 km

744E-mail:[email protected] *2 ()
104-8388 1-7-1 *3 816-8580
6-1 *4 ()
181-0004 6-38-1

9.5 m 50
8.4 m



1 km 97.2 m


(Behavior during Typhoon Attack)
*1 *2 *3 *4 *5
Tomoaki UTSUNOMIYA, Iku SATO, Shigeo YOSHIDA, Takashi SHIRAISHI, Shigesuke ISHIDA
*1 Professor, Kyushu Univ., Dept. of Ocean Energy Resources, Nishi-ku, Fukuoka, 819-0395, Japan Fax:+81-92-802-3447, E-mail: [email protected]
*2 Energy Unit, Toda Corporation, Chuo-ku, Tokyo, 104-8388, Japan *3 Professor, Kyushu Univ., Research Institute for Applied Mechanics, Kasuga, 816-8580, Japan *4 Power Systems Company, Hitachi, Ltd., Hitachi, 317-0056, Japan *5 Offshore Renewable Energy Exploitation Dept., National Maritime Res. Inst., Mitaka, 181-0004, Japan
Abstract Dynamic response of a Floating Offshore Wind Turbine (FOWT) with Spar-type floating
foundation is presented. The FOWT mounts a 100kW down-wind turbine, and is grid-connected. It was installed on June 11th, 2012 for the purpose of the demonstration experiment. During the experiment, the FOWT was attacked by Sanba (international designation: 1216), the strongest tropical typhoon worldwide in 2012. The central atmospheric pressure was 940 hPa when it was close to the FOWT, and the maximum significant wave height of 9.5m was recorded at the site. In this paper, the dynamic responses of the platform motion, the stresses at the tower sections and the chain tensions during the typhoon event, Sanba (1216), have been analyzed, and compared with the measured data.
Key WordsOffshore wind, Floating wind turbine, Spar, Typhoon, Dynamic response


3.8 m 23.3 m
22 m100 kW
2012 6 11 1 km

744E-mail:[email protected] *2 ()
104-8388 1-7-1 *3 816-8580
6-1 *4 ()
181-0004 6-38-1 2014 12 16

9.5 m 50
8.4 m



1 km 97.2 m


p01-05 _.indd 1 2015/05/26 9:37:05
3/5
9 17 05:0006:00
13.0 s 9.5 m
8.4 m
13.0 s 14.0 s
Fig. 5. The significant wave height H1/3 and the significant wave period T1/3. The time 0hr corresponds to the data for 18:00-19:00 on Sept 16th, and 11hr to 05:00-06:00 on Sept 17th.
Fig. 6. Power spectrum of the measured wind speed and its comparison with Kaimal spectrum for 05:00-05:47 on 17th.
Fig. 7. Power spectrum of the measured buoy heave motion and its comparison with Bretschneider-Mitsuyasu spectrum for 05:00-06:00 on 17th.
Fig. 6



Table 1
Table 1. Numerical calculation cases. CD of Fins Mooring model Yaw damp.
Case 1 1.5 quasi-static catenary 2% Case 2 10.0
Case 3 1.5 dynamic MBS 0% Fig. 8

