overview of usnc-tech leu fission power systems for...

15
Overview of USNC-Tech LEU Fission Power Systems for Space Applications Paolo Venneri, PhD – [email protected] CEO/Director, USNC-Tech

Upload: others

Post on 19-Feb-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

  • OverviewofUSNC-TechLEUFissionPowerSystemsforSpaceApplications

    PaoloVenneri,PhD– [email protected]/Director,USNC-Tech

  • ©USNC-Tech2019- Proprietary&Confidential

    USNC-Tech

    2

    • FirsttodemonstratetheapplicabilityofLow-EnrichedUranium(LEU)fuelfornuclearthermalpropulsion

    • ReactordesignteamresponsibleforthemajorityofLEU-NTPconceptdesignsproducedfortheNASALEU-NTPprogram• CenterforSpaceNuclearResearch– ResearchFellows• AerojetRocketdyne– ContractedDesignTeam• BWXT– PreviouslyContractedDesignTeam

    • Conductedcriticalityexperimentsandhothydrogentests,purchasedLEU,andcurrentlyproducingsurrogatefuelsamples

    • Morethan60spacenuclearpublications• Largeresearchcollaboratornetworktoaddressanynuclear

    developmentneedincludingfuel,material,hothydrogentesting,nucleartesting,flowtests,fluid-hydraulicsCFDandexperiments,andmissionanalysis

    PremierCommercialSpaceNuclearDesignandAnalysisGroupintheUSA

    10/17/19

  • ©USNC-Tech2019- Proprietary&Confidential

    KeyTechnology/CompetitiveAdvantage– FCM™NuclearFuelNuclearFuelisFoundationofTheNuclearSystem

    ReactorCore EngineeredMacroScaleFCM™FuelLab

    SamplesSiC/TRISO

    ParticleMatrixEngineeredMicro

    ScaleTRISO

    Fully-encapsulated Ceramic Matrix (FCMTM) fuel has over 30 million dollars in R&D from the DoE Accident TolerantFuels Program. It is radiation resistant, chemically non-reactive, fully encapsulates fission products, and capableof extremely high temperatures. FCMTM is a highly engineered fuel built to ensure no release of radioactivematerial even under accident scenarios. Current SiC FCMTM is capable of operation at temperatures above 1600 K.

    10/17/19

  • ©USNC-Tech2019- Proprietary&Confidential

    NASALunarPolarResourceProspector[1KP]

    NASANTPGroundDemonstration[1NTP]

    Comm.LunarIceISRU[1MP]

    NEPTug#1[1HP]

    MarsProp.Plant[1HP]

    NASANTPIn-SpaceDemonstration[1NTP]

    NASALunarBaseCamp[2KP]

    Comm.LunarBase[2MP]

    ESALunarVillage[2MP]

    Comm.LunarFoodPilotPlant[1HP]

    NEPTug#2[1HP]

    Comm.MarsSettlement[2HP]

    NASA/LockheedMarsBaseCamp[2MP]

    NEPTug#3and#4[2HP]

    Self-SustainingComm.LunarSettlement[2HP]

    ESALunarVillageExpansion[2HP]

    NASAMarsSampleReturn[3NTP]

    2024 2025 2026 2027 2028 2029 2030 2031 2032 2033

    MissionsNeedNuclearPowerandPropulsionToday

    4

    1Basedonopenliteratureandpublicannouncements

    10/17/19

  • ©USNC-Tech2019- Proprietary&Confidential

    USNC-TechDesigns,Develops,andPlanstoBuildNuclearReactorsforCommercialMarketsandGovernmentCustomers

    5

    SurfacefissionpowerreactorforEarth

    SurfacefissionpowerreactorforSpace

    NuclearThermalPropulsion(NTP)reactor

    NuclearElectricPropulsion(NEP)reactor

    Capableofspecificimpulse(Isp)of750swithgrowthpathto>900s

    Capableofpowerdensity(a)<20kg/kWwithgrowthpathto<10kg/kW

    Permanentpower,mobilepower,andindustrialheatMMR™teamiscurrentlylicensingfirst-of-a-kindinCanada

    PowerforISRU,life-support,mining,reprocessingofmaterials

    10/17/19

  • ©USNC-Tech2019- Proprietary&Confidential

    LEUFuelinSpaceNuclearFissionPowerSystems

    6

    • IncreaseUraniumUtilizationo ModeratedSpectrums- compensatefor

    lowerfissilecontent,typicallyrelyonhigh-performanceneutronmoderatorstoincreasethefissioncross-section

    • ReduceParasiticAbsorptiono Usein-corematerialsthathaverelatively

    lowneutronabsorptioncross-sectionstopreventneutronabsorptioninnon-fuelmaterials

    • ReduceNeutronLeakageo Combinationoflargercoreswithlower

    volumetosurfacearearatiosandthickerneutronreflectorstopreventneutronsfromleavingthesystem

    10/17/19

  • ©USNC-Tech2019- Proprietary&Confidential

    ThePylon:SurfaceFissionPowerbyandforCommercialSpace

    7

    Near-TermDeployment DesignedforNear-TermSpaceMarketsandApplications• LEUfuelenablescommercialproduct• Operatesatconservativeoperating

    temperatures• Usesexistingandwell-knownmaterials• Maximizesabilitytouseoff-the-shelf-

    components

    • ScalabledesignfromkWe toMWe• Reactorandsystemmassviablefornear-

    termlunarlanderso 150kWe – 4.5tonswith30%

    margin• Applicableto:

    o ISRUo Electricalpowero Industrialprocesses

    10/17/19

  • ©USNC-Tech2019- Proprietary&Confidential

    USNC-TechPylonReactorConceptualreactorsdesignedwithconservativeperformanceandscalabletomultiplepowerlevels

    Parameter Value

    TurbineInlet 1,150K(875°C)

    Life-time 10years

    UraniumEnrichment 19.75%(LEU)

    FuelType FCM™(coatedparticlefuelinSiCcompact)

    Delivery CLPSClassLander(Sub-MW)

    ReactorReactor

    Mass(CBE)(kg)

    Powerlevel(kWe)

    PowerperReactorMass

    (We/kg)

    PYLON-10 950 10 10

    PYLON-150 1,500 150 100

    PYLON-1000 3,000 1,000 333

    Conceptualdesignofa150kWe PylonReactor.

    10/17/19 8

  • ©USNC-Tech2019- Proprietary&Confidential

    0

    500

    1000

    1500

    2000

    2500

    3000

    3500

    4000

    4500

    5000

    10kWeStirling 150kWeBrayton

    5tonLunarLanderPackage(30%Margin)

    MarginPMADRecouperatorPowerConversionReactorandShieldRadiator

    2,940kgremaining

    470kgremaining

    High-performancesystemwithrealisticparametersLunarPylonSystemMassBreakdown

    0

    2000

    4000

    6000

    8000

    10000

    12000

    14000

    16000

    18000

    20000

    1MWeBrayton

    1MWe System(30%Margin)

    Mass

    [kg]

    17,950kgtotal

    9

    Mass[kg]

    10/17/19

  • ©USNC-Tech2019- Proprietary&Confidential

    USNC-TechLEU-FCM™FissionPowerSystemsareCompetitive

    10

    ReactorReactorMass(CBE)(kg)

    Powerlevel(kWe)

    PowerperReactorMass(We/kg)

    OutletTemp.(K) U-235Enrichment

    PYLON-10 950 10 10 1,150 LEU

    USN

    CPYLON-150 1,500 150 100 1,150 LEUPYLON-1000 3,000 1,000 333 1,150 LEU

    10kWeKiloPowerHEU 235 10 33 ~1,000 HEU

    DOEandN

    ASA

    10kWeKiloPower LEU(U7Mo) 900 10 11 ~1000 LEU

    NASAFissionSurfaceSystem 439 40 16 850 HEUJIMOReactor 1,060 200 125 1,150 HEU

    KiloPowerDerivedsystem 3,000 200 67 ~1,000 LEUMegapower 22,000 2,000 91 ~1,000 LEU

    1. David I. Poston, “Reference Reactor Module Design for NASA's Lunar Fission Surface Power System”, Proceedings of Nuclear and Emerging Technologies for Space 2009, Atlanta, GA. June 2009 2. National Aeronautics and Space Administration “Prometheus Project final report” 982-R1204613. Patrick McClure, David Poston “Design and Testing of Small Nuclear Reactors for Defense and Space Applications “Invited Talk to ANS Trinity Section”

    10/17/19

  • ©USNC-Tech2019- Proprietary&Confidential

    HEUandLEUKilopower ReactorCoreandReflectorGeometry

    11

    ModeratedLEUDesign

    HEUKilopower Designo Allmetalcoreo Smallcore,largereflectoro Reliesupon>90percentenriched

    HEUforcompactdesign

    LEUKilopower Designo ThinPlatesofFuelseparatedbylarge

    platesofmetalhydrideso Largecore,smallerreflectoro Reliesuponhydridesforcompactsize

    U8MoSolidMetalCore

    StartUpRodBeO Reflector StartupRodU8MoThinMetalPlates

    BeO Reflector ThickHydridePlates

    MetalHEUDesign

    10/17/19

  • ©USNC-Tech2019- Proprietary&Confidential

    MetalHEU ModeratedLEU MetalLEUU8MoFuel 35 30 350BeOReflector 74 74 360Components 25 35 70Shielding 185 200 230PowerConversion 90 90 90Reflector 35 44 35Moderator 0 79 0

    0

    200

    400

    600

    800

    1000

    1200445kg 550kg 1135kg

    LunarConfigurationMassComparison

    12

    D.Poston,“Kilopower ReactorsforPotentialSpaceApplications,"NETS2019,http://anstd.ans.org/NETS-2019-Papers/Track-4--Space-Reactors/abstract-96-0.pdfM.Gibson,“DevelopmentofNASA'sSmallFissionPowerSystemforScienceandHumanExploration,"Tech.Rep. GRC-E-DAA-TN16225,https://ntrs.nasa.gov/search.jsp?R=20140017750M.Herring,“ SmallModularFissionReactorsforSpaceApplications,” NETS2019,http://anstd.ans.org/NETS-2019-Papers/Track-4--Space-Reactors/abstract-119-0.pdfD.Poston,P.McClure,“UseofLEUforaSpaceReactor”,LosAlamosNationalLaboratoryLA-UR-17-27226(2017)

    10/17/19

  • ©USNC-Tech2019- Proprietary&Confidential

    ConsiderationsforDesigningSpaceFissionPowerSystems

    13

    - Reliablyprovidepowerfordesiredtimeperiod

    - Meetmassandvolumerequirements

    - Canbemadeatneededscaleandquantities

    - Reliablesupplychain

    - Needstobeaffordableintermsofmoneyaswellastimetoimplementation

    - Privatecompaniesneedtobeabletomakeabusinesscase

    Performance Manufacturability Affordability Commercialization

    10/17/19

  • ©USNC-Tech2019- Proprietary&Confidential

    FinalTechnicalThoughtsforDiscussion

    14

    • Above~100kWe,HEUandLEUfissionpowersystemshavesimilarperformancescharacteristics.o Withsomefurtherwork,webelievethatmoderatedLEUKilopower systemscanbe

    comparabletoHEUKilopower atlowerpowerlevelsaswell.

    • HEUfuelenablesfastspectrumsystemsatlowerpowerlevels• Commercialsystemsneedtobecommerciallyviableandbeabletoclosethe

    businesscasefortheirdevelopment.• Thereliabilityofthefuelsupplyisakeyconcernforscalablepowersystems.• Manufacturabilityofhigh-performancemoderators(ZrH,Becompounds)areakey

    developmentgoaltoenableLEUsystems.

    10/17/19

  • usnc-tech.com

    ThankYou