overview of reactor technologies in the world · overview of reactor technologies in the world...

33
SFEN JG Atoms for the Future 14 th October 2010 Overview of Reactor Technologies in the World Martin Taylor OECD Nuclear Energy Agency

Upload: others

Post on 11-Jul-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Overview of Reactor Technologies in the World · Overview of Reactor Technologies in the World Martin Taylor OECD Nuclear Energy Agency. World Nuclear Generating Capacity, 1960 to

SFEN JG Atoms for the Future14th October 2010

Overview of Reactor Technologies in the World

Martin TaylorOECD Nuclear Energy Agency

Page 2: Overview of Reactor Technologies in the World · Overview of Reactor Technologies in the World Martin Taylor OECD Nuclear Energy Agency. World Nuclear Generating Capacity, 1960 to

World Nuclear Generating Capacity, 1960 to 2009

Page 3: Overview of Reactor Technologies in the World · Overview of Reactor Technologies in the World Martin Taylor OECD Nuclear Energy Agency. World Nuclear Generating Capacity, 1960 to

NPP construction starts, 1955 to 2009

Page 4: Overview of Reactor Technologies in the World · Overview of Reactor Technologies in the World Martin Taylor OECD Nuclear Energy Agency. World Nuclear Generating Capacity, 1960 to

Electricity Generation by Source, 2007

Page 5: Overview of Reactor Technologies in the World · Overview of Reactor Technologies in the World Martin Taylor OECD Nuclear Energy Agency. World Nuclear Generating Capacity, 1960 to

Share of Nuclear Power in Total Electricity, 2009 (%)

Source: IAEA PRIS

Page 6: Overview of Reactor Technologies in the World · Overview of Reactor Technologies in the World Martin Taylor OECD Nuclear Energy Agency. World Nuclear Generating Capacity, 1960 to

Nuclear Capacity by Country, 2010 (MWe)

Source: IAEA PRIS

Page 7: Overview of Reactor Technologies in the World · Overview of Reactor Technologies in the World Martin Taylor OECD Nuclear Energy Agency. World Nuclear Generating Capacity, 1960 to

The Existing Reactor Fleet440 large power reactors are in operation (including a few under refurbishment)

Total capacity of 376 GWeOver 80% are light water reactors (LWRs)The USA (104 units), France (58) and Japan (55) account for 56% of global capacity

OECD countries (including also Germany, Korea, Canada, UK) have 83% of global capacity

Outside the OECD, Russia, Ukraine, China and India have large nuclear programmes

7

Page 8: Overview of Reactor Technologies in the World · Overview of Reactor Technologies in the World Martin Taylor OECD Nuclear Energy Agency. World Nuclear Generating Capacity, 1960 to

Type No. of units Net capacity (GWe)

PWR 217 210.8BWR 88 78.9VVER 52 37.5PHWR 48 24.3RBMK 11 10.2GCR 18 8.9ABWR 4 5.0FBR 2 0.8Total 440 376.4

Types of Nuclear Power Plant in Operation

Source: IAEA PRIS 8

Page 9: Overview of Reactor Technologies in the World · Overview of Reactor Technologies in the World Martin Taylor OECD Nuclear Energy Agency. World Nuclear Generating Capacity, 1960 to

Pressurised Water Reactor (PWR)

Reactor vessel

Steam generator

Control rods

Reactor core

Containment

Generator

Steam flow

Water flow

Condenser

Turbine

9

Page 10: Overview of Reactor Technologies in the World · Overview of Reactor Technologies in the World Martin Taylor OECD Nuclear Energy Agency. World Nuclear Generating Capacity, 1960 to

Boiling Water Reactor (BWR)

Reactor vessel

Control rods

Reactor core

Containment

Generator

Steam flow

Water flow

Condenser

Turbine

10

Page 11: Overview of Reactor Technologies in the World · Overview of Reactor Technologies in the World Martin Taylor OECD Nuclear Energy Agency. World Nuclear Generating Capacity, 1960 to

Pressurised Heavy Water Reactor (PHWR)

Heat exchanger

Heavy water circuit

Fuel channels

Containment

Steam flow

Water flow

Dump tank

Calandria

11

Page 12: Overview of Reactor Technologies in the World · Overview of Reactor Technologies in the World Martin Taylor OECD Nuclear Energy Agency. World Nuclear Generating Capacity, 1960 to

Average energy availability factor for NPPs worldwide

Page 13: Overview of Reactor Technologies in the World · Overview of Reactor Technologies in the World Martin Taylor OECD Nuclear Energy Agency. World Nuclear Generating Capacity, 1960 to

Age Structure of Operating NPPs

Page 14: Overview of Reactor Technologies in the World · Overview of Reactor Technologies in the World Martin Taylor OECD Nuclear Energy Agency. World Nuclear Generating Capacity, 1960 to

Projected Lifetime of Existing Nuclear Capacity

Page 15: Overview of Reactor Technologies in the World · Overview of Reactor Technologies in the World Martin Taylor OECD Nuclear Energy Agency. World Nuclear Generating Capacity, 1960 to

Key Points on the Existing Reactor FleetMost were built in the 1970s and 1980s, and are now 20 to 40 years old

Some suffered from delays & high costs during construction, and poor initial performance

Performance much improved during 1990s; now highly valued generating assets

Planned lifetime of about 40 years; for many plants, 50 to 60 years now expected

Investment in power uprating and preparing for extended operation

15

Page 16: Overview of Reactor Technologies in the World · Overview of Reactor Technologies in the World Martin Taylor OECD Nuclear Energy Agency. World Nuclear Generating Capacity, 1960 to

Vendors of Nuclear Power Plants in Operation

Page 17: Overview of Reactor Technologies in the World · Overview of Reactor Technologies in the World Martin Taylor OECD Nuclear Energy Agency. World Nuclear Generating Capacity, 1960 to

Consolidation of NPP Vendors Since 1990

17

Page 18: Overview of Reactor Technologies in the World · Overview of Reactor Technologies in the World Martin Taylor OECD Nuclear Energy Agency. World Nuclear Generating Capacity, 1960 to

Main Current NPP Vendors & DesignsWestinghouse (AP‐1000)AREVA (EPR, Atmea)Atomenergoprom (VVER‐1200, VVER‐1000)Mitsubishi Heavy Industries (APWR, Atmea)Doosan (APR‐1400)General Electric‐Hitachi (ABWR, ESBWR)Toshiba (ABWR)Atomic Energy of Canada Ltd (ACR, Candu‐6)CNNC, China Guangdong NPC (CPR‐1000)To come: CAP‐1400 (Chinese Gen III+ design)

18

Page 19: Overview of Reactor Technologies in the World · Overview of Reactor Technologies in the World Martin Taylor OECD Nuclear Energy Agency. World Nuclear Generating Capacity, 1960 to

Location No. of units Net capacity (MW)Argentina 1 692

Brazil 1 1 245

Bulgaria 2 1 906

China 24 25 010

Finland 1 1 600

France 1 1 600

India 4 2 506

Iran 1 915

Japan 2 2 650

Korea 5 5 560

Pakistan 1 300

Russia 11 9 153

Slovak Republic 2 782

Chinese Taipei 2 2 600

Ukraine 2 1 900

United States 1 1 165

Total 61 59 584

Nuclear Power Plants Under Construction

Source: IAEA PRISSource: IAEA PRIS19

Page 20: Overview of Reactor Technologies in the World · Overview of Reactor Technologies in the World Martin Taylor OECD Nuclear Energy Agency. World Nuclear Generating Capacity, 1960 to

© OECD/IEA 2010 

Nuclear Energy Technology Roadmap

Prepared jointly by the Nuclear Energy Agency and the International 

Energy Agency

Page 21: Overview of Reactor Technologies in the World · Overview of Reactor Technologies in the World Martin Taylor OECD Nuclear Energy Agency. World Nuclear Generating Capacity, 1960 to

21

Covering the main low‐carbon energy technologies Based on a scenario to halve energy‐related CO2emissions by 2050 (near decarbonisation of electricity)

Assess current status of technology and set out specific technology targets to be achieved and by when

Other barriers that need to be overcome (e.g. legal, regulatory, financial, public acceptance, etc.)

Policy support required for R&D and for deployment Identification of roles & responsibilities, i.e. who needs to do what and when

Looks to 2050, but focus on near‐term actions and milestones (next 10 years)

A Series of Roadmaps 

Page 22: Overview of Reactor Technologies in the World · Overview of Reactor Technologies in the World Martin Taylor OECD Nuclear Energy Agency. World Nuclear Generating Capacity, 1960 to

22

Assumes 1 200 GWe of nuclear power by 2050 (up from 370 GWe today); 610 GWe in ETP Baseline

9 600 TWh/year of electricity, 24% of global total Need to add 25 GWe/year in 2020s, rising to 40 GWe/year in 2040s

Allowing for life extension and larger units, could require 20‐25 new units per year

High Nuclear case has 2 000 GWe nuclear by 2050, nearly 16 000 TWh, 38% of global electricity

Model shows this would be cost‐effective (against CCS), but IEA doubts feasibility

ETP 2010 BLUE Map: Nuclear

Page 23: Overview of Reactor Technologies in the World · Overview of Reactor Technologies in the World Martin Taylor OECD Nuclear Energy Agency. World Nuclear Generating Capacity, 1960 to

23

Electricity Production by Source in Baseline & BLUE Map Scenarios

Page 24: Overview of Reactor Technologies in the World · Overview of Reactor Technologies in the World Martin Taylor OECD Nuclear Energy Agency. World Nuclear Generating Capacity, 1960 to

24

Growth in Nuclear Capacity in BLUE Map Scenario

Page 25: Overview of Reactor Technologies in the World · Overview of Reactor Technologies in the World Martin Taylor OECD Nuclear Energy Agency. World Nuclear Generating Capacity, 1960 to

25

Status of Nuclear Energy Today Existing fleet; Nuclear technology for near‐term (Gen III+); 

Status of nuclear fuel cycle and waste managementNuclear Energy Deployment to 2050 Nuclear in BLUE Map; Expansion to 2020; Preparing for 

more rapid growth after 2020; Fuel cycle requirementsTechnology Development and Deployment Evolutionary development; Implementing HLW & spent fuel 

disposal; Next generation nuclear systems; SMRs; Heat, etc.Policy, Financial and Social Aspects Policy support; Legal & regulatory frameworks; Financing; 

Civil society; Capacity‐building; Non‐proliferation, etc.Roadmap Action Plan Actions for governments, industry and others

Nuclear Roadmap Structure

Page 26: Overview of Reactor Technologies in the World · Overview of Reactor Technologies in the World Martin Taylor OECD Nuclear Energy Agency. World Nuclear Generating Capacity, 1960 to

26

Milestones: Policy Support

2010 2020 2030 2040 2050

Clear & stable commitment to nuclear power in energy policy

Harmonise regulatory requirements to facilitate the use of standardised designs

Strengthen non-proliferation regimes, while providing security of fuel supply

Ensure legal & regulatory systems work effectively

Ensure institutions & funding are in place for waste disposal & decommissioning

Develop legal & institutional frameworks for wider use of advanced fuel cycles

Page 27: Overview of Reactor Technologies in the World · Overview of Reactor Technologies in the World Martin Taylor OECD Nuclear Energy Agency. World Nuclear Generating Capacity, 1960 to

27

Milestones: Capacity Building& Industry

2010 2020 2030 2040 2050

Increase capacity to supply nuclear plant components & systems

Strengthen & broaden global supply chains as more countries launch nuclear programmes

Increase uranium production & nuclear fuel cycle capacities to meet rapid demand growth

Develop the qualified & skilled human resources needed

Achieve nuclear construction rates from 2020 double present levels

Continue to increase nuclear construction rates

Develop industrial capacities to support advanced fuel cycles

Page 28: Overview of Reactor Technologies in the World · Overview of Reactor Technologies in the World Martin Taylor OECD Nuclear Energy Agency. World Nuclear Generating Capacity, 1960 to

28

Milestones: Financing

2010 2020 2030 2040 2050

Consider direct govt. support or guarantees for NPP investment\

Establish electricity and carbon markets that support large, long-term investments

Develop nuclear energy expertise in private sector financial institutions

Establish routine investment by private sector in proven nuclear plant designs

Increase the availability of private sector finance for NPPs

Page 29: Overview of Reactor Technologies in the World · Overview of Reactor Technologies in the World Martin Taylor OECD Nuclear Energy Agency. World Nuclear Generating Capacity, 1960 to

29

Milestones: Technology Development & Deployment

2010 2020 2030 2040 2050

FullyestablishGen III+designs,bringFOAKplantson-line

Implement plans to build & operate geological repositories for waste disposal

Showon-time& on-budgetcompletionof furtherGen III+plants Complete demonstration of the most

promising Gen IV nuclear plants

Increase use of nuclear energy for non-electricity applications (e.g. heat)

Strengthen RD&D in advanced fuel cycles

Build & operate commercial-scale Gen IV plants

Page 30: Overview of Reactor Technologies in the World · Overview of Reactor Technologies in the World Martin Taylor OECD Nuclear Energy Agency. World Nuclear Generating Capacity, 1960 to

30

Key Findings (1)

Nuclear is a mature low‐carbon energy technology that is already available for wider deployment

In the ETP BLUE Map scenario, nuclear capacity grows to 1 200 GWe by 2050, providing 24% of global electricity

Obstacles to this expansion are mainly policy‐related, industrial and financial, rather than technological

But in the longer term, technological development will be needed for nuclear to remain competitive

A clear and stable commitment to nuclear as part of national energy strategy is a prerequisite

Financing will be a major challenge, and government support may be needed for private‐sector investment

Page 31: Overview of Reactor Technologies in the World · Overview of Reactor Technologies in the World Martin Taylor OECD Nuclear Energy Agency. World Nuclear Generating Capacity, 1960 to

31

Key Findings (2)

Industrial capacity to build nuclear plants will need to double by 2020 for expansion in line with the scenario; fuel cycle capacities will also need to increase

A great increase in highly qualified and skilled human resources will also be needed

Progress needs to be made in building and operating facilities for the disposal of spent fuel & high‐level waste

Safeguards and physical protection measures must be maintained and strengthened where necessary

Generation IV reactor and fuel cycle technologies may offer improved sustainability, economics, proliferation‐resistance, safety and reliability, starting before 2050

Page 32: Overview of Reactor Technologies in the World · Overview of Reactor Technologies in the World Martin Taylor OECD Nuclear Energy Agency. World Nuclear Generating Capacity, 1960 to

32

Demonstrate the ability to build the latest nuclear plant designs on time and within budget

Develop the industrial capacities and skilled human resources to support sustained growth in nuclear capacity

Establish the required legal frameworks and institutions in countries where these do not yet exist

Encourage the participation of private sector investors in nuclear power projects

Make progress in implementing plans for permanent disposal of high‐level radioactive wastes

Enhance public dialogue to inform stakeholders about the role of nuclear in energy strategy

Expand the supply of nuclear fuel in line with increased nuclear generating capacity

Key Actions for Next 10 Years

Page 33: Overview of Reactor Technologies in the World · Overview of Reactor Technologies in the World Martin Taylor OECD Nuclear Energy Agency. World Nuclear Generating Capacity, 1960 to

33

The Nuclear Energy Roadmap was released on16 June 2010

All roadmaps are available at:

www.iea.org/roadmaps