(Exp)(Case 13)
Fig. 9 9 17 03:0004:00


0.045 Hz (=22 s)

Design wave period
2.2
Fig. 2
100 kW 20 m PC
20 m
3
37.1 kN X Y
Z
6

9 17 5:00
940 hPa
, 2012 Fig. 4
10 10
9 17 05:0005:10
36.8 m/s 50 10
48.3 m/s
24 % Fig. 5
9 17
Fig. 2. Floating wind turbine model (in m).
Fig. 3. The track of the typhoon Sanba (1216).
Fig. 4. The 10-minutes average wind speed on top of the nacelle. The time 0hr corresponds to the data for 18:00-18:10 on Sept 16th, and 11hr to 05:00-05:10 on Sept 17th.
Kabashima
p01-05 _.indd 2 2015/05/26 9:37:05
3/5
9 17 05:0006:00
13.0 s 9.5 m
8.4 m
13.0 s 14.0 s
Fig. 5. The significant wave height H1/3 and the significant wave period T1/3. The time 0hr corresponds to the data for 18:00-19:00 on Sept 16th, and 11hr to 05:00-06:00 on Sept 17th.
Fig. 6. Power spectrum of the measured wind speed and its comparison with Kaimal spectrum for 05:00-05:47 on 17th.
Fig. 7. Power spectrum of the measured buoy heave motion and its comparison with Bretschneider-Mitsuyasu spectrum for 05:00-06:00 on 17th.
Fig. 6



Table 1
Table 1. Numerical calculation cases. CD of Fins Mooring model Yaw damp.
Case 1 1.5 quasi-static catenary 2% Case 2 10.0
Case 3 1.5 dynamic MBS 0% Fig. 8

(Exp)(Case 13)
Fig. 9 9 17 03:0004:00


0.045 Hz (=22 s)

Design wave period
2.2
Fig. 2
100 kW 20 m PC
20 m
3
37.1 kN X Y
Z
6

9 17 5:00
940 hPa
, 2012 Fig. 4
10 10
9 17 05:0005:10
36.8 m/s 50 10
48.3 m/s
24 % Fig. 5
9 17
Fig. 2. Floating wind turbine model (in m).
Fig. 3. The track of the typhoon Sanba (1216).
Fig. 4. The 10-minutes average wind speed on top of the nacelle. The time 0hr corresponds to the data for 18:00-18:10 on Sept 16th, and 11hr to 05:00-05:10 on Sept 17th.
Kabashima
5/5


1) Utsunomiya, T., Sato, I., Yoshida, S., Ookubo, H., and Ishida, S.,
2013, “Dynamic Response Analysis of a Floating Offshore Wind
Turbine During Severe Typhoon Event,” Proceedings of 32nd
International Conference on Ocean, Offshore and Arctic
Engineering, Nantes, France, OMAE2013-10618.
2) Emeis, S., Wind Energy Meteorology, Springer, 2013.
3) Utsunomiya, T., Yoshida, S., Ookubo, H., Sato, I., Ishida, S.,
2014, “Dynamic Analysis of a Floating Offshore Wind Turbine
Under Extreme Environmental Conditions,” Journal of Offshore
Mechanics and Arctic Engineering, Vol. 136, pp. 020904-1 - 1
4/5



Fig. 8. Minimum and maximum values of the platform motion in surge, pitch and yaw.
Fig. 9. Power spectra of the platform motion.
Fig. 10. Maximum values of the bending moments at tower section #2.
Fig. 11. Maximum values of chain tension.
Journal of JWEA 2015 4
p01-05 _.indd 4 2015/05/26 9:37:06
5/5


1) Utsunomiya, T., Sato, I., Yoshida, S., Ookubo, H., and Ishida, S.,
2013, “Dynamic Response Analysis of a Floating Offshore Wind
Turbine During Severe Typhoon Event,” Proceedings of 32nd
International Conference on Ocean, Offshore and Arctic
Engineering, Nantes, France, OMAE2013-10618.
2) Emeis, S., Wind Energy Meteorology, Springer, 2013.
3) Utsunomiya, T., Yoshida, S., Ookubo, H., Sato, I., Ishida, S.,
2014, “Dynamic Analysis of a Floating Offshore Wind Turbine
Under Extreme Environmental Conditions,” Journal of Offshore
Mechanics and Arctic Engineering, Vol. 136, pp. 020904-1 - 1
4/5



Fig. 8. Minimum and maximum values of the platform motion in surge, pitch and yaw.
Fig. 9. Power spectra of the platform motion.
Fig. 10. Maximum values of the bending moments at tower section #2.
Fig. 11. Maximum values of chain tension.
Vol.39, No.1 